
Many-body Spectral Function from electron transport
i-DFT for steady-state electron transport

i-DFT xc potentials and spectral functions for model systems
Mott Metal-Insulator transition from i-DFT

Summary

Steady-State Density Functional Theory for
Many-Body Spectral Functions

Stefan Kurth
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Outline

Many-body spectral functions from electron transport

Steady-state DFT formalism (i-DFT) for electron transport

i-DFT xc potentials and spectral functions for model systems

Mott metal-insulator transition from i-DFT
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Many-body Spectral Function from electron transport

Reference:

D. Jacob, S. Kurth, Nano Lett. 18, 2086 (2018)
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Ideal STM setup to extract spectral function from I-V

STM-like setup

Tip (T)

Rest (R)

S

Interacting system S (weakly) coupled to
STM tip (T) via ΓT and coupled via ΓR to
the rest (R) of the system.

“Ideal STM setup”: bias voltage V drops
entirely at the tip and take the limit of in-
finitesimaly weak coupling to the tip, i.e.,
ΓT → 0
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Meir-Wingreen formula for steady current

Meir-Wingreen formula for steady current from tip T to interacting
system S (PRL 68, 2512 (1992))

Meir-Wingreen formula for steady current

I(V ) = 2

∫
dω

2π
Tr
{
f(ω − V )ΓTA(ω) + iΓTG<(ω)

}
with Fermi function f(ω), (non-equilibrium) many-body spectral
function A(ω) and lesser Green function G<(ω)
−→ differential conductance in zero-temperature limit

∂I

∂V
−−−−→
ΓT→0

∫
dω

π

∂fT(ω − V )

∂V
Tr [ΓTA(ω)] −−−→

T→0

Tr [ΓTA(V )]

π
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Spectral function from differential conductance

for coupling matrix ΓT = γT
m|m〉〈m|

Equilibrium spectral function from differential conductance

Am(ω) = lim
γTm→0

π

γT
m

∂I

∂V

∣∣∣∣
V=ω

note:
in ideal STM limit of vanishing coupling to the tip the system is
essentially unperturbed by the bias and the spectral function
becomes the equilibrium spectral function of the interacting system
S in contact with the rest R
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Choice of variables and 1-1 map
i-DFT self-consistent KS equations
i-DFT in ideal STM limit
Many-body spectral function in terms of KS one

i-DFT for steady-state electron transport

References:

G. Stefanucci, S. Kurth, Nano Lett. 15, 8020 (2015)

S. Kurth, G. Stefanucci, J. Phys.: Condens. Matter 29,
413002 (2017)

D. Jacob, S. Kurth, Nano Lett. 18, 2086 (2018)
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Choice of variables and 1-1 map
i-DFT self-consistent KS equations
i-DFT in ideal STM limit
Many-body spectral function in terms of KS one

i-DFT for steady-state electron transport

Schematic transport setup with arbitrary molecular region R (with
molecular potential v(r)) and applied bias V , interested only in
steady state

Choice of variables for steady-state DFT:

molecular steady-state density n(r) in region R and steady-state
current I through R
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Choice of variables and 1-1 map
i-DFT self-consistent KS equations
i-DFT in ideal STM limit
Many-body spectral function in terms of KS one

i-DFT for steady-state electron transport

Theorem:
For any finite temperature the map (v(r), V )→ (n(r), I)) is
invertible in a finite, gate-dependent window around bias V = 0.

Density Functionalization: Find non-interacting system with
potentials (vs, Vs) which reproduces “densities” (n, I) of
interacting system with potentials (v, V )
−→ need for two (H)xc potentials

Hxc gate and xc bias potentials

vHxc[n, I](r) = vs[n, I](r)− v[n, I](r)

Vxc[n, I] = Vs[n, I]− V [n, I]
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Choice of variables and 1-1 map
i-DFT self-consistent KS equations
i-DFT in ideal STM limit
Many-body spectral function in terms of KS one

i-DFT self-consistent KS equations

i-DFT KS equations for density and steady current

n(r) = 2
∑
α=L,R

∫
dω

2π
fβ

(
ω + sα

V + Vxc

2

)
Aα,s(r, ω)

