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Propagation of sound is an ubiquitous feature characterizing many

body systems.

In classical gases sound propagates as a consequence of collisions

ensuring the achievement of  hydrodynamic regime

At low temperature, in the quantum world, sound exhibits novel

features



- How does superfluidity affect the propagation of sound ?

- How many sounds can propagate in a superfluid ?

- Superfluid density cannot be derived from thermodynamic

functions at equilibrium. Can the superfluid density be 

extracted from measurement of sound velocity

- What happens to superfluid fraction and to sound 

propagation if Galilean (or Translation) invariance is

broken ? 

Major questions addressed in these lectures



PLAN OF THE LECTURES

Lecture 1. Superfluids at finite tempertaure: a tale of two sounds

Lecture 2. Dynamical breaking of Galilean invariance and 

propagation of sound at T=0

Lecture 3.  Spontaneous breaking of translational invariance and 

supersolidity: another tale of two sounds



Sound in a classical gas

From classical Bolzmann equation, plus local equilibrium imposed

by collisions, one derives

linearized hydrodynamic equations

for density, velocity field and

temperature

Sound wave solutions are fixed by linear dispersion 
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Result for adiabatic sound is not trivial from the many-body point of 

view since the adiabatic compressibility differs from the

isothermal compressibility

which fixes the compressibility sum rule

classical sound does not exhaust compressibility sum rule. 

Occurrence of  additional low energy mode (of diffusive nature) is

crucial to fulfill the compressibility sum rule !

What happens when one lowers temperature and enters the quantum 

superfluid regime ? Diffuse mode transforms into a novel

undamped mode, called second sound
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Dynamic structure factor measured

in a 2D  Bose gas below (blue) and 

above (red)  the critical temperature
(Christodoulou, …Hadzibabic, 2021)

Below Tc one finds two resonances (first and second sound)

Above Tc the low frequency signal has diffusive nature.
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are density and 

temperature dependent

entropy, pressure and 

chemical potential. Related

by Gibbs-Duhem relation

Irrotationality of  

superfluid flow

Landau developed theory of sounds propagating in a uniform

superfluid at finite temperature. 

Theory is based on the assumption that the system is composed of 

two coupled fluids (normal and superfluid fluids) whose motion 

gives rise to two sounds in the hydrodynamic collisional regime.
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 At T=0:

and eqs. reduce to 

T=0 irrotational superfluid 

HD equations

SS vj


  ,

equivalent at T=0 as a consequence

of Gibbs-Duhem relation

At T=0 irrotational hydrodynamics follows from

superfluidity (role of the phase of the order parameter).

Quite successful to describe the macroscopic dynamic 

behavior of trapped superfluid atomic gases (Bose and Fermi)

(expansion, collective oscillations)
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T=0 Bogoliubov sound 

(wave packet propagating in a dilute BEC, Mit 97)

sound velocity as a function 

of central density

mgnc 2/

factor 2 accounts for harmonic 

radial trapping (Zaremba, 98)



T=0 Collective oscillations in dilute BEC               

(axial compression mode) : checking validity of

hydrodynamic theory of superfluids in trapped gases

Exp (Mit, 1997)

HD Theory (S.S. 1996): 
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SOLVING THE HYDRODYNAMIC 

EQUATIONS OF SUPERFLUIDS 

AT FINITE TEMPERATURE 



In uniform matter Landau equations of two fluid hydrodynamics

gives rise to two solutions below the critical temperature:

First sound: superfluid and normal fluids move in phase

Second sound: superfluid and normal fluids move out of  phase.

In systems characterized by small compressibility,                                 

(like liquid He4 and strongly interacting Fermi gas)

second sound reduces to

entropy wave.

