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Overview

- Recent results on v-representability for continuum systems

- Geometrical formulation of the Hohenberg-Kohn theorem on lattices

- Numerical procedure to carry out Levy-Lieb constrained search using imaginary time propagation



v-representability and Hohenberg-Kohn

N N
. . A A ~ A | N
Continuum case: H=Hy+V Hy = ; —§VZ- + gw(ri, r;) V = ;v(ri)
We solve: ([:]O—I—V)\If(xl,...,x]v) = EV(xq,...,zN) x; = (r;,0;)

space-spin coordinate

p(ry) = NZ/dxg...d:ENNf(ﬁm,iBQ,---,-CUN)‘Q
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The v-representability question:
Which densities are ground state densities of some Hamiltonian with a potential v?

If a density is v-representable, is it then uniquely v-representable ?

Hohenberg-Kohn (1964): If two potentials differ more than a constant then they produce two different ground state
densities (physicists' proof)

Theorem: HK true for potentials in L?(R%) + L*(R?) p > 2

Louis Garrigue,“Unique continuation for many-body Schrodinger operators and the Hohenberg-Kohn
theorem”, Math.Phys.Anal.Geom.21,27 (2018)



Recent result (2024) on v-representability for a one-dimensional periodic domain

Theorem 1. Define the following set of v-representable densities on the one-dimensional
torus T and the dual space of (distributional) one-body potentials,

Zso={peL*(T)|VpeL*(T),[p=N,VxeT:p(x) >0} (3)
%*z{[v]:{v+c\c€R}\v=f+ngithf,g€L2(T)}. 4)
Then for every p € X~ there is an equivalence class |v| € Z * with corresponding poten-

tial V= Z;VZI v(x;) acting on wave functions, such that p is the density of an (ensemble)
ground state of the self-adjoint Hamiltonian H = Hy+ V = — %A + W+ V.

Sarina Sutter, Markus Penz, Michael Ruggenthaler, RvL, Klaas Giesbertz,
"Solution of the v-representability problem on a one-dimensional torus”

J.Phys.A: Math.Theor. 57,475202 (2024)

Important consequence: A Kohn-Sham system exists



This is complemented by two important recent works of Thiago Carvalho Corso

"v-representability and Hohenberg-Kohn theorem for non-interacting Schrodinger operators with
distributional potentials in the one-dimensional torus” |.Phys.A Math Theor. 58,125203 (2025)

"A rigorous formulation of density functional theory for spinless electrons in one dimension” arXiv:2504.05501 (2025)

Theorem: For the distributional potentials on the one-dimensional torus the ground density is
positive and the HK theorem is true. The xc-functional is Gateaux differentiable.

This provides a solid foundation of the Kohn-Sham method for this |D case.

Our future aim:

The solution of the v-representability problem for the 3D torus

This would be a major result as it would provide a rigorous foundation for Kohn-Sham DFT for periodic solids



Motivation for lattice DFT

- Lattice systems were studied to provide an answer to the v-representability problem but the
Hohenberg-Kohn theorem for lattice systems has remained an open issue

- Little is known about the structure of the density domain (pure states, degeneracies); lattice systems provide
easy access

- Lattice Hamiltonians are commonly used in the study of strongly correlated systems (Hubbard systems)
and are used as benchmarks for (TD)DFT

- The v-representability problem for continuum systems is still not completely solved and further
understanding of the proof for lattice systems may be beneficial

Main result: A geometrical formulation of the Hohenberg-Kohn theorem



History of lattice DFT

DFT

W.Kohn, “v-representability and density functional theory”, Phys.Rev.Lett.51, 1596 (1983)

v-representable densities on a lattice form an open set

J.Chayes,:.Chayes,M.B.Ruskai, “Density functional approach to quantum lattice systems”, |.Stat.Phys.38,497 (1985)

every normalised density on a lattice such that 0 <p; <1 and Zpi = N is v-representable

