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a simple but nontrivial model

• General Hamiltonian  
 

 

• Ballistic energy transport due to integrability

• Separate conservation of charge and DW’s

H = ∑i
(XiXi+1 + YiYi+1 + ΔZiZi+1)
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a simple but nontrivial model
• General Hamiltonian  
 

 

• Separate conservation of charge and DW’s

•  cannot grow or shrink or break — so it’s stuck

• But a single flipped spin like  can move around 
freely

• Model is integrable:

• Magnons move ballistically even at finite density

• Magnons and frozen domains are separately conserved

H = ∑i
(XiXi+1 + YiYi+1 + ΔZiZi+1)

… ↓ ↓ ↑ ↑ ↑ ↓ ↓ …

… ↓ ↓ ↑ ↓ ↓ …
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quasiparticle picture of integrable systems

Two variables (velocities), two constraints (momentum + k.e.)

If particles have equal mass: 

Set of velocities {v} preserved

Three-body collisions relax {v} unless they factorize (Hubbard/Heisenberg)

In integrable systems a picture of colliding trolleys can be made exact

Each trolley moves at a renormalized velocity that depends on the density 
of other trolleys that are in the way

So why isn’t everything always ballistic?

vf1 = vi2, v
f
2 = vi1
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outline

• Diffusive spin transport

• Effect of breaking integrability

• Full counting statistics (FCS)

• General hydrodynamic picture of FCS



why is spin transport diffusive?



why is there no ballistic spin transport?

• What happens when a small mobile domain hits a large immobile domain?

• Small domain is stripped of spin, hence no ballistic spin transport (but still ballistic energy transport)

• Large domain undergoes Brownian motion from repeated collisions

x

t

Ganahl et al., 2013



intuitive argument for diffusion

• In time  a magnon “sees” a system of size 

• Positive and negative domains in this finite-size region cancel only up to a factor 

• Residual magnetization carried by quasiparticle: 

• Amount of magnetization transported: 

t x ∼ t

∼ 1/ t

mdr ∼ 1/ t

x

t

h�(mdrx)2i ⇠ v2t2

vt
⇠ vt
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structure factor at general filling
• Contributions to correlation function 

:

• Magnon moves from one point to the other

• Frozen pattern of domain walls diffuses from one point to the other

• Magnon carries “charge” 

• Leading magnon contribution to structure factor: 
 
 

• Frozen pattern undergoes Brownian motion, gives contribution: 
 

 
 
where D is some O(1) number set by magnon density

S(x, t) ≡ ⟨σz(x, t)σz(0,0)⟩ − ⟨σz⟩2

∼ − ⟨σz⟩

⟨σz⟩2 ∑v
P(v)δ(x − vt)

(1 − ⟨σz⟩2)exp(−x2/(Dt))



integrability-breaking



breaking integrability with noise
• Time-dependent Hamiltonian: 
 

 
 
where 

• Respects constraint but breaks integrability

• Why is this a good idea? Average over noise, get a Lindblad master equation  
 

• This Lindblad master equation has two useful features:

• Immediately restores diffusion for a single quasiparticle (otherwise, you would need collisions for diffusion)

• Permits efficient numerical simulations because noise kills entanglement

H = H0 + H(t) = ∑i
(XiXi+1 + YiYi+1 + ΔZiZi+1) + hi(t)Zi

⟨hi(t)⟩ = 0,⟨hi(t)hi(t′￼)⟩ = γf(t − t′￼)

∂tρ = ℒ(ρ) = − i[H0, ρ] + γ∑i
(ZiρZi − ρ)



so what does it do?

• In time t a magnon sees a region of size 

• So the magnetization it sees is 

• Transported spin: : subdiffusion!

• Energy is transported diffusively

• What is the subdiffusion rate? 

• Mean free time, mean free path, energy diffusivity 

• Spin transport 

• How to see this from the domain wall picture? Same 
magnon repeatedly interacts with domain wall, leads to 
anticorrelations in the Brownian motion

t

t−1/4

t1/2 × t−1/4 ∼ t1/4

∼ 1/γ

∼ (t/γ)1/4



so what does it do?