Corresponding velocity

fixed by superfluid density, 

hence providing unique 

possibility to measure superfluid density)
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First and second sound velocities 

in superfluid liquid He

Liquid He

(experiment, Peshkov 1946)
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Propagation of sound

in the 3D Fermi gas at unitarity



Thermodynamics and Universality of 

3D Fermi gas at unitarity
Absence of interaction parameters

implies that thermodynamics obeys

universal law (Ho, 2004) 

where is thermal wave-length

and is dimensionless, universal function

(applies to quantum gases and neutron matter).

All thermodynamic functions (entropy, compressibilities, specific

heats etc.) can be expressed in terms of  the universal function

Calculation of             requires however non trivial many-body 

approaches at finite T.

Universal function and thermodynamic functions

now available experimentally in a wide range of temperatures
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Experimental determination of critical temperature

(determined by peak in specific heat and onset of BEC)

in agreement with many-body predictions (Burowski et al. 

2006; Haussmann et al. (2007); Goulko and Wingate 2010)

)13(167.0/ FC TT

Ku et al. Science 2012

Unitary Fermi gas

Superfluid He4



Leonid Sidorenkov

Meng Khoon Tey

Yan-Hua Hou

Lev Pitaeveskii

Rudolph Grimm

Measurement of  first and second sound and determination of 

the superfluid density in a strongly interacting Fermi gas

Innsbruck- Trento collaboration (Sidorenkov et al., Nature 2013)



To excite first  sound  one suddenly turns on a 

repulsive (green) laser beam in the center of the trap

[similar tecnhnique used at Mit (1998) and Utrecht (2009) 

to generate Bogoliubov sound in dilute BEC



To excite second sound  one keeps the repulsive 

(green) laser power constant with the exception of a 

short time modulation producing local heating in the 

center of the trap

The average laser power is kept constant to limit the 

excitation of pressure waves (first sound)



First sound

propagates also beyond

the boundary between the 

superfluid and the normal

parts

Second sound 

propagates only within the 

region of co-existence of 

the super and normal

fluids. 

Second sound is basically

an isobaric wave, but

signal is visbile because

of small, but finite 

thermal expansion.



From measurement of 1D second sound velocity + 3D 

reconstruction

one can obtain 3D superfluid fraction

Superfluid 

helium

gasBoseideal

TT C

2/3)/(1

Sidorenkov et al., Nature 2013



Some comments:

- Superfluid fraction of unitary Fermi gas behaves similarly to 

superfluid helium (strongly interacting superfluid)

- Very different behavior compared to dilute BEC gas. 

New benchmark for many-body calculations

- Superfluid density differs

significantly from condensate 

fraction of pairs

(about 0.5 at T=0,  

Astrakharchik et al 2005)

- Condensation fraction of pairs

measurable by fast ramping of 

scattering length to BEC side (bimodal distribution)

(Jila 2004, Mit (2004, 2012))



More systematic experimental investigation of the propagation 

of first and second sound in the unitary Fermi gas 

recently obtained at MIT using thermography techniques 

(based on rf spectroscopy)

Thermography of two-fluid hydrodynamics in a strongly interacting Fermi gas 

Zhenjie Yan, P. B. Patel, B. Mukherjee, Ch. J. Vale,  R.J. Fletcher, and M.Zwierlein, 

Science 2024

By measuring time dependence of both local 

temperature and density 

one obtains direct experimental evidence that 

second sound is an entropy wave, to be compared with 

isoentropic nature of first sound



Proof of entropy and density nature 

of second and first sound, respectively
(Zhenjie Yan et al. Science, 2024 ) 



Can second sound propagate 

in a weakly interacting  Bose gas ? 



Weakly interacting 3D Bose gas is highly compressible and

behaves differently from Helium and Unitary Fermi gas

First sound

Second sound  

mTgnc /)(0

Hybridization between 

the two sounds

(Lee and Yang,1959,

Vernay et al. 2015)

Continuation of T=0

Bogoliubov sound

First measurement by 

Meppelink et al. 2009

- Superfluid density coincides with BEC condensate           

except at very small T and near transition 

- First sound: oscillation of thermal component 

- Second sound: oscillation of the condensate

Theory:

Griffin, Nikuni, Zaremba,

Pitaevskii, Stringari,….



