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what is transport and why should you care?

 Charge, energy, spin conductivity

* Boring practical reasons:
* One of the few things you can consistently measure in the solid state

 Technologically important

* More interesting formal reasons:
* Involves large-scale collective behavior
. One of the simplest examples of scale-invariant behavior, e.g., heat equation, p(x, ) ~ t~1/2 exp(—xz/(Dt))

 Transport has multiple universality classes (with dynamical phase transitions between them)



basics: continuily equation

* [ntuition: if the charge inside a region changes, it must have
left through the boundary

* Relies on locality of dynamics
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basics: continuily equation

* [ntuition: if the charge inside a region changes, it must have
left through the boundary

* Relies on locality of dynamics

More formally:

. Conserved local charge O = Z q(X), sum of local terms
X

» Conservation law: 0,0 = 0 = d,q; = total derivative

« Continuity equation d.g(x, 1) + V - J(X, 1) = O defines “current”

 We will be interested in the dynamics of q, |

Section A;
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correlation and response functions

* Response: perturb at time 0, measure at time t
. Ry =Tr (BUexp(—ieA)peq exp(ieA) U ) — Tr (U*BU(—ieApeq + iepqu)) — ie([A, B()])

 (Correlations: measure at time 0, measure at time t

. Kraus operators M, =4/ 1/2\/1 + €A, MiMJr +M'M_=1
o Cup() = Te(BUM, pM U") = ¢({A, B(1)})

* |n equilibrium, related by fluctuation-dissipation theorem,
Cip(w) = (np(w) + 1R, p(w)

« At low frequencies and finite temperatures, C,z(w) ~ (T/w)R ,5(®)

* Response vanishes at infinite temperature but fluctuations survive



kubo formula

» Linear response a.c. conductivity
o(w) = 0 'R, (w) ~ T~ 'C,(w), C,/(t)=L"J1)JO0))
* Probes intrinsic fluctuations of current

 |ehmann representation,
Cy(@) & Y, e nl(m|J|n)|* 5~ (E, — E,))

. Other basic object of interest, S(x, 1) = (g(x, 1)g(0,0))

* These gquantities are related by continuity equation: for example, Einstein relation, in diffusive systems

o0

lim_, ¢! desz(x, =D, D= J C,,(1)
0

* You will be seeing lots of limits here...



hydrodynamies for linear response



types ol linear-response transport

<JOIO> pattistic <JOJO> " disfusive <JJ(O)>  localized
‘D -----------.¥_“—_ﬁ \
t t \_—
o(w) =Dé(w) + o8 (w) o(w) =oo/[1 + (wr)?] + ... o(w) ~w* a>1
<J(t)J(0)> <J(t)J(0)>
superdiffusive subdiffusive

WAAAAAAAAAAAAA/t
INNAAARAARAARA:

oglw)~w* -1 <a<0 o(w) ~w*0<a<l



high temperatures: hydrodynamics

* High temperature dynamics is complex, chaotic

e (Chaos leads to effective randomization of state Iy .

 How guantum mechanics interacts with chaos is a bit subtle...

* System goes to maximum entropy state subject to . O G °
conservation laws (“thermalization”)




high temperatures: hydrodynamics

* High temperature dynamics is complex, chaotic

e (Chaos leads to effective randomization of state

 How quantum mechanics interacts with chaos is subtle...

* System goes to maximum entropy state subject to
conservation laws (“thermalization”)

 Hydrodynamics:

 Assume system is locally in some thermal state (described
by local values of conserved variables)

 Write down equations of motion for conserved variables by
gradient expansion (assume that variations are smooth)




standard diflusive hydrodynamies

. Work in 1D, suppose the only conserved quantity is charge N = Z n(x)
X

. Continuity equation: 0,n + 0, j = 0
« Write current out in gradients of density:

* Current cannot be proportional to density: opposite symmetries under time reversal and parity

« Next order in gradients, ] = Do, n, fixes parity (and D fixes an arrow of time)
. Deterministic diffusion equation: d,n = d,(Da__j)
* “Too good” at smoothing out fluctuations, does not preserve equilibrium local density fluctuations

. Fix by adding noise: j = Do n + v/ Dy<& where noise strength is fixed by thermodynamic susceptibility y(7)

 Move away from linearized theory by letting all coefficients depend on densities:

o = 0, (D)o + /Dl €

main equation of “nonlinear fluctuating hydrodynamics” in the diffusive case



1d case with translation invariance

 Two conserved quantities, charge and momentum (resp. even/odd under parity/time reversal)
. 0g+0,j,=0, 0,p+0,j,=0
« By symmetry these terms are allowed in constitutive relation:jq =Ccp+ c3p3 + ...,jp = b,q + b2q2 + ...

. At linear order, you get wave equation: 0°q — b,c;0°q = 0

. Write down left-moving wave: (0, + vd,)qg = ...

