Accurate prediction of electronic and optical excitations in 3d and 2d materials from density functional theory Solving the solid-state band gap and optical absorption problems of density functional theory

Leeor Kronik Weizmann Institute of Science, Rehovoth, Israel

10th TDDFT Meeting, Benasque, Spain, April 2025

Mind the gap

The Kohn-Sham gap underestimates the real gap

$$E_g = I - A = \varepsilon_{KS}^{LUMO} - \varepsilon_{KS}^{HOMO}$$

Perdew and Levy, *PRL* 1983; Sham and Schlüter, *PRL* 1983 derivative discontinuity!

Kohn-Sham eigenvalues do not mimic the quasi-particle picture even in principle!

Confirmed by calculations: Godby, Schlüter, Sham, Phys. Rev. Lett. <u>56</u>, 2415 (1986). Chan, J. Chem. Phys. <u>110</u>, 4710 (1999). Allen and Tozer, Mol. Phys. 100, 433 (2002).

Bandgaps and optical absorption spectrum of silicon

1. Wrong band gaps: Indirect: $E_{g,exp} = 1.1 \text{ eV}$

 $E_{g,PBE} = 0.58 \text{ eV}$

2. Wrong optical absorption spectrum:

Direct: $E_{g,exp} = 3.35 \text{ eV}$ $E_{g,PBE} = 2.6 \text{ eV}$

HSE: Indirect:

•
$$E_{g,exp} = 1.12 \ eV$$

• $E_{g,HSE} = 1.15 \ eV$

Direct:

•
$$E_{g,exp} = 3.35 \ eV$$

•
$$E_{g,HSE} = 3.3 \ eV$$

"על שלשה דברים העולם עומד" "The world stands on three principles" "על שלשה דברים העולם עומד" - Simon the Righteous *-*Kronik, Stein, Refaely-Abramson, Baer, J. Chem. Theo. Comp. <u>8</u>, 1515 (2012).

Perdew, Parr, Levy, Balduz, PRL <u>49</u>, 1691 (1982). Pure state proof: Yang, Zhang, Ayers, PRL <u>84</u>, 5172 (2000).

Hybrid functionals mix Fock and Kohn-Sham exchange

$$\left(-\frac{1}{2}\nabla^{2} + V_{ion}(r) + V_{H}([n];r) + a\hat{V}_{F} + (1-a)v_{x}^{sl}([n];r) + v_{c}^{sl}([n];r)\right)\varphi_{i}(r) = \varepsilon_{i}\varphi_{i}(r)$$

They are <u>outside</u> Kohn-Sham theory owing to the use of a non-multiplicative potential

But well within <u>generalized</u> Kohn-Sham theory, which maps to a *partially interacting* electron gas that is represented by a single Slater determinant.

DFT: Seidl, Goerling, Vogl, Majevski, Levy, Phys. Rev. B 53, 3764 (1996).

Multitude of exact maps:

Choose the one that eliminates the derivative discontinuity!

Kronik, Stein, Refaely-Abramson, Baer, *J. Chem. Theo. Comp.* <u>8</u>, 1515 (2012). Garrick, Natan, Gould, Kronik, *Phys. Rev. X* <u>10</u>, 021040 (2020). Kronik & Kümmel, *PCCP* <u>22</u>, 16467 (2020).

Gould

Generalized Kohn-Sham theory in action: global hybrid functionals

Rachel Garrick

Exact Hybrid Theory

$$\left(-\frac{1}{2}\nabla^2 + V_{\text{ext}}(\mathbf{r}) + \alpha \hat{V}_F + \alpha V_{\text{H}}([n];\mathbf{r}) + V_R([n];\mathbf{r})\right)\phi_i(\mathbf{r}) = \varepsilon_i\phi_i(\mathbf{r})$$

Approximate Hybrid Theory

$$V_R^{\alpha}([n]; \mathbf{r}) = (1 - \alpha) V_H([n]; \mathbf{r}) + (1 - \alpha) V_{x,SL}([n]; \mathbf{r})$$
$$+ V_{c,SL}([n]; \mathbf{r})$$

Görling, Levy, J. Chem. Phys. <u>106</u>, 2675 (1997). Garrick, Natan, Gould, Kronik, Phys. Rev. X <u>10</u>, 021040 (2020).

Exact Generalized Kohn-Sham theory in action: The case of a hybrid functional

Garrick, Natan, Gould, Kronik, Phys. Rev. X 10, 021040 (2020)

Extending the Reach of Generalized Kohn-Sham Theory

Eur. Phys. J. B (2018) 91: 170 https://doi.org/10.1140/epjb/e2018-90103-0

THE EUROPEAN PHYSICAL JOURNAL B

Regular Article

Time-dependent generalized Kohn–Sham theory*

Roi Baer^{1,a} and Leeor Kronik^{2,b}

Ensemble generalized Kohn