(/

C.A.Ullrich and W.Kohn,“Degeneracy in density functional theory: topology in v and n spaces”, Phys.Rev.Lett.89,
156401, (2002)

degeneracy is common in density space and rare in potential space



TDDFT
R.Baer;“On the mapping of time-dependent densities onto potentials in quantum mechanics”, J].Chem.Phys. |28,

044103, (2008)
Y.Li and C.A.Ullrich,”Time-dependent v-representability on lattice systems”, ].Chem.Phys.129,044105 (2008)

densities that change too fast between adjacent sites are non-v-representable

|.V.Tokatly, "Time-dependent current-density functional theory on a lattice”, Phys.Rev.B83,035127 (201 1)

M. Farzahnehpour, |.V.Tokatly, " Time-dependent density-functional theory on a lattice”, Phys.Rev.B86,125140 (2012)

proof of |-1 correspondence for short time scales based on the Picard-Lindelof theorem



This presentation is based on the following papers

M.Penz and RvL,“Density-functional theory on graphs”, |.Chem.Phys. 155,244111 (2021)

M.Penz and RvL,“Geometry of degeneracy in potential and density space”, Quantum 7,918 (2023)

M.Penz and RvL,“Geometrical perspective on spin-lattice density-functional theory”, |.Chem.Phys.161,150901 (2024)

M.Penz and RvL,“Constrained search in imaginary time", arXiv: 2504.05332 (2025)
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L attice Hamiltonians

his # 0
We consider Hamiltonians of the general type 1 2 3 -
M | — — has 7 0
H = hi-&;-r&-—l—w his =
Zz]: S \ two-body interaction
To each such Hamiltonian we assign a graph or a lattice i~j =P hy #0
The ground state can be expanded in N-particle position kets
LUEDR I 1) =aj, ...aj o) I= (i1, yin) i1 <...<iy
I
and the main object of our interest will be the density
pi = (V]p;|P) pi = &I&z‘ tefl,..., M} M = number of lattice sites

piZZ\\PI\Q Z|‘PI|2:1 ) 0<p; <1
T

I>1

fermionic constraint




Density space

The region of allowed densities satisfies

pr+...+puw =N 0<p; <1

For example, M=3, N=2

(1,1,0)
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For visualisation reasons most of our examples will have M=4



v-representability

J.Chayes,:.Chayes,M.B.Ruskai, “Density functional approach to quantum lattice systems”, ].Stat.Phys.38, 497 (1985)

every normalised density on a lattice such that 0 <p; <1 and Zpi = N is ensemble v-representable
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The condition that  0<p; <1  implies that we are considering the interior of the density domain

Questions:

What about the validity of the Hohenberg-Kohn theorem?
Which densities are pure-state v-representable?
What is the shape of the density regions corresponding to degenerate ground states!

Are the densities on the boundary v-representable!?



Example |

Take a 3-site noninteracting model with one-body hamiltonian

2+v; -1 —1
hij = _Az'j —+ viéij = —1 2 —+ (%) —1

—1 —1 24+ w3

A general 2-particle ground state is of the form

U) = Wi5|12) + Uy3[13) + Uo3]23) = (P12, W13, Was)
p1 = |Uia|® + [Tq3)° p2 = |V1a|* + |Was|” p3 = W3] + |3’

For v=0 we have the two degenerate eigenstates

1 1 1

Wy = 5(1,0, —1) pa=(3,17) * non-uv density
1 5 1 5

\IJB—%(l,Q,l) ,OB—(EagaE)



Situation depicted in the density domain 73,2

(1,1,0)

vel{(-2tt8|t>00  ve{(t-20[t>0} <fmm attractive potential at site 2
=p Hpa)

1 1
(0, —z,0) + g(a:,x,w) = g(x, —2x,x) = (t,—2t,1)

(1,0,1) A v {(hE —26) |t > 0)

Potential space for the gauge v1 +va2 +v3 =0

Non-uv density when degeneracy
region for v=0 touches the
boundary of the density domain

