Steady-State Density Functional Theory for Many-Body Spectral Functions

Stefan Kurth

Universidad del País Vasco UPV/EHU, San Sebastián, Spain
 IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
 Donostia International Physics Center (DIPC), San Sebastián, Spain
 European Theoretical Spectroscopy Facility (ETSF), www.etsf.eu

マロト イヨト イヨ

- Many-body spectral functions from electron transport
- Steady-state DFT formalism (i-DFT) for electron transport
- i-DFT xc potentials and spectral functions for model systems
- Mott metal-insulator transition from i-DFT

4 E 6 4 E 6

Many-body Spectral Function from electron transport

i-DFT for steady-state electron transport i-DFT xc potentials and spectral functions for model systems Mott Metal-Insulator transition from i-DFT Summary

Many-body Spectral Function from electron transport

Reference:

• D. Jacob, S. Kurth, Nano Lett. 18, 2086 (2018)

.

Ideal STM setup to extract spectral function from I-V

STM-like setup

Interacting system S (weakly) coupled to STM tip (T) via $\Gamma_{\rm T}$ and coupled via $\Gamma_{\rm R}$ to the rest (R) of the system.

"Ideal STM setup": bias voltage V drops entirely at the tip and take the limit of infinitesimaly weak coupling to the tip, i.e., $\Gamma_{\rm T} \to 0$

• • = • • = •

Meir-Wingreen formula for steady current

Meir-Wingreen formula for steady current from tip T to interacting system S (PRL **68**, 2512 (1992))

Meir-Wingreen formula for steady current

$$I(V) = 2 \int \frac{\mathrm{d}\omega}{2\pi} \mathrm{Tr} \left\{ f(\omega - V) \mathbf{\Gamma}_{\mathrm{T}} \mathbf{A}(\omega) + i \mathbf{\Gamma}_{\mathrm{T}} \mathbf{G}^{<}(\omega) \right\}$$

with Fermi function $f(\omega)$, (non-equilibrium) many-body spectral function $\mathbf{A}(\omega)$ and lesser Green function $\mathbf{G}^{<}(\omega)$ \longrightarrow differential conductance in zero-temperature limit

$$\frac{\partial I}{\partial V} \xrightarrow[\Gamma_{\mathrm{T}} \to 0]{} \int \frac{d\omega}{\pi} \frac{\partial f_{\mathrm{T}}(\omega - V)}{\partial V} \operatorname{Tr}\left[\Gamma_{\mathrm{T}} \mathbf{A}(\omega)\right] \xrightarrow[T \to 0]{} \frac{\operatorname{Tr}\left[\Gamma_{\mathrm{T}} \mathbf{A}(V)\right]}{\pi}$$

- 4 同 1 4 三 1 4 三 1

Spectral function from differential conductance

for coupling matrix $\mathbf{\Gamma}_{\mathrm{T}}=\gamma_m^{\mathrm{T}}|m
angle\langle m|$

Equilibrium spectral function from differential conductance

$$A_m(\omega) = \lim_{\gamma_m^{\rm T} \to 0} \frac{\pi}{\gamma_m^{\rm T}} \frac{\partial I}{\partial V} \bigg|_{V=\omega}$$

<u>note:</u>

in ideal STM limit of vanishing coupling to the tip the system is essentially unperturbed by the bias and the spectral function becomes the *equilibrium* spectral function of the interacting system S in contact with the rest R

Choice of variables and 1-1 map -DFT self-consistent KS equations -DFT in ideal STM limit Many-body spectral function in terms of KS one

i-DFT for steady-state electron transport

References:

- G. Stefanucci, S. Kurth, Nano Lett. 15, 8020 (2015)
- S. Kurth, G. Stefanucci, J. Phys.: Condens. Matter 29, 413002 (2017)
- D. Jacob, S. Kurth, Nano Lett. 18, 2086 (2018)

イロト イポト イラト イラト

Choice of variables and 1-1 map I-DFT self-consistent KS equations I-DFT in ideal STM limit Many-body spectral function in terms of KS one

i-DFT for steady-state electron transport

Schematic transport setup with arbitrary molecular region \mathcal{R} (with molecular potential $v(\mathbf{r})$) and applied bias V, interested only in steady state

Choice of variables for steady-state DFT:

molecular steady-state density $n({\bf r})$ in region ${\cal R}$ and steady-state current I through ${\cal R}$

Choice of variables and 1-1 map I-DFT self-consistent KS equations I-DFT in ideal STM limit Many-body spectral function in terms of KS one

i-DFT for steady-state electron transport

Theorem:

For any *finite* temperature the map $(v(\mathbf{r}), V) \rightarrow (n(\mathbf{r}), I))$ is invertible in a finite, gate-dependent window around bias V = 0.