• Spin transport 

• Spin conductivity  at low frequencies

• Integrability-breaking can be detected at frequencies 

• Away from the infinite-  limit, eventually get diffusion 
at very low frequencies, but the diffusion constant is 
discontinuous from the integrable limit

• Numerical methods that break integrability weakly can 
converge to the wrong diffusion constant

(t/γ)1/4 ∼ D(t)t, D(t) ∼ (γt)−1/2

∼ ω/γ

≤ 1/γ, ⇒ ω* ∼ γ

Δ



full counting statistics



full counting statistics (fcs)
• Single-site resolved projective measurement of all atoms

• Lots of data, need good summary statistics going beyond exp. vals.

• One way to organize the data: full counting statistics (fcs)

Wei et al. 2022



full counting statistics (fcs)
• Single-site resolved projective measurement of all atoms

• Lots of data, need good summary statistics going beyond exp. vals.

• One way to organize the data: full counting statistics (fcs)

• Experimental protocol for fcs:

• Initialize two half-systems separated by a barrier, at (sharp) particle numbers 

• Lower barrier and run the dynamics to time t, measure all particle positions

• This gives conditional distribution 

• Compute particle transfer as 

Q0
L, Q0

R

P(Qt
R, Qt

L |Q0
R, Q0

L)

P(Qt
R − Qt

L − (Q0
R − Q0

L))

Wei et al. 2022



“standard” fcs



fcs for conventional diffusion

• All cumulants of the charge transfer scale as 

• From nonequilibrium initial condition, mean 

• Standard deviation : equilibration over scale , fluctuations 

• Full distribution function follows from solving the fluctuating hydro equations with white noise

• Only cares about density-dependent transport/thermodynamic coefficients

t

∼ t

∼ t1/4 t t

∂tn = ∂x (D(n)∂xn + D(n)χ(n) ξ)



why would this apply to quantum systems?

classical noisy classical det. quantum noisy quantum det.

random state noise + ensemble ensemble noise + ensemble + 
projection

ensemble + 
projection

deterministic state noise none noise + projection projection

integrable vs. chaotic chaotic either chaotic either

highly entangled 
quantum state

classical thermal 
ensemble

noisy evolution of 
hydrodynamic modes

ETH chaos

explicit calculation for random circuits (McCulloch, De Nardis, SG, Vasseur, PRL (2022))



how could this go wrong?

• Basic MFT thesis is that all fluctuations are set by density-dependent diffusion constant:

• Much of MFT is unchanged if  is a smooth function of density

• Why would this ever fail? 

• In the XXZ model, the diffusion constant is infinite away from half filling

• Also nonintegrable models with this feature (e.g., graphene at charge neutrality)

D(n)

∂tn = ∂x (D(n)∂xn + D(n)χ(n) ξ)



fcs in the xxz spin chain



xxz at large polarization

• Big immobile domain has intermittent collisions with magnons

• Domain edge undergoes random walk due to collisions

• Relation between domain motion and Q(t):

• When the domain wall moves toward the origin, Q decreases

• When the domain wall moves away from the origin, Q increases

• Domain wall starts at the origin, so —  
absolute value of displacement of a random walker

Q(t) = |x(t) |
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xxz at large polarization

• Domain wall starts at the origin, so probability distribution of magnetization transfer is the absolute 
value of a random walk

• Two implications:

• Strongly skewed distribution

• Mean and standard deviation scale the same way as :  
mean and variance scale with different powers

• Main reason: not independent walkers, just one giant walker

t

cf. standard diffusive systems 
 

particles equilibrate across a distance  
 

so distribution width is 

t

t



general case: three-mode hydrodynamics



hydro with a conserved energy current

• Continuity equation for energy: 

• Continuity equation for energy current: 

• Constitutive relation for :  

• Continuity equation for energy current, at Euler scale: 

∂te + ∂iϕi = 0

∂tϕi + ∂jqji = 0

qji qji = Beδji + …

∂tϕi + B∂ie = …



hydro with a conserved energy current

• Continuity equation for energy: 

• Continuity equation for energy current: 

• Constitutive relation for :  

• Continuity equation for energy current, at Euler scale: 

• These two equations describe sound waves; how do the sound waves couple to charge?