Other densities on the edge are
non-v-representable



Example ||

Take a 4-site noninteracting model with hamiltonian

2+ v —1 0 —1
—1 2—|—?JQ —1 0
hij = _Az’j + 03055 = 0 ~1 2+4wv3 -1 o
—1 0 —1 24+ vy

(0,1,1,0) &m

cross of non-uv densities
“Bundles” of degeneracy regions

The non-uv densities appear at
touching degeneracy regions



Unique v-representability and subdifferentials

—F(p)
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at the cross of non-uv
densities F has a sharp edge
cross of non-uv densities and the subdifferential
contains many potentials

F(p) = %EiTrHOI"

/ >
at a non-differentiable point

the subdifferential contains
many tangents

In our setting: many
potentials leading to a given
density



Degeneracy regions | :  pure state densities (discussion also valid in the continuum case)

If the Hamiltonian is real and symmetric and has a g-dimensional eigenspace {f then this
eigenspace is spanned by real orthonormal vectors (I)z with complex coefficients

U =spanc{P,...,P,} ={c1P1+ ... +¢,P,|c; € C}
This follows simply because

HU = EU U = Uy + 10, =  HU,=FEV, HU,= FEU,

The set of all possible pure-state densities that can be obtained from states in this degenerate manifold will
be denoted by [

peEDc G p=(VY[pl¥) ¥elU

We will construct these densities first out of densities from a smaller set



The eigenspace {f contains a subspace that is the span of real combinations of the (I)z
Ur = spang{P,..., Py} ={c1P1 + ... +¢c,P,|c; € R}
The pure state densities that we can construct out of states in this subspace will be denoted by Dp

pEDr = p=(Vp|¥) Veclk

Definition: If X is a subset in a vectorspace then the segment set seg X is defined as

segX ={dx+(1—-Nyl|lr,ye X,0< A< 1}

Theorem: D¢ = seg Dp

In other words, every pure-state density in the degenerate manifold is a convex combination of two densities
from Dg . This simplifies the construction of D¢



Proof. ~p&€ Dc == p(¥)=(¥[p|V) U =U; +iU, || + (| o] =1

Define

such that

U = VAP +ivV1— N,
and therefore
p(W) = (¥|p|¥) = XP1|p|P1) + (1 = A)(D2|p|P2)

= Ap(®1) + (1 = A)p(P2) € segDg



Degeneracy regions Il : ensemble densities

The most general class of densities is that obtained from ensembles of states in {f

peD Ll  p=Tr{lp} D = wr [T (0| + o w, [N (T, | T, €U

In other words it contains the g-fold convex combinations of densities in D¢

g
p = sz<\mﬁ\\1’z> = szp(\pz)
i—1

1=1

This is also called the convex hull of D¢ and thus D = ch D¢ = ch Dy

In the following we take (f to be the ground state manifold

Consequence of the above:

If a density is ensemble v-representable but not pure-state v-representable then 9 = 3



Shape of degeneracy regions

We start by constructing the geometric shape of the degeneracy regions from Dp
g

\IJ(QZ):ZZEZ(I)Z LIZ‘%—I—...—I—$2:1
i=1

The corresponding densities are given by

g g g
p(x) =Y wpx (Uil p|W) = ) xipr + Y Trarpg
k

k.l k<l

Pr. = <\Ifk‘ﬁ‘\11k> P = 2(Wk|p|W1)



Let us take the example of two-fold degeneracy g=2

p(x) = 21 (V1[p|W1) + 25(W2|p|V2) + 2z122(V1|p|W2) = 271 p1 + 23 p3 + T122 pr2

e+ x5 =1

with (21, 22) = (cos,siny)  we can rewrite this as

1 1 1

p(x) = 5 (p1 + pa) + 5 (p1 = p2) cos(2p) + S pra sin(2p)