Density Functionalization: Find non-interacting system with potentials (v_s, V_s) which reproduces "densities" (n, I) of *interacting* system with potentials (v, V) \longrightarrow need for two (H)xc potentials

Hxc gate and xc bias potentials

$$v_{\text{Hxc}}[n, I](\mathbf{r}) = v_s[n, I](\mathbf{r}) - v[n, I](\mathbf{r})$$

$$V_{\rm xc}[n,I] = V_s[n,I] - V[n,I]$$

Choice of variables and 1-1 map i-DFT self-consistent KS equations i-DFT in ideal STM limit Many-body spectral function in terms of KS one

i-DFT self-consistent KS equations

i-DFT KS equations for density and steady current

$$n(\mathbf{r}) = 2 \sum_{\alpha=L,R} \int \frac{\mathrm{d}\omega}{2\pi} f_{\beta} \left(\omega + s_{\alpha} \frac{V + V_{\mathrm{xc}}}{2} \right) A_{\alpha,s}(\mathbf{r},\omega)$$
$$I = 2 \sum_{\alpha=L,R} \int \frac{\mathrm{d}\omega}{2\pi} f_{\beta} \left(\omega + s_{\alpha} \frac{V + V_{\mathrm{xc}}}{2} \right) s_{\alpha} T_{s}(\omega)$$

with KS partial spectral function $A_{\alpha,s}(\mathbf{r},\omega) = \langle \mathbf{r} | G_s(\omega) \Gamma_{\alpha}(\omega) G_s^{\dagger}(\omega) | \mathbf{r} \rangle$, KS transmission function $T_s(\omega)$ and $s_{R/L} = \pm 1$

<u>Note:</u> equivalent to Landauer+DFT formalism if $V_{\rm xc}$ set to zero and $v_{\rm Hxc}$ assumed to be independent of current

Choice of variables and 1-1 map i-DFT self-consistent KS equations i-DFT in ideal STM limit Many-body spectral function in terms of KS one

i-DFT equations in ideal STM limit

i-DFT KS equations for asymmetrically applied bias in STM limit $\Gamma_T \longrightarrow 0$

i-DFT KS equations in ideal STM limit

$$n(\mathbf{r}) = 2 \int \frac{\mathrm{d}\omega}{2\pi} f_{\beta}(\omega) A_{R,s}(\mathbf{r},\omega)$$
$$I = 2 \int \frac{\mathrm{d}\omega}{2\pi} \left[f_{\beta}(\omega - V_s) - f_{\beta}(\omega) \right] \operatorname{Tr} \left\{ \Gamma_{\mathrm{T}} A_{R,s}(\omega) \right\}$$

with KS Green function $G_s = \left(\omega - \frac{V_{\text{xc}}}{2} - \mathbf{h}_s - \boldsymbol{\Sigma}_R(\omega)\right)^{-1}$ entering $A_{R,s}$ and equilibrium KS Hamiltonian \mathbf{h}_s note: in STM limit, the i-DFT self-consistency conditions for n and I decouple completely

イロト 不得 トイヨト イヨト 二日

Choice of variables and 1-1 map i-DFT self-consistent KS equations i-DFT in ideal STM limit Many-body spectral function in terms of KS one

Many-body spectral function in terms of KS one

for choice of coupling matrix to tip $\Gamma_{\rm T}=\gamma_m^{\rm T}|m\rangle\langle m|$, take limit $\gamma_m^{\rm T}\to 0$ to relate KS to many-body spectral function

relation between KS and many-body spectral functions

$$A_m(\omega) = \lim_{\gamma_m^{\rm T} \to 0} \frac{A_{m,s}(\omega + V_{\rm xc})}{1 - \frac{\gamma_m^{\rm T}}{\pi} \frac{\partial V_{\rm xc}}{\partial I} A_{m,s}(\omega + V_{\rm xc})}$$

where the current I entering $V_{\rm xc}$ is to be computed at bias $V = \omega$ and A_m and $A_{m,s}$ are local equilibrium many-body and KS spectral functions of the system S coupled to the rest R

Model systems: single impurity and double dot i-DFT xc potentials: Coulomb blockade regime i-DFT xc potentials: Inclusion of Kondo effect

i-DFT xc potentials and spectral functions for model systems

References:

- G. Stefanucci, S. Kurth, Nano Lett. 15, 8020 (2015)
- S. Kurth, G. Stefanucci, Phys. Rev. B. 94, 241103 (2016)(R)
- D. Jacob, S. Kurth, Nano Lett. 18, 2086 (2018)
- S. Kurth, D. Jacob, Eur. Phys. J. B 91, 101 (2018)

イロト イポト イラト イラト

Model systems: single impurity and double dot i-DFT xc potentials: Coulomb blockade regime i-DFT xc potentials: Inclusion of Kondo effect

Model systems: single impurity and double dot

consider two models connected to wide-band lead (coupling γ)

Single impurity Anderson model (SIAM)

 $\hat{H}_{\rm S} = v\hat{n} + U\hat{n}_{\uparrow}\hat{n}_{\downarrow}$

with $\hat{n}=\hat{n}_{\uparrow}+\hat{n}_{\downarrow}$

Double dot with density-density interaction

$$\hat{H}_{\rm S} = \sum_{j=1}^{2} v_j \hat{n}_j + \sum_{j=1}^{2} U_j \hat{n}_{j\uparrow} \hat{n}_{j\downarrow} + U_{12} \hat{n}_1 \hat{n}_2$$

special case: $U_1 = U_2 = U_{12} = U$ Constant Interaction Model (CIM)

イロト 不得 トイヨト イヨト 二日

Model systems: single impurity and double dot i-DFT xc potentials: Coulomb blockade regime i-DFT xc potentials: Inclusion of Kondo effect

SIAM xc bias in Coulomb blockade regime

obtain xc bias by reverse engineering of Beenakker's rate equations (RE) (PRB **44**, 1646 (1991)) (valid in Coulomb blockade regime)

• parameters:

$$U=1$$
, $\gamma=0.02$

- $_{0}^{0.5}$ xc bias has smeared steps of height U
 - xc bias has opposite sign of current, i.e., xc bias counteracts external bias

Model systems: single impurity and double dot i-DFT xc potentials: Coulomb blockade regime i-DFT xc potentials: Inclusion of Kondo effect

CIM with M=2: Hxc gate and xc bias potentials

CIM xc potentials by reverse engineering of RE; from symmetric to asymmetric coupling ($\gamma_{\rm eff} = 4\gamma_L\gamma_R/\gamma$ where $\gamma = \gamma_L + \gamma_R$)

- again smeared steps of height U/2 (U) for Hxc gate (xc bias) with edges at piecewise linear functions of $\Delta_K^{(\pm)}(N, I)$
- complex pattern of vertices in (N, I)-plane simplifies in asymmetric limit

< ロ > < 同 > < 回 > < 回 >

a), d) $\gamma_L/\gamma=0.5;$ b), e) $\gamma_L/\gamma=0.25;$ c), f) $\gamma_L/\gamma=5 imes 10^{-5};$

Model systems: single impurity and double dot i-DFT xc potentials: Coulomb blockade regime i-DFT xc potentials: Inclusion of Kondo effect

Digression: Stability diagrams and Hxc potentials

Hxc potentials of uncontacted double dot <u>at equilibrium</u> exhibit steps in low temperature limit depending on parameter regimes; Stability diagrams and Hxc potentials are intimately connected Ex: Regime I: $U_i > U_{12}$

GS occupations (integers) correspond to vertices in $n_1 - n_2$ plane regions for two different vertices touch \longrightarrow step in Hxc potential, step height equals length of touching line in stability diagram

S. Kurth

Model systems: single impurity and double dot i-DFT xc potentials: Coulomb blockade regime i-DFT xc potentials: Inclusion of Kondo effect

Digression: Stability diagrams and Hxc potentials (cont.)

 $\label{eq:linear_line$

 $\frac{\text{Right column: Regime III:}}{U_1 \le \bar{U} \le U_{12}}$

Model systems: single impurity and double dot i-DFT xc potentials: Coulomb blockade regime i-DFT xc potentials: Inclusion of Kondo effect

Digression: Building blocks for Hxc potentials

Construct Hxc ptls by adding building blocks: steps at diff. positions in $n_1 - n_2$ plane $v_{\text{CIM}}^{\text{Hxc}}(U)[N]$: Hxc ptl. of Constant Interaction Model $v_{\text{inter}}^{\text{Hxc}}(U)[N]$: Hxc ptl. due to inter-Coulomb repulsion U_{12}