Theoretical predictions for first and sound 

velocities in 3D BEC gas confirmed in Cambridge 

using a 39K with large scattering length to 

ensure HD collisional regime 

Hilker …Hadzibabic  et al., PRL 2022 



What happens to second sound

in a 2D Bose gas ?



- Absence of Bose-Einstein Condensation at finite T 

(Hohenberg-Mermin-Wagner theorem)

- Superfluid density exhibits a jump at the Berezinskii -

Kosterlitz - Thouless (BKT) transition while all thermodynamic

functions are continuous (phase transition of infinite order)

- Nelson-Kosterlitz relationship (1977)                            between

critical temperature and superfluid density at the transition
mnTk SC 2/2B

Temperature dependence 

of superfluid density 

(Prokofeev and Svistunov 2001) 1.0/8  ho

zaag 

2D weakly interacting Bose gas 



Prediction for second sound in a 2D Bose gas 

2nd sound

first sound

As a consequence of discontinuity of superfluid density both

first and second sound in a 2D Bose gas are discontinuous

at the BKT transition (T. Ozawa and S.S, PRL 2014)

Tomoki Ozawa



First measurement of sound in 2D Bose gas at finite T

- No jump at the BKT transition

- No evidence for first sound

- Strong damping at finite T 

Why ? System is not in HD collisional regime

(scattering length and 2D coupling constant are too small   )1( 



First measurement of sound in 2D Bose gas at finite T

- No jump at the BKT transition

- No evidence for first sound

- Strong damping at finite T 

Why ? System is not in HD collisional regime

(scattering length and 2D coupling constant are too small   )1( 

Miki Ota



Good agreement between

RPA response function theory

(similar to Landau’s theory of Fermi 

liquids)  and  experiment

concerning velocity of collisionless

sound and Q factor

Crucial role of Landau damping

RPA

SGPE

EXP
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In order to observe second sound in a dilute Bose gas

and the jump at the BKT transition it is crucial to increase

the role of interactions, favoring the realization of 

the collisional hydrodynamic regime.

This was successfuly achieved by the  Cambridge team 
(Christodoulou et al.  Nature 594, 191 (2021))

using a 39K gas with large values of scattering length

as compared to value               of previous

Paris experiment with Rb atoms
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Recent Observation of second sound in a 2D Bose gas



Measured values of first

and second sound velocities

T-dependence of 

superfluid density

extracted from measured

sound velocities

First experimental confirmation (Christodoulou et al.  Nature, 2021) 

of the predicted (Ozawa and S.S.,PRL 2014) jump of second 

sound velocity at the BKT transition



PLAN OF THE LECTURES

Lecture 1. Superfluids at finite tempertaure: a tale of two sounds

Lecture 2. Dynamical breaking of Galilean invariance and 

propagation of sound at T=0

Lecture 3.  Spontaneous breaking of translational invariance and 

supersolidity: another tale of two sounds



- In my first Lecture I have implicitly assumed that at T=0         

(superfluid density coincides with the total density) and that the 

sound velocity approaches the hydrodynamic value  

- This is true only if  

- system is Galilean invariant 

- fluid moves with velocity smaller

than Landau critical value 

- If both conditions are satisfied

Landau  derived famous result

for the normal density in terms

of  thermal  distribution                              

of elementary excitations
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- If                                   hydrodynamic equations approach the 

simple  form

yielding phononic dispersion relation                  with

and 
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Galilean invariance can be broken

Dynamically (This lecture)

or 

Spontaneously (Supersolids, Next lecture)    

0],[ xPH

0],[ xPH

Main question addressed in second and third Lectures:

What happens to superfluid density and to sound velocity

if Galilean invariance is broken ?