1 1 1

which is the equation of an ellipse with centre §(p1 +p2) and semi-axes ;(pi —p3) and o P12

2

(1,0, 1) AN N (0,1, 1)



The density map can be viewed as the composition of two maps

2 2

v(w) = (21, .., Ty, T1T2, ..., Ty 1T4) € RI9+1)/2 Veronese variety

p() = Pov()

Guiseppe Veronese
For example g=3 o
La superficie omaloide normale a due dimensioni e del
9 9 9 6 quarto ordine dello spazio a cinque dimensioni e le sue
V(ZC) — ( 19 ZCQ, $37 371562, 3715637 $2$3) - R Ver'onese sur'fa_ce projezioni nel piano e nello spazio ordinario

Atti della Reale Accademia dei Lincei. Memorie della
m% -+ x% -+ Qj§ — 1 Classe di scienze fisiche, matematiche e naturali (1883
- 1884, Serie 3,Annata 281,Volume 19)

Pi,1 P2,1 P31 P12,1 P13,1 P23,1
p(z) =
Pi,Mm P2,M P3,M Pi2,M P13,M P23,M T1T3

P

What is the dimensionality of p(m) !



If the matrix P has null space or kernel of dimension /5 then the dimensionality of the degeneracy region is

dim(D) = -g(g+1) -k —1 k = dim(ker P)

Thecase ¢g=3 K=2 has dim(D)=3  which is nice for visualisation

These are projections of the Veronese surface into three-dimensional space that are known in the mathematics
literature as Steiner surfaces and have been classified

W.L.F. Degen,“The types of triangular Bezier surfaces”, Proc.6th IMA Conference on the Mathematics of Surfaces, 153, (1994)

Example: Tetrahedron graph M=4,N=2

=1

pk: — = 2(171a]—7 ]-) (m) —_23:1’2 +1 —1 1 —11 L1L3

= 3(,-1-11) PETPLA T -1 -1 11 | 2w
= 1 1 11 0

5= 3(-1,1,-1,1) i

7 = %(—1,—1,1,1).




Steiner’s Roman surface is Since the degenerate eigenspace (f
degeneracy region Dp can be decomposed into 2-
dimensional subspaces the Roman

surface is built out of ellipses
lts segment set builds D¢

( studied by Cayley, Clebsch,Weierstrass, Lie,...)



If we add the g=2 degeneracy regions we get a complete picture of all the degeneracy
regions of the tetrahedron graph

The g=2 bundles of degeneracy regions are
added on top of the Roman surface

About 60% of density space corresponds to
degenerate densities

Ullrich-Kohn:“Degeneracy is common in
density space”

Densities from randomly chosen potentials *




Application: Anderson impurity model

T.Rossler,C.Verdozzi, C.-O.Almbladh, A v-representability issue in lattice ensemble DFT and its signature in lattice
TDDFT” Eur.Phys.).B91,219 (2018)

A_ZATA At st aF & @
) 1,0

i o The claimed v-representability issue is a
| numerical one caused by the vicinity of the
target density to another degeneracy region

04 &
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P The surfaces fit the Degen classification as

o projections of the Veronese surface
Target density in

degeneracy region ke



Results

Proofs: Markus Penz, RvL,“Geometry of degeneracy in potential and energy space”
Quantum 7,918 (2023)

Location and measure of non-uv densities

Non-uv densities occur when

a) Two degeneracy regions intersect in a single density or in a degeneracy region of strictly
lower dimensionality

b) Or when a density region touches the boundary of the density domain

Non-uv densities are of measure zero in the set of all densities and the uv-densities form an
open set

The geometrical Hohenberg-Kohn theorem:

All ground state densities that are not on the boundary of the density domain and that are not
at the intersection of degeneracy regions are uniquely given by a potential




Constrained search in imaginary time

In ground state DFT we define F(p) = \IIJH_1>II(1)<\IJ|T + W‘\Ij>

We describe a procedure to find the Levy-Lieb functional by imaginary time propagation.