Example: Hxc potential for Regime I

 $v_{\mathrm{Hxc}}^{\alpha}[n_1,n_2] = v_{\mathrm{Hxc}}^{\mathrm{CIM}}(U_{12})[N] + v_{\mathrm{Hxc}}^{\mathrm{SIAM}}(U_{\alpha} - U_{12})[n_{\alpha}]$

with $N = n_1 + n_2$ <u>Reference:</u> PRB **102**, 035159 (2020)

Model systems: single impurity and double dot i-DFT xc potentials: Coulomb blockade regime i-DFT xc potentials: Inclusion of Kondo effect

Construction of xc bias for double dot in STM limit

use same idea of constructing $V_{\rm xc}^{\alpha}[n_1, n_2, I]$ (for only dot α being connected to STM tip) as sum of building blocks, e.g.,

xc bias for Regime I

$$V_{\rm xc}^{\alpha}[n_1, n_2, I] = V_{\rm xc}^{\rm CIM}(U_{12})[N, I] + V_{\rm xc}^{\rm SIAM}(U_{\alpha} - U_{12})[n_{\alpha}, I]$$

Model systems: single impurity and double dot i-DFT xc potentials: Coulomb blockade regime i-DFT xc potentials: Inclusion of Kondo effect

Total spectral functions for Regime I

total spectral functions as function of frequency ω and average on-site potential $v = (v_1 + v_2)/2$

parameters:

$$U_1 = U_2 = 1.0, U_{12} = 0.6$$

$$\gamma = 0.02, \Delta v = v_1 - v_2 = 0$$

< ロ > < 同 > < 三 > < 三 >

comparison to results from Equations of Motion (EOM) for Green functions with truncation scheme of PRB 111, 115108 (2025)

Model systems: single impurity and double dot i-DFT xc potentials: Coulomb blockade regime i-DFT xc potentials: Inclusion of Kondo effect

Local spectral functions for Regime I

local spectral functions for same parameters for v=-2 and $\Delta v=0$ and $\Delta v=0.4$

Model systems: single impurity and double dot i-DFT xc potentials: Coulomb blockade regime i-DFT xc potentials: Inclusion of Kondo effect

Total spectral functions for Regime III: not all is well

total spectral functions as function of frequency ω and average on-site potential v

parameters:

$$U_1 = U_2 = 0.7, U_{12} = 1.0$$

$$\gamma = 0.02, \Delta v = 0$$

Model systems: single impurity and double dot i-DFT xc potentials: Coulomb blockade regime i-DFT xc potentials: Inclusion of Kondo effect

i-DFT xc potentials: Inclusion of Kondo effect

i-DFT expression for zero-bias conductance: linearize i-DFT eq. for current \longrightarrow

exact expression for zero-bias conductance $G = \frac{G_s}{1 - G_s \frac{\partial V_{\rm xc}}{\partial I}|_{I=0}}$

<u>note</u>: the KS zero-bias conductance G_s already accounts for the Kondo effect (at T = 0 if accurate ground state functional is used) \rightarrow in order to incorporate Kondo physics in our functional, make sure that correction term in denominator vanishes

イロト 不得 トイヨト イヨト 二日

Model systems: single impurity and double dot i-DFT xc potentials: Coulomb blockade regime i-DFT xc potentials: Inclusion of Kondo effect

i-DFT xc potentials: inclusion of Kondo effect

in ideal STM limit, modify xc bias for only site j connected to tip to include Kondo physics

parametrization of xc bias including Kondo effect

$$V_{\text{xc,j}}[n_1, n_2, I] = (1 - a[I]) \overline{V}_{\text{xc}}[n_1, n_2, I]$$
$$a[I] = 1 - \frac{2}{\pi} \operatorname{atan} \left[\lambda \left(\frac{I}{4W_j \gamma_T} \right)^2 \right]$$

with parameter $\lambda = 0.16$ and $W_j = 0.16 \gamma/U_j$

Model systems: single impurity and double dot i-DFT xc potentials: Coulomb blockade regime i-DFT xc potentials: Inclusion of Kondo effect

i-DFT spectral functions for SIAM

upper panels: at particle-hole symmetry for different U/γ lower panels: at $U/\gamma = 5$ for different on-site energies ε blue: NRG results (Motahari et al, PRB **94**, 235133 (2016))

Model systems: single impurity and double dot i-DFT xc potentials: Coulomb blockade regime i-DFT xc potentials: Inclusion of Kondo effect

i-DFT spectral functions (Reg.I) including Kondo effect

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Model systems: single impurity and double dot i-DFT xc potentials: Coulomb blockade regime i-DFT xc potentials: Inclusion of Kondo effect

i-DFT spectral functions (Reg.I) including Kondo effect

EOM and i-DFT spectral functions for $U_1 = U_2 = 1.0, U_{12} = 0.6$ and $\gamma = 0.1$ with i-DFT including the Kondo effect