We prove that if  Galilean invariance is broken dynamically

superfluid fraction is reduced with respect to total density and 

sound velocity is modified according to hydrodynamic relation

Actually in SOC BEC gases relation for sound velocity should

be replaced by 

(consequence of parity and time reversal violation)
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In this lecture I will consider two examples where Galilean

invariance is dynamically broken

1) Bose superfluid in the presence of an  external 1D periodic

potential causing density modulations

2) BEC gas with spin orbit coupling

where physical momentum

is the sum of canonical momentum

(commuting with Hamiltonian) and spin component (not 

commuting with Raman coupling)  

In both cases superfluid density along x-direction is reduced
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In this lecture I will consider two examples where Galilean

invariance is dynamically broken

1) Bose superfluid in the presence of an  external 1D periodic

potential causing density modulations

2) BEC gas with spin orbit coupling

where physical momentum

is the sum of canonical momentum

(commuting with Hamiltonian) and spin component (not 

commuting with Raman coupling)  

In both cases superfluid density along x-direction is reduced
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Main motivations to study periodically modulated superfluids

- Many experiments available in ultra cold atoms in the 

presence of optical lattices (e.g. Superfluid/Mott Insulator

transition)

- Recent availability of supersolid configurations in ultracold

atomic gases

- Fermi superfluidity in the inner crust of  neutron stars

- Recent interest in Leggett’s bound to superfluid fraction

(relating quenching of superfluidity to density modulations)



The case of a dilute Bose-Einstein condensate

confined in a box 

- Application of the 1D periodic perturbation

gives rise to stripes

- In a dilute BEC gas, described by Gross-Pitaevskii

theory one can prove that the superfluid fraction (along x) 

coincides with  Leggett’s upper bound (1970,1998) 

- On the other hand hydrodynamic theory of 

superfluids predicts the anisotropic result

for the sound velocities, yielding result

for the superfluid fraction (avoiding determination of      )
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Exp/theory collaboration with Jean Dalibard’s team 

at the Collège de France, has confirmed consistency of the 

determination of  the superfluid density based on  independent

measurement of Leggett’s integral and sound velocities

Santo Roccuzzo

Jean Dalibard + 

CdF team



- Measurement of Leggett’s integral

(Chauveau et al. PRL 133 (2023)

N=10^5 atoms a box of L= 40 microns

Due to large period of density

modulations (3.94 microns)

in-situ density distribution is

measurable, accounting for 

finite optical resolution
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- Measurement of  sound velocities

(Chauveau et al. PRL (2023))

Sound is excited by suddenly removing

a weak linear  perturbation generated

along x or y and measuring the time 

evolution the center of mass of the cloud.

The speed of sound is determined

by the HD relation

- Excellent agreement with theory

predictions based on TDGP equation (full lines)

yxyx Lc ,, 2 



Comparison between experimental results for superfluid

fraction obtained using

Leggett’s approach and            ratio of HD sound velocities

provides a consistent understanding of the suppression of the 

superfluid fraction in the presence of a periodic potential, in 

agreement with the predictions of GP theory
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Validity of  Leggett’s bound , as a measure

of superfluid fraction, 

is however limited to dilute Bose gas and to factorized density

profiles

Important deviations between Leggett’s bound and actual value

of superfluid fraction take place

- in Fermi superfluids (relevant for neutron stars)

- if density profile is not factorized

(e.g. triangular optical lattice, isotropic disorder)

- in systems violating Galilean invariance

(e.g.  spin-orbit coupled superfluids)  

Measurement of sound velocity is better option 
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In this lecture I will consider two examples where Galilean

invariance is dynamically broken

1) Bose superfluid in the presence of an  external 1D periodic

potential causing density modulations

2) BEC gas with spin orbit coupling

where physical momentum

is the sum of canonical momentum

(commuting with Hamiltonian) and spin component (not 

commuting with Raman coupling)  

In both cases superfluid density along x-direction is reduced
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Why Spin-Orbit Coupled BEC Gases?