∂te + ∂iϕi = 0

∂tϕi + ∂jqji = 0

qji qji = Beδji + …

∂tϕi + B∂ie = …



hydrodynamics of charge

• Previously: ,  (at Euler scale)

• Continuity equation for charge: 

• Only Euler-scale term allowed in 

• Away from states with particle-hole symmetry, : particles carry energy + charge

• At charge neutrality this coupling is absent, so linearized hydro of charge is purely diffusive: 
 
 

• But nonlinear fluctuations matter, so general hydro is 
 

∂te + ∂iϕi = 0 ∂tϕi + B∂ie = 0

∂tn + ∂i ji = 0

ji = nϕi

δji ∼ n0δϕi

ji ∼ − D∂in + ξi + …

∂tn + ∂i(nϕi) = D∂i∂in + ξi



why quasi- ?1D
• In higher dimensions, macroscopic number of independent regions contribute to charge transfer — sum over 

which is asymptotically Gaussian.

In , sound waves propagate in a continuum of directions, only charge along the path of a wave feel same convective force

In , every parcel of charge feels the effect of every sound wave.

D > 1
1D

D > 1 quasi-1D

1 ≪ w ≪ L Use graphene bulk dispersion



hydrodynamic decoupling
• Effect of “Brownian coupling”: 
 

• Fluctuations in  are rapidly moving sound waves 
that impart random kicks to 

• Because  is slowly fluctuating these kicks on a 
particular fluid element are effectively uncorrelated in 
time: Brownian motion

• Nonlinearity reduces to tackling multiplicative noise 
with ballistic correlations 
 

• These correlations matter for FCS since all the 
particles are feeling the same noise

∂tn + ∂i(nϕi) = 0

ϕi
n

n

⟨ϕ(x, t)ϕ(0)⟩ ∼ δ(x − vt)

tim
e

position



solution by characteristics

• , 

• Formal solution: 
  

 

 
where 

• Distribution reaches a nongaussian limit shape 
which is different for eq’m and biased states

• Cumulants scale as  rather than  as in 
standard diffusive systems

• Matches recent results for integrable XXZ (sg et al, 
2022; krajnik et al., 2022)

∂tn + ∂x(nϕ) = 0 ⟨ϕ(x, t)ϕ(0)⟩ ∼ δ(x − vt)

n(x, t) ≈ n0 (x − ∫
t

0
dt′￼ϕ(x, t′￼))

n0(x) = n(x,0)

tn/2 t1/2
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two-color fluid

• Galilean (rather than Lorentz) invariance

• Conserved quantities: total number, imbalance, 
momentum, energy

• At half filling, imbalance does not overlap with 
total momentum, and is transported diffusively 
[cf. Sachdev-Damle]

• Very similar to Dirac fluid, but easy to simulate

• Quasi-1D geometry: wide enough to be chaotic, 
narrow enough to not average out FCS



two-color fluid

Equilibrium:

cumulants Cn ∼ tn/4

Domain wall:

cumulants Cn ∼ tn/2



summary
• Transport can be diffusive at special points in systems with ballistic modes 

or systems with a nonequilibrium drive (e.g., asymmetric exclusion)

• This “diffusive” transport has strongly enhanced, nongaussian fluctuations

• Effect is general in nonequilibrium stochastic systems / “active matter” 
[mcculloch, vasseur, sg, in prep]

• Also the basis of fluctuations in integrable systems 
[sg, huse, khemani, vasseur (2018); medenjak et al. (2019); doyon (2020)]

• What if the ballistic modes are not strictly ballistic but just long-lived?  
What is the crossover to regular MFT?

• What about disorder—e.g., smoothly varying chemical potentials?

• What is the best way to probe this physics in higher-dimensional settings?  
(nonlinear response? multipoint noise correlations?)

• Does quantum mechanics play any part here? 
-1.0 -0.5 0.0 0.5 1.0 1.5 2.0

0.0

0.2

0.4

0.6

0.8

1.0

Q / t1/2

eqm

domain

wall