Hubbard Model Conditions on xc bias xc bias for Mott transition i-DFT spectra of Hubbard model

Mott Metal-Insulator transition from i-DFT

Reference:

• D. Jacob, G. Stefanucci, S. Kurth, Phys. Rev. Lett. **125**, 216401 (2020)

(日)

Hubbard Model Conditions on xc bias xc bias for Mott transition i-DFT spectra of Hubbard model

Hubbard model on various lattices

Hamiltonian of Hubbard model

$$\hat{H} = -\sum_{\sigma} \sum_{\langle i,j \rangle} t(\hat{c}_{i\sigma}^{\dagger} \hat{c}_{j\sigma} + \text{H.c.}) + \sum_{\sigma} \sum_{i} v_{i} \hat{n}_{i} + \sum_{i} U \hat{n}_{i\uparrow} \hat{n}_{i\downarrow}$$

where the sum $\langle i, j \rangle$ is over the nearest neighbors of the lattice <u>here</u>: look at uniform systems $v_i = v$ for simple cubic and Bethe lattice

Hubbard Model Conditions on xc bias xc bias for Mott transition i-DFT spectra of Hubbard model

Conditions on xc bias from many-body approach

in DMFT: many-body self energy $\Sigma(\omega)$ becomes local (independent of k in momentum space) \longrightarrow derive relations between MB and KS spectral functions at $\omega = 0$ with quasiparticle weight Z

$$A(0) = A_s(0) \quad A'(0) = Z^{-1}A'_s(0) \quad A''(0) = Z^{-2}A''_s(0)$$

can be used to deduce following conditions (2)-(4) on xc bias

Conditions on xc bias

(1)
$$V_{\rm xc}[\tilde{I}=0] = 0$$
 (3) $\frac{\partial^2 V_{\rm xc}}{\partial \tilde{I}^2}\Big|_{\tilde{I}=0} = (Z^{-1}-1)\frac{A'_s(0)}{(A_s(0))^3}$
(2) $\frac{\partial V_{\rm xc}}{\partial \tilde{I}}\Big|_{\tilde{I}=0} = 0$ (4) $\frac{\partial^3 V_{\rm xc}}{\partial \tilde{I}^3}\Big|_{\tilde{I}=0} = \frac{(Z^{-2}-1)}{(A_s(0))^4}\left(A''_s(0) - 3\frac{(A'_s(0))^3}{A_s(0)}\right)$

where $\tilde{I}=I/(2\gamma)$

- 4 同 ト 4 ヨ ト 4 ヨ ト

Hubbard Model Conditions on xc bias xc bias for Mott transition i-DFT spectra of Hubbard model

Construction of xc bias

xc bias and quasi-particle weight Z (from Bulla, PRL **83**, 136 (1999)) for different values of U for Bethe lattice at infinite coordination (W: bandwidth at U = 0)

S. Kurth Steady-State DFT for Many-Body Spectral Functions

Hubbard Model Conditions on xc bias xc bias for Mott transition i-DFT spectra of Hubbard model

i-DFT spectra of Hubbard model on different lattices

Spectral function of Hubbard model on Bethe lattice from i-DFT compared to NRG

NRG data from Zitko et al, PRB **79**, 085106 (2009). Note the disappearance of the quasiparticle peak as U increases (metal-insulator transition).

Hubbard Model Conditions on xc bias xc bias for Mott transition i-DFT spectra of Hubbard model

i-DFT spectra of Hubbard model on different lattices

Spectral function of Hubbard model on simple cubic lattice from i-DFT compared to NRG

NRG data from Zitko et al, PRB **80**, 245112 (2009). Again: Mott metal-insulator transition captured by i-DFT.

< ロ > < 同 > < 三 > < 三 >

э

Summary Collaborators

Summary

- Many-body spectral functions from differential conductance in "STM limit" (at T = 0)
- i-DFT gives relation between KS and many-body spectral function
- xc bias functionals for model systems: the work is in the Coulomb blockade part of the xc bias; inclusion of Kondo effect straightforward
- Mott metal-insulator transition can be described by i-DFT

Summary Collaborators

In collaboration with:

Gianluca Stefanucci Univ. of Rome "Tor Vergata", Italy

David Jacob Univ. of Alicante Spain

Nahual Sobrino ICTP, Trieste Italy