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limitations ol phenomenological hydro

o “Standard” hydro philosophy:
e Start with symmetries, identify conserved charges and Goldstone modes
 Write down all terms in gradient expansion, with general coefficients

* @Gives dynamical implications of a particular symmetry structure, could allow one to infer symmetries from
experiment

* Basic limitation: disconnected from microscopics

« Attempts to derive hydro from microscopics: Boltzmann kinetic theory, etc., controlled in specific cases (e.g.,
weakly interacting systems)

 But we care about generic strongly interacting systems

* Closely related question: how hard is it to classically predict quantum dynamics?



worst-case scenario for numerics?

* Tensor-network methods work well when entanglement is low

 Dynamics starting from states that are high-energy-density (far from ground state) generate a
lot of entanglement (exponentially hard in time to simulate the state exactly)

e Are we stuck?
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thermalization and hydrodynamics

* High temperature dynamics is complex, chaotic

e (Chaos leads to effective randomization of state

* Local subsystems have thermal density matrices, full system
does not but we only care about local properties

* System goes to maximum entropy state subject to
conservation laws (“thermalization”)

 Hydrodynamics:

 Assume system is locally in some thermal state (described
by local values of conserved variables)

 Write down equations of motion for conserved variables by
gradient expansion (assume that variations are smooth)



entanglement barrier

 Entanglement grows linearly in time,
complexity is exponential in
entanglement

QC, 1 layer

low complexity
because of low entanglement

* High-temperature thermal states like
exp(—/H) have low complexity

 Thermalization: reduced density
matrix for subsystem can be replaced
by thermal state

™S

complexity of reduced density matrix

- - low complexity

* Problem: how to bridge between the because of thermalization
early and late time physics?
(“Crossing the entanglement barrier”) t_

* Equivalent to asking: how do we
derive hydrodynamics?




why do we want to do this!

* Intellectual satisfaction
* Might want precise estimates of diffusion constant, etc. (Trivedi et al., 2024)

 We are interested in specific models, we want to be open to discovering new structures
beyond what hydro puts in (e.g., quantum scars, strong zero modes, many-body localization)
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finding slow operators

* Picture behind hydro:
 Most operators relax fast and can be treated as white noise
 Remaining operators form a “slow operator Hilbert space”

 Want to perform “adiabatic elimination”/Schrieffer-Wolff to eliminate the fast operators
* Naive idea: work with Liouville superoperator:
Z(0) =1|H, O]

. Annoyingly, the eigenmodes of £ are just | E;)(E;|, eigenstates of the true evolution; too
nonlocal to be helpful



the rest of this talk

* Noise as a way to cut off the entanglement barrier

 (Case with no conservation laws: Liouvillian gap and Ruelle resonances

» (Case with charge conservation; hydrodynamic projections

* Note: for simplicity we will be working with discrete-time/Floquet dynamics
* Key refs:

Prosen, J Phys A 35, L737 (2002)

Von Keyserlingk, Pollmann, Rakovszky, arXiv:2111.09904
Nahum, Roy, Vijay, Zhou, arXiv:2205.11544

Mori, arXiv:2311.10304

Jacoby, Huse, SG, arXiv:2409.17238

Zhang, Nie, Von Keyserlingk, arXiv:2409.17251



weak dissipation + no conserved quantities



time —me———

markovian open quantum systems
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' quantum channel & '
(discrete-time version
o of Lindblad master eq)
« Q: how does the spectrum of & evolve in the weak-dissipation limit?
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system bath



mort’s result

« Specifically, consider the following Lindblad master
equation with H(t + 7) = H(?):

0p = — ilH®), pl +7 Y, (07poi = p)

» |Integrating this equation for a time 7 gives one step of
evolution under &
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« Why time-periodic? Otherwise, for y — 0, H itself
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ruelle resonances: analytic structure of (z — &)~

first Riemann sheet second Riemann sheet
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quantum channels in the heisenberg picture

« Density matrix evolves under CPTP map, p — &(p)

 We want to compute exp val of some observable,

(0(0) = Tr(O€ (p))

e Can dAefine a Heisenberg picture for CPTP maps,
Tr(87(0)p) = Tr(O&(p))

* Helpful picture for superoperators:

States are column vectors (“superkets”) | p)

Operators are “superbras” (O |
Bracket (O | p) = Tr(O"p)
Expectation value looks like (O | & | p)