I = 2
∑
α=L,R

∫
dω

2π
fβ

(
ω + sα

V + Vxc

2

)
sαTs(ω)

with KS partial spectral function
Aα,s(r, ω) = 〈r|Gs(ω)Γα(ω)G†s(ω)|r〉, KS transmission function
Ts(ω) and sR/L = ±1

Note: equivalent to Landauer+DFT formalism if Vxc set to zero
and vHxc assumed to be independent of current
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Choice of variables and 1-1 map
i-DFT self-consistent KS equations
i-DFT in ideal STM limit
Many-body spectral function in terms of KS one

i-DFT equations in ideal STM limit

i-DFT KS equations for asymmetrically applied bias in STM limit
ΓT −→ 0

i-DFT KS equations in ideal STM limit

n(r) = 2

∫
dω

2π
fβ(ω)AR,s(r, ω)

I = 2

∫
dω

2π
[fβ(ω − Vs)− fβ(ω)] Tr {ΓTAR,s(ω)}

with KS Green function Gs =
(
ω − Vxc

2 − hs −ΣR(ω)
)−1

entering
AR,s and equilibrium KS Hamiltonian hs
note: in STM limit, the i-DFT self-consistency conditions for n and
I decouple completely
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Choice of variables and 1-1 map
i-DFT self-consistent KS equations
i-DFT in ideal STM limit
Many-body spectral function in terms of KS one

Many-body spectral function in terms of KS one

for choice of coupling matrix to tip ΓT = γT
m|m〉〈m| , take limit

γT
m → 0 to relate KS to many-body spectral function

relation between KS and many-body spectral functions

Am(ω) = lim
γTm→0

Am,s(ω + Vxc)

1− γTm
π
∂Vxc
∂I Am,s(ω + Vxc)

where the current I entering Vxc is to be computed at bias V = ω
and Am and Am,s are local equilibrium many-body and KS
spectral functions of the system S coupled to the rest R
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Model systems: single impurity and double dot
i-DFT xc potentials: Coulomb blockade regime
i-DFT xc potentials: Inclusion of Kondo effect

i-DFT xc potentials and spectral functions for model systems

References:

G. Stefanucci, S. Kurth, Nano Lett. 15, 8020 (2015)

S. Kurth, G. Stefanucci, Phys. Rev. B. 94, 241103 (2016)(R)

D. Jacob, S. Kurth, Nano Lett. 18, 2086 (2018)

S. Kurth, D. Jacob, Eur. Phys. J. B 91, 101 (2018)
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Model systems: single impurity and double dot
i-DFT xc potentials: Coulomb blockade regime
i-DFT xc potentials: Inclusion of Kondo effect

Model systems: single impurity and double dot

consider two models connected to wide-band lead (coupling γ)

Single impurity Anderson model (SIAM)

ĤS = vn̂+ Un̂↑n̂↓

with n̂ = n̂↑ + n̂↓

Double dot with density-density interaction

ĤS =

2∑
j=1

vjn̂j +

2∑
j=1

Ujn̂j↑n̂j↓ + U12n̂1n̂2

special case: U1 = U2 = U12 = U Constant Interaction Model
(CIM)
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Model systems: single impurity and double dot
i-DFT xc potentials: Coulomb blockade regime
i-DFT xc potentials: Inclusion of Kondo effect

SIAM xc bias in Coulomb blockade regime

obtain xc bias by reverse engineering of Beenakker’s rate equations
(RE) (PRB 44, 1646 (1991)) (valid in Coulomb blockade regime)

 0  1  2
-2

-1

 0

 1

 2

n

I/γT

-1

-0.5

 0

 0.5

 1

parameters:
U = 1, γ = 0.02

xc bias has smeared steps
of height U

xc bias has opposite sign
of current, i.e., xc bias
counteracts external bias
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Model systems: single impurity and double dot
i-DFT xc potentials: Coulomb blockade regime
i-DFT xc potentials: Inclusion of Kondo effect