- Give rise to artificial gauge fields opening perspectives for novel

quantum effects in neutral systems

- Spin orbit coupling breaks  Galilean invariance with crucial

consequence on dynamic and superfluid behavior even in 

configurations of uniform density

- Emergence of a supersolid phase where translational

invariance is broken sponateneously, with the consequent

emergence of a novel class of Goldstone modes (next Lecture)

Lev Pitaevskii
Yun li 

Giovanni Martone



Two detuned and polarized laser beams + 

non linear Zeeman field provide Raman

transitions between two spin states, 

giving rise to new s.p. Hamitonian

Simplest realization of (1D) spin-orbit coupling in s=1/2  

Bose-Einstein condensates (Spielman, Nist, 2009)
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Symmetry properties of  spin-orbit Hamiltonian
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- Hamiltonian is translational invariant:            uniform ground

state unless crystalline order is broken spontaneously

(supersolidity, see next lecture)

- Violation of parity and time reversal symmetry

breaking of symmetry in excitation spectrum

- Violation of Galilean invariance (physical momentum

does not commute with the Hamiltonian):         

suppression of superfluidity
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Are two body interactions relevant ? 

Crucial effects show up in

- Novel dynamic and superfluid features (this lecture)

- Emergence of new supersolid phase (next lecture)



Interactions in 1D SO coupled s=1/2 BECs (T=0) discussed by
Ho and Zhang (PRL 2011), Yun Li, Pitaevskii, Stringari (PRL 2012), …..

- We assume                        which ensures phase mixing  

in the absence of  Raman coupling

- Interactions are treated within mean field approximation

(s=1/2 coupled Gross-Pitaevskii equations) 

- Setting (no momentum transfer by lasers) yields

Rabi coupled spin mixtures
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Gross Pitaevskii equations in presence of SO coupling

Interplay between modified single particle Hamiltonian and 

two-body interactions give rise to

- Novel dynamic and superfluid properties (this lecture)

- Emergence of a novel supersolid phase (next lecture)
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Quantum phase diagram predicted by SOC Hamiltonian

at zero temperature

- transition between plane wave and single minimum

phases is actually crossover if

- phase transition between plane wave and stripe phase

is first order and fixed by interactions
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- Leggett’s bound useless in this case         

- Baym approach to normal density

well elucidates the role of  the excitation

spectrum of elementary excitations

- Result for normal density is consistent with

prediction for superfluid density based on 

phase twist approach

Superfluid density and propagation of sound in 

spin orbit coupled gases (uniform density phase)  

Yi-Cai Zhang et al. PRA 2016 

Hong Kong-Trento collaboration
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Definition of normal (non superfluid ) density (T=0)
(G. Baym, The microscopic description of superfluidity, 1969):

Macroscopic static response to transverse current

- When the current operator approaches total momentum

- Non commutativity of               (violation of Galilean invariance) 

is consequence of spin term

- Effect is compatible with translational invariance (canonical

momentum commutes with Hamiltonian) 

- Effect is absent along y direction (tensor nature of superfluidity)
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To calculate normal density

one needs knowledge of spectrum of elementary excitations
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Two branches in the excitation spectrum of spinor BEC’s

- Due to Raman coupling

only one branch is gapless

in PW and SM phases

(one Goldstone mode)

- phonon behavior at small q 

Exp: Si-Cong Ji et al., PRL 2015;

Khamehchi et al, PRA 2014

Theory: Martone et al., PRA 2012

gapped branch

phonons



Using rigorous sum rule arguments it is possible to show

that phonon dispersion relation is fixed by the law

with       sound velocity propagating parlallel (antiparallel) to x-

direction and superfluid density given by (                           )

Plane Wave Phase Single Minimum Phase

Strong reduction of the superfluid fraction at zero 

temperature despite the absence of the density modulations

(dramatic consequence of the breaking of Galilean invariance)
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The experimental results (Si-Cong Ji et al, PRL2015)  for the sound 

velocities along the x direction in          (in addition to 

the knowledge of the compressibility) can be used to provide the 

value of the superfluid density as a function of Raman coupling,  

in good agreement with theory prediction (Yi-Cai Zhang et al. 