Left and right action have the same eigenvalues (but different eigenvectors)

» Trace preservation implies ([ | & |p) = (1] p) = Tr(p), so
(11& = (1], identity is always a left eigenvector of the adjoint map
(“unital property”)



fat-line notation

* Fat lines carry density matrices,
a channel is a superoperator on density matrices

 Observables are vectors acting from the top, identity

* Unital property:




circuils composed of quantum channels

* Lieb-Robinson arguments carry over more or less directly from unitary systems

repeating
unit




operator growth

* QOver time an initially local operator “grows” to fill in its light cone
e Basis for operator space: Pauli strings
e Support of an operator: set of sites with Paulis that are not the identity

* There are four Paulis and only one is the identity, so operator growth
IS entropic in origin

* Can solve explicitly for random quantum circuit<




Schuster, Yao, 2208.12272

markov process for operator growth

reflecting
wall

YL < YR
drifts away

size attime t

* Operator growth in chaotic systems is a biased random walk (toward larger size)

» Effect of dissipation increases linearly as one goes to larger size, effective process:

px = WiPx—1 + W_Pxy1 — (W— T W,y + }/X),Ux

. What are the spectrum and eigenstates of the non-Hermitian operator M _ .7



“hermitian” frame

¢ P = WPt WPy — (w_ + Wyt YX)P,

. Perform a similarity transform M = T~'MT, where T, . = e“o,, (leaves spectrum unchanged)

o For appropriate a, M is a Hermitian matrix

* Continuum limit of eigenvalue problem:

(4= A)p(x) = —wy'(x) + yxy(x) .

W= /ww_, A= (W—\M)z

* (Gap arises from coordinate transformation

* Eigenstates delocalized (in this frame)
on a length-scale }/_1/3




low-lying eigenstates

* Eigenstates are orthogonal in Hermitian frame, but not on0

after transformation 7| ') = \Qb,iab) 0100 =
0.001 -
* Location of maximum is set by balancing operator p /
ax - - 10
growth e vs. Airy function decay |
107" I
« Peakatl/y 0
20 40 60 80 100 120 140

 Why is the decay rate O(1)? Intuitively: eigenmodes
have characteristic operator size 1/y, their decay rate is

y X 1/y = O(1)
. Eigenstates are increasingly non-orthogonal as y — 0

 Bottom line: in the absence of conservation laws, the
evolution operator is gapped!



correlation functions

* Return probability for an operator to start and end at size 1

. Recall, generator M = TMT~!

where M = Al + Schroedinger eq
and T = Zxx/e“xéxx,
. Correlation functionis (1 | M| 1) ~ (1|M|1)

 Because it concerns return probabilities it does not “feel” the
change of coordinates

 Bound state vs. lack of bound state ~ Feynman trajectories
dominating correlation function (Nahum et al., 2022)
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adding conservation laws (speculative)



what we hope to see

* (Operator Hilbert space separates into hydro

and non-hydro subspaces
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» Adiabatic elimination of non-hydro E ey
subspace: to leading order, simply project it
out

imaginary part
o

* To get the long-time dynamics of a general
operator, compute Py 4., QP 4r0, Which

lives in a much smaller space

I
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» Extra slow operators show up as slow S
modes of &

 Many practical challenges to making this
work...



toy application: mazur bounds

« Suppose we have some number of exactly conserved quantities Ql-

* Then the late-time limit of any autocorrelation function is bounded by the Mazur bound
lim,_, ,(0(00)) 2 Y, (00)M™H{Q,0). M; = (Q:0))

» (Can construct time-dependent versions (wang, ren, sg, vasseur, 2025): from the positivity of Lehmann
representation, we have that

J di(J()J(0)) > (J2)t — O(e)
0

where |||/, H]|| < €
» So far, useful mostly in cases where we already know the structure of the problem

» Similar approach has been used to find slow operators: Banuls et al. (2015, 2018)



wrapping up

 Even if exact simulations of quantum states are hard, many of the questions we are
interested in might not be

 Hydrodynamics is a successful theory of some observables in some systems

 Where are its boundaries? Can we quantify non-hydrodynamic effects and compute their
timescales? (Recall: bit-string distribution has specifically quantum fluctuations)

* Are there universal effects in transport beyond hydrodynamics?

 How do we turn the “"hydrodynamic projection” into an efficient numerical scheme?