CIM with M=2: Hxc gate and xc bias potentials

CIM xc potentials by reverse engineering of RE; from symmetric to
asymmetric coupling (γeff = 4γLγR/γ where γ = γL + γR)

again smeared steps of
height U/2 (U) for Hxc
gate (xc bias) with edges
at piecewise linear

functions of ∆
(±)
K (N, I)

complex pattern of
vertices in (N, I)-plane
simplifies in asymmetric
limit

a), d) γL/γ = 0.5; b), e) γL/γ = 0.25; c), f) γL/γ = 5× 10−5;
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Model systems: single impurity and double dot
i-DFT xc potentials: Coulomb blockade regime
i-DFT xc potentials: Inclusion of Kondo effect

Digression: Stability diagrams and Hxc potentials

Hxc potentials of uncontacted double dot at equilibrium exhibit
steps in low temperature limit depending on parameter regimes;
Stability diagrams and Hxc potentials are intimately connected
Ex: Regime I: Ui > U12

-6 -4 -2  0
-6

-4

-2

 0

v1

v2

(0,0)(1,0)(2,0)

(2,1)

(0,1)

(1,1)

(0,2)(1,2)(2,2)

 0  1  2
n1

vHxc,1

0 U1

U12

2U12

U1+U12

U1+2U12

1 2
 0

 1

 2

n1

n2

 0  1  2  3  4  5 vHxc,2

0

U12 2U12

U2 U2+U12

U2+2U12

GS occupations (integers) correspond to vertices in n1 − n2 plane
regions for two different vertices touch −→ step in Hxc potential,
step height equals length of touching line in stability diagram
horizontal touching line: step in vHxc,1, vertical: step in vHxc,1,
diagonal: step in both Hxc potentials
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Model systems: single impurity and double dot
i-DFT xc potentials: Coulomb blockade regime
i-DFT xc potentials: Inclusion of Kondo effect

Digression: Stability diagrams and Hxc potentials (cont.)

-8

-4

 0

-8 -4  0

v
2

v1

(a)
(0,0)

(1,0)(2,0)

(2,1)

(1,1) (0,1)

(0,2)(1,2)
(2,2)

 0

 1

 2

 0  1  2

n
2

(b)

vHxc,1

0
U1

U12 U1+U12

2U12 U1+2U12

0

1

 0  1  2

n
2

n1

 0

 2

 4

 6

 8

(c)vHxc,2

0

2U12-U1

U1

U2

2U12

U1+U2

2U12+
U2-U1

U2+2U12
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 0

-8 -4  0

(d)

v1
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(1,0)(2,0)
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(1,2)

(2,2)

 0

 1

 2

 0  1  2

(e)

vHxc,1

0

(U1+U2)/2

2U12

U1

2U12+
(U1-U2)/2

U1+2U12

0

1

 0  1  2

(f)

n1

 0

 1

 2

 3

 4

 5

 6

 7

vHxc,2

0

U2

2U12+
U2-U1

U1

2U12

U2+2U12

Left column: Regime II:

U1 < U12 < Ū
where Ū = (U1 + U2)/2
note presence of steps along
lines from (0, 1) to (2, 0) and
from (0, 2) to (2, 1)

Right column: Regime III:

U1 ≤ Ū ≤ U12
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Model systems: single impurity and double dot
i-DFT xc potentials: Coulomb blockade regime
i-DFT xc potentials: Inclusion of Kondo effect

Digression: Building blocks for Hxc potentials

(a)

(b)

(c)

(d)

(e)

(f)

Construct Hxc ptls by adding
building blocks: steps at diff.
positions in n1 − n2 plane
vHxc

CIM(U)[N ]: Hxc ptl. of Con-
stant Interaction Model
vHxc

inter(U)[N ]: Hxc ptl. due to
inter-Coulomb repulsion U12

Example: Hxc potential for Regime I

vαHxc[n1, n2] = vCIM
Hxc (U12)[N ] + vSIAM

Hxc (Uα − U12)[nα]

with N = n1 + n2

Reference: PRB 102, 035159 (2020)
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Model systems: single impurity and double dot
i-DFT xc potentials: Coulomb blockade regime
i-DFT xc potentials: Inclusion of Kondo effect