* Velocity can depend on density, and diffusion term is allowed, so we have
0q+vo.q+v'qgo.q = Doq+0d¢

 Transform into co-moving frame, get Burgers equation
0q+v'qo.q = Do*q + 0.&

* Nonlinear term not allowed by symmetry for lattice diffusion; this model “remembers” about ballistic modes



burgers and superdiffusion
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. Consider motion over a length-scale ¢

A A
. Over this scale, g ~ 1/\/? KPZ

. Charge moves with velocity v’/\/?

Chiral diffusion

. Time taken to traverse region: f/(v’/\/?) ~ P2



I()ng-time tails

» (Consider the relaxation of a density wave initialized at momentum k
» Linear diffusion equation: 0,q, = — Dkzqk

 However, diffusion, constant can depend on density, allowing for real-space terms like
d,q = 9d,((D+ D’'q)o g + &)

 These terms lead to “three-wave mixing” between different k modes

~ g(t, k) + kg, B2 4
~J 6—Dk2t + kde_Dth/z +

\/ 2
. Current belief: at very late times, density wave relaxation is ~ e~ VPk?



genera] framework

* Philosophy of hydro: identify slow modes (typically charges or Goldstone modes)

* Write down all symmetry-allowed terms in the equations of motion for these slow modes,
working to lowest possible order in fluctuations and gradients

* This approach already leads to surprising nonperturbative predictions

 How can we deal with/discover new hydrodynamic modes? (See third lecture)



linear response vs. experiment



singular limits

“Biting into an apple and finding a maggot is bad enough, but
finding half a maggot is worse. Discovering one-third of a
maggot would be more distressing still: The less you find, the
more you must have eaten. Extrapolating to the limit, an
encounter with no maggot at all should be the ultimate bad-
apple experience. This remorseless logic fails, however,
because the limit is singular: A very small maggot fraction (f
approaching 0) is qualitatively different from no maggot (f = 0).”

michael berry



kubo order of limits

o Standard hydrodynamic order of limits

. First, take linear response limit: ¢ — 0O

« Second, take thermodynamic limit: L — oo
« Third, take late-time limit: 1 = o0

* These limits might not commute!

* But you can interchange linear response and TDL in local systems, because of locality — at a
finite time, a system does not “see” regions that are very far away Iin space



getling to a continuum

A(w) measure- A(w)
4 Zero 4

continuum continuum

A(w)

add dissipation y
or finite time cutoff n L = c0,y>0 ~

-

a
naive L — oo y = 0
limit limit
A(a)) measure- A(a)) -
4 A continuum
Zero

these two limits
do not commute N

f. SSB
B c J\J .




protocol 1: quenches

mpq
e |dea: create an initial state Single image Average density Average density

n=0.95
D Hx o —H Sign(x)o(x)

. Measure (c%(x, 1))

. (o 0) = i ), sign(O)((x, D0 (0))

* Related to linear response if you take
u — 0 at finite time

 Fundamental tradeoff between signal
to noise and staying in linear
response

* Does this matter in practice?



protocol 2: lindblad/landauer

D

Spin conductance Particle conductance

Z
T\—’y
X

. 0+0

—_—

50 um
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« Take finite system coupled to infinite leads with finite coupling ¥

* Take leads to be infinite size, replace with free particle / markovian bath approx

« Find steady state at finite system size L: interchanges order of thermodynamic and dc limits

* Does this matter? Yes, especially for integrable systems: boundary breaks integrability



strange case 1: heisenberg chain

. Heisenberg chain in one dimension, H = Z-Ei © 0y
l

. Linear-response transport is superdiffusive at nonzero temp: S(x, ) ~ =23 f(x/t*?)

. However, for any finite 4, this physics is cut off on a length-scale £ ~ 1/u?
 More general scaling form for domain wall state,

S(x, t, ) = w*C(xlu?, t/u)
. When the arguments are large, S(x, t) ~ (ut)~1? f(x/\/;)

 EXxperiments with fixed contrast going to late times will see diffusion, not
superdiffusion



strange case 2: driven insulators

strong absorption at
localized resonances

<o

sample

parallel plate capacitors
create oscillatory field

Mostly isolated two-level systems (TLS)

When you drive a TLS, two possible behaviors:
amplitude < w), rotating-wave approx is good
Excitation rate given by Fermi Golden Rule

amplitude > w, Landau-Zener transitions, excitation rate is a
nontrivial power of amplitude

Wi

A |
W | . . .
| nonlinear regime A: Landau-Zener transitions
1 —_—_——)r——_——,——e— e, —
| N
N : :
I ~ nonlinear regime B:
~
| ~ - saturated response
| ~
ultra- | T~
short | linear-response regime T — —
I
| >
1



more generally: critical response

probe time/frequency
A

control parameter
e.g., U



some general thoughts

* Challenges of hydrodynamics in the “interesting” regime:
« Noncommuting limits make it hard to interpret experimental data
 Dynamics is “interesting” precisely because it is not purely dictated by obvious symmetries

* |s there a treatment that connects to microscopics and allows us to “discover” new slow modes?

* Plan for the next two lectures:
* Lecture 2: XXZ spin chain as a case study

* Lecture 3: “modern” microscopic approaches; quantum advantage (?) in transport