We consider the Hamiltonian

M
H(r) = Ho + Z%‘(T)ﬁi
i=1

and define

e A
A

G(7) = H(T) + vo(T)p0 po = 1

where the last terms acts similarly to a time-dependent chemical potential to preserve the norm and then we
propagate a Schrodinger type equation in imaginary time

—0,; V() = G(1)¥(r) pi = (U(0)]p:|¥(0))

starting from an initial state with the right density



We determine the external potential and "chemical potential” by requiring that the density and norm do not change
0- (Wi W) = —(W|G(T)pi + pG(7)|¥) = (¥|{pi, G(7)}¥)

(W {pi, G(T)}¥) =0 & Z U[{pi, pjHW)v; (1) = —(¥|{pi, Ho}|¥)

By taking i=0 we can explicitly solve

m

—vo(7) = (¥|Ho|¥) + Zvi(’r)m(ﬂ = (V|H(7)|¥) = E(7)
So that - Y
G(r)=H(r) - E(r)I H(r) = Ho+ S vi(r)py
1=1



We can further calculate that

Ms

0, (V| Ho|¥) = —(V|{Ho, G(T)}¥) = —(V|{Ho, Ho}¥) — > v;(7){(¥|{Ho, pi}| V)

0

)

and using the constraint equation for the potential it follows that

0 (U Ho|W) = —2(¥|G*(7)|¥) = —2(W|(H (1) — B()])?|¥) <

So the expectation value of the internal part of the Hamiltonian decreases monotonically while the density
remains the same!

So the procedure converges to F ( ,0) from above!

How to choose the initial state?

(1)) =) er(n)l) pi =) ler(r)|?

1 I>1



Choosing the initial state

W(0)) = Z cr(0)|1) 0; = Z cr(0)[? make a choice for |C[(O)‘
T IEY
If we restrict ourselves to real wave functions then we can further take cr(0) = £[er(0)
while for complex wave functions we can take cr(0) = e cr(0)] ar € [0,2m|

In practice we can make sign flips or random phase choice to see if the internal energy is lower

The density patches in Hilbert
Q space may be disconnected as they
represent different nodal structures
of the wavefunction. By sign flips we
O may jump between them
PA

pPB PC




By random phase choices we can jump between "density patches” on the unit sphere in Hilbert space.
We jump during time propagation whenever a phase change lowers the energy

(Al
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Target density is a complex state in a degeneracy region,
but the initial state real; ends up in an excited state



Some results regarding the imaginary time propagation:

- It can be proven that the constraint equation for the constraining potential always has a solution and that
the solution is at least once differentiable with respect to time (Picard-Lindelof theorem)

- In case the solution passes an irregular point (a point on the constraint manifold with a non-unique
normal vector) a solution for the time evolution exists, but is not unique (Peano theorem)

SRRl

PA PB pc




The procedure can be generalised to to minimising an arbitrary self-adjoint operator where we constrain
a number of expectation values of a set of commuting operators

T+W — A pi — B b; = (¥|B;|¥) B, Bj] =0

F'(b) = min (U[AP)

M.Penz and RvL,“Constrained search in imaginary time", arXiv: 2504.05332 (2025)

For example, we can take system with lattice spins, for example a spin glass

A:ZJijUi'Uj B; = o, m; = (V]o;| V)
t,J
F(m) = min (U|A|T)
vV —m
The minimiser is the ground state of the Hamiltonian H — Z Jijoi 0+ Z o; B;
1,9 )

OF
8m7;

in the presence of a magnetic field given by B; =



Conclusion

The geometrical Hohenberg-Kohn theorem for lattice DFT:

All ground state densities that are not on the boundary of the density domain and that are not
at the intersection of degeneracy regions are uniquely given by a potential

Construction of the Levy-Lieb functional using imaginary time-propation

- Can be generalised to minimising general expectation values under constraints
- A quantum algorithm seems to be feasible (work in progress)