Construction of xc bias for double dot in STM limit

use same idea of constructing V α
xc[n1, n2, I] (for only dot α being

connected to STM tip) as sum of building blocks, e.g.,

xc bias for Regime I

V α
xc[n1, n2, I] = V CIM

xc (U12)[N, I] + V SIAM
xc (Uα − U12)[nα, I]
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Model systems: single impurity and double dot
i-DFT xc potentials: Coulomb blockade regime
i-DFT xc potentials: Inclusion of Kondo effect

Total spectral functions for Regime I

total spectral functions as
function of frequency ω and
average on-site potential
v = (v1 + v2)/2

parameters:
U1 = U2 = 1.0, U12 = 0.6
γ = 0.02,∆v = v1 − v2 = 0

comparison to results from Equations of Motion (EOM) for Green
functions with truncation scheme of PRB 111, 115108 (2025)
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Model systems: single impurity and double dot
i-DFT xc potentials: Coulomb blockade regime
i-DFT xc potentials: Inclusion of Kondo effect

Local spectral functions for Regime I
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A
j

∆v=0.0 ∆v=0.4

local spectral functions for same parameters for v = −2 and
∆v = 0 and ∆v = 0.4
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Model systems: single impurity and double dot
i-DFT xc potentials: Coulomb blockade regime
i-DFT xc potentials: Inclusion of Kondo effect

Total spectral functions for Regime III: not all is well

total spectral functions as
function of frequency ω and
average on-site potential v

parameters:
U1 = U2 = 0.7, U12 = 1.0
γ = 0.02,∆v = 0
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Model systems: single impurity and double dot
i-DFT xc potentials: Coulomb blockade regime
i-DFT xc potentials: Inclusion of Kondo effect

i-DFT xc potentials: Inclusion of Kondo effect

i-DFT expression for zero-bias conductance: linearize i-DFT eq. for
current −→

exact expression for zero-bias conductance

G =
Gs

1−Gs ∂Vxc
∂I

∣∣
I=0

note: the KS zero-bias conductance Gs already accounts for the
Kondo effect (at T = 0 if accurate ground state functional is used)
−→ in order to incorporate Kondo physics in our functional, make
sure that correction term in denominator vanishes
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Model systems: single impurity and double dot
i-DFT xc potentials: Coulomb blockade regime
i-DFT xc potentials: Inclusion of Kondo effect

i-DFT xc potentials: inclusion of Kondo effect

in ideal STM limit, modify xc bias for only site j connected to tip
to include Kondo physics

parametrization of xc bias including Kondo effect

Vxc,j[n1, n2, I] = (1− a[I]) V̄xc[n1, n2, I]

a[I] = 1− 2

π
atan

[
λ

(
I

4WjγT

)2
]

with parameter λ = 0.16 and Wj = 0.16γ/Uj
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Model systems: single impurity and double dot
i-DFT xc potentials: Coulomb blockade regime
i-DFT xc potentials: Inclusion of Kondo effect

i-DFT spectral functions for SIAM
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upper panels: at particle-hole symmetry for different U/γ
lower panels: at U/γ = 5 for different on-site energies ε
blue: NRG results (Motahari et al, PRB 94, 235133 (2016))
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Model systems: single impurity and double dot
i-DFT xc potentials: Coulomb blockade regime
i-DFT xc potentials: Inclusion of Kondo effect

i-DFT spectral functions (Reg.I) including Kondo effect
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Model systems: single impurity and double dot
i-DFT xc potentials: Coulomb blockade regime
i-DFT xc potentials: Inclusion of Kondo effect

i-DFT spectral functions (Reg.I) including Kondo effect

EOM and i-DFT spectral functions for U1 = U2 = 1.0, U12 = 0.6
and γ = 0.1 with i-DFT including the Kondo effect
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Hubbard Model
Conditions on xc bias
xc bias for Mott transition
i-DFT spectra of Hubbard model