PRA2016, Hong Kong-Trento collaboration)

The additional measurement of the sound velocity along the 

transverse direction, would permit to extract the value of the 

superfluid fraction avoiding the 

determination of the compressibility

Approach applicable also to spin asymmetic configurations
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Superfluid density vs Bose-Einstein condensation

- Superfluid density strongly suppressed near the phase

transition between the plane wave and zero-momentum phase

- BEC fraction is instead practically unperturbed (quantum 

depletion always remains very small, less than 1%)

Superfluid density Quantum depletion

(Yi-Cai Zhang et al., PRA 2016)               (W. Zheng et al. JPhysB 2013)
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Can a solid be superfluid ?

(Leggett 1970) 

Unsuccessful experiments in solid helium

Kim and Chan (Nature, 2004)                 

Kim and Chan (PRL 2012)



Can a gas  behave like

a crystal?

Recent experimental realization of supersolidity in ultracold

atomic gases



Ultra-cold atomic gases have recently become

successful platforms for supersolidity

- Bec in optical resonators (ETH 2017)

- Spin-orbit coupled BEC’s (MIT 2017)

- Dipolar gases (Florence/Pisa, Stuggart, Innsbruck, 2019)

- Polariton condensates (Lecce, 2024)

Key signatures associated with supersolidity:

- Spontaneous density modulations

- Phase coherence

- Superfluid rotational effects

- Novel Goldstone modes (new sound waves)



Recent overview papers on supersolids (2023)



- Sound in supersolid dipolar gases





Relevant dimensionless parameter

provides relative weight of dipolar vs short range force.

It drives the transition from the superfluid to the new phases exhibited 

by dipolar gases 

superfluid       supersolid           crystal

aadddd /



Using the contact + dipole-dipole interaction in the mean field

approach yields collapse for large values of 

due to the negative  component in the dipole force

Collapse can be avoided including quantum fluctuation effects

(accounting for the Lee-Huang-Yang correction to the equation of state) 

which provide a stabilizing positve term in the extended

Gross Pitaeveskii equation (Lima and Pelster 2012) 

A spectacular consequence of beyond mean effects was the possibility

of realizing self bound droplets (small pieces of a quantum liquid)

Mean field collapse and beyond mean field effects

aadddd /



By tuning the dimensionless ratio                         to large values 

the Stuttgart team (Ferrier-Barbut et al PRL 2016) 

was able to generate experimentally a 

configuration of incoherent crystal of

self bound droplets of interacting  dipolar atoms

[self bound droplets were also as predicted 

(Petrov 2015) and later observed  (Cabrera et al., 

Science 2018,  Semeghini et al, PRL 2018) in  BEC 

mixtures interacting with negative scattering length]

Differently from solid helium the single sites of the crystal are not 

single atoms, but  droplets containing a large number of atoms.

These droplets are not however coherently coupled and hence the 

configuration does not correspond to a supersolid.

Self-bound droplets in dipolar gases

aadddd /

Experimental realization of self-bound droplets



In 2019 three experimental teams 

(Pisa-Florence, Stuggart, Innsbruck)

reported evidence for supersolidity,

confirming phase coherence of droplets

in interference experiments.  

Tanzi, … Modugno, PRL 2019

Bottcher, … Pfau,  PRX 2019

Chomaz, … Ferlaino PRX 2019



The last years have been characterized by extensive

experimental and theoretical efforts

to explore the superfluid features of a supersolid dipolar gas

Focus has mainly concerned:

- Nature of Goldstone modes and role of  superfluidity

- Realization of Quantized vortices



Goldstone modes in a supersolid 

- In uniform matter spontaneous breaking of both phase and 

translational invariance) gives rise to two Goldstone modes

resulting in the propagation of two different gapless phonons

- The nature of the two Goldstone modes is expected to be a 

combination of superfluid behavior (corresponding to flow of atoms

between different clusters) without change of relative distance -

Josephson like oscillation) and crystal behavior (corresponding to 

propagating oscillation of the relative distance between nearby

clusters).



- In elongated harmonic trap

supersolidity is expected

to cause  bifurcation of 

the axial compression mode at the superfluid-supersolid transition.

Tanzi et al.

(Nature 2019)

Pisa-Florence-Trento

Lowest mode (blu) corresponds to a density oscillations,  the position 

of peaks remaining unchanged (superfluid oscillation). Highest mode 

(red) corresponds to oscillation of relative distance between peaks 

(crystal oscillation). Pisa experiment confirms theory predictions

Measurement of the Goldstone modes has been already the 

object of experimental papers in a supersolid dipolar gas 

confined in harmonic trap (axial breathing modes)



Similar experiments on Goldstone modes

carried out in Stuttgart and Innsbruck
- Guo, … Pfau, Nature 2019

- Natale, … Ferlaino et al. PRL 2019

NEWS AND VIEWS (NATURE) 

16 October 2019 

Sounds of a supersolid detected in dipolar 

atomic gases for the first time

Ultracold gases of dipolar atoms can exhibit 

fluid and crystalline oscillations at the same 

time, illuminating the ways in which different 

kinds of sound propagate in the quantum state 

of matter known as a supersolid. 

The explicit connection between the propagation of sound

and the superfluid fraction is however largely unexplored



In Lecture 2 we have shown that the hydrodynamic relation

between the superfluid density and the sound velocity holds if

translational (or Galilean) invariance is broken dynamically (only

one Goldstone mode). The relation can be used to determine the 

superfluid density from the measurement of sound (at T=0).

The  relation cannot hold in a supersolid because of the presence

of additional spontaneous breaking of translational symmetry. 

In this case Goldstone theorem predicts two gapless sounds

Question:
Can we measure the superfluid fraction of a T=0 supersolid through

the measurement of the two sound velocities ?

12  


smc



In a recent paper we have addressed the question of the link 

between the propagation of sound and the superfluid fraction in the 

case of a dipolar supersolid gas confined in a ring geometry



Ring geometry provides a promising configuration where the 

thermodynamic limit of a (1D) uniform confinement can be 

hopefully realized in dipolar gases, avoiding the tendency of 

droplets to accumulate near the walls of a box potential.

It can be naturally emplyed to host permanent currents



Atomic densities in the ring configuration

for different values of the 

relevant interaction parameter

where is the dipolar length, and   

is the s-wave scattering length.

For small values of         the system is in the uniform

superfluid phase. By increasing one enters the 

supersolid phase where droplets are formed over a 

sea of a superfluid gas. For even larger values of        

one enters the crystal phase of well separated droplets

aadddd /
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Protocol for exciting the Goldstone modes

By suddenly releasing a small periodic perturbation of the form

one explores the resulting time dependent oscillations of the 

quantity , obtained solving the extended GP eq. 

In the superfluid phase one observes a single frequency

of the excitation spectrum

of the elongated superfluid

configuration, corresponding to 

In the supersolid phase one instead

observes a beating of two frequencies, 

corresponding to the excitation of 

the two Goldstone modes.  
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The observed signal has the form

with                              approaching, for small q (and hence large L), 

the linear phonon dispersion

with                   the first and second sound velocities.
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Results for the sound velocities as a function of         in a ring trap

The usual hydrodynamic result is consistent with the 

observed velocity only in the superfluid (SF) phase

dd

 mc /1

SF SS

1c

2c

Similar results obtained in the case  of an infinite 

tube potential

Platt et al. Phys. Rev. A 110, 023320 (2024)