Mott Metal-Insulator transition from i-DFT

Reference:

D. Jacob, G. Stefanucci, S. Kurth, Phys. Rev. Lett. 125,
216401 (2020)
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Hubbard Model
Conditions on xc bias
xc bias for Mott transition
i-DFT spectra of Hubbard model

Hubbard model on various lattices

Hamiltonian of Hubbard model

Ĥ = −
∑
σ

∑
<i,j>

t(ĉ†iσ ĉjσ + H.c.) +
∑
σ

∑
i

vin̂i +
∑
i

Un̂i↑n̂i↓

where the sum < i, j > is over the nearest neighbors of the lattice
here: look at uniform systems vi = v for simple cubic and Bethe
lattice

example:
Bethe lattice at coordination
M = 3

M=3
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Hubbard Model
Conditions on xc bias
xc bias for Mott transition
i-DFT spectra of Hubbard model

Conditions on xc bias from many-body approach

in DMFT: many-body self energy Σ(ω) becomes local (independent
of k in momentum space) −→ derive relations between MB and
KS spectral functions at ω = 0 with quasiparticle weight Z

A(0) = As(0) A′(0) = Z−1A′s(0) A′′(0) = Z−2A′′s(0)

can be used to deduce following conditions (2)-(4) on xc bias

Conditions on xc bias

(1) Vxc[Ĩ = 0] = 0 (3) ∂2Vxc
∂Ĩ2

∣∣
Ĩ=0

= (Z−1 − 1) A′s(0)
(As(0))3

(2) ∂Vxc
∂Ĩ

∣∣
Ĩ=0

= 0 (4) ∂3Vxc
∂Ĩ3

∣∣
Ĩ=0

= (Z−2−1)
(As(0))4

(
A′′s(0)− 3 (A′s(0))3

As(0)

)
where Ĩ = I/(2γ)
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Hubbard Model
Conditions on xc bias
xc bias for Mott transition
i-DFT spectra of Hubbard model

Construction of xc bias

xc bias and quasi-particle weight Z (from Bulla, PRL 83, 136
(1999)) for different values of U for Bethe lattice at infinite
coordination (W : bandwidth at U = 0)

-0.4 -0.2 0 0.2 0.4

I
~

-0.4

-0.2

0

0.2

0.4

V
x
c
/U

U/W=0.75
U/W=1.0
U/W=1.25
U/W=1.5
U/W=2.0

0 0.5 1 1.5

U/W

0

0.4

0.8
Z

 ,
 Z~
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~ note that the

step is suppressed
(condition (2)) for
small U (in the
metallic phase)
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Hubbard Model
Conditions on xc bias
xc bias for Mott transition
i-DFT spectra of Hubbard model

i-DFT spectra of Hubbard model on different lattices

Spectral function of Hubbard model on Bethe lattice from i-DFT
compared to NRG
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i-DFT
NRG

U/W=0.8 U/W=1.0

U/W=1.6U/W=1.4

NRG data from Zitko
et al, PRB 79, 085106
(2009). Note the dis-
appearance of the quasi-
particle peak as U in-
creases (metal-insulator
transition).
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Summary

Hubbard Model
Conditions on xc bias
xc bias for Mott transition
i-DFT spectra of Hubbard model

i-DFT spectra of Hubbard model on different lattices

Spectral function of Hubbard model on simple cubic lattice from
i-DFT compared to NRG
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NRG data from Zitko
et al, PRB 80, 245112
(2009). Again: Mott
metal-insulator transition
captured by i-DFT.
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Summary

Many-body spectral functions from differential conductance in
“STM limit” (at T = 0)

i-DFT gives relation between KS and many-body spectral
function

xc bias functionals for model systems: the work is in the
Coulomb blockade part of the xc bias; inclusion of Kondo
effect straightforward

Mott metal-insulator transition can be described by i-DFT
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