-------------------



Using hydrodynamic theory of 1D supersolids
[(Andreev and Lifschtz 1969) Josserand, Pomeau and Rica 2008, Yoo and Dorsey

(2010), Hofmann and Zwerger (2021)] 

one can relate sound velocities of the two sounds in terms of

compressibility , layer compressibility modulus and superfluid

fraction (strain density coupling ignored)

with
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One can invert 1D supersolid HD

result for the two sound velocities

and express the superfluid fraction in terms of the two

sound velocities !!

to be compared with   HD relationship

holding in the presence of a single Goldstone mode (see Lecture 2)
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Using our Gross-Pitaevskii results for the sound velocities

we can extract the value of the superfluid fraction

in the supersolid phase.

decreases as one increases the 

value of        approaching the 

transition to the crystal phase

of independent droples, while

it increases to unity at the

transition to the superfluid phase.
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Excellent agreement with Leggett’s

prescription, based on evaluation of 

non classical moment of inertia
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Sound in supersolid spin orbit coupled BEC gases



In the non supersolid phase the excitation spectrum

of a spin orbit coupled BEC gas exhibits a single 

phonon mode propagating along the x-direction. The 

phonon has hybridized density and spin nature. 

The second phonon mode is gapped because of the 

presence of Raman coupling.

(In the absence of  Raman coupling a BEC mixture

would exhibit two gapless phonon modes (reflecting

the presence of two superfluids) 

gapped branch

phonons



Spontaneous breaking of translational invariance

causes the appearence of a novel gapless branch

(see previous discussion in dipolar gases)

Differently from dipolar gases, in SOC BEC gases the 

novel gapless mode  emerging from  the spontaneous

breaking of translational symmetry has a clear spin 

nature



- In infinite matter the density

Goldstone mode is excited by 

- Instead the spin Goldstone mode 

is excited by spin operator
(Yun Li et al. PRL 2013)

- In elongated harmonic trap

the density mode is excited by 

- the spin Goldstone mode is instead

excited by spin dipole operator 
(Geier et al. PRL 2021

see also Chen et al. PRA2017)

Raman Coupling
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Question:

What is the interplay between the spin degree of freedom and

the dynamic crystal nature of the novel Goldstone mode ?

Collaboration with Wolfgang Ketterle (K.Geier et al PRL2022)



Kevin Geier

Philipp Hauke

Giovanni Martone

Question:

What is the interplay between the spin degree of freedom and

the dynamic crystal nature of the novel Goldstone mode ?

Collaboration with Wolfgang Ketterle (K.Geier et al PRL2022)



We have explored the  dynamic behavior of stripes, following

the application of a spin perturbation and solving the resulting

time dependent oscillation of the spin-orbit BEC confined in a 

harmonic trap

By applying a spin perturbation

of the type we find that

not only the value

of the spin dipole mode oscillates

with the frequency of the spin 

dipole mode, but also the distance

between stripes

oscillates with the same frequency.

Full confirmation of  the supersolid nature of the stripe phase

of SOC BEC gases
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The crystal Goldstone mode in a highly spin asymmetric

SOC Bec gas recently observed at ICFO by applying a spin 

perturbation
(Leticia Tarruell team, arXiv:2412.1386)



Observation of stripes in SOC BEC gas of 39K atoms: 

observation of novel crystal Goldstone mode (oscillation of 

stripes), excited by fast ramping of Raman coupling.
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Related questions for theoretical and 

experimental research

- Behavior of transverse (crystal) sound in 2D supersolids

role of superfluidity and supersolid hydrodynamics

- Sound propagation in ring geometry containing permanent

currents (measurement of quantized ciriculation in Fermi 

superfluids (collaboration with Roati team at LENS)

- Doppler effect in the presence of two sounds (Dipolar

upersolids or interacting binary mixtures)

- Josephson effect and superfluidity in supersolids
(see Biagioni, … Modugno, Nature 2024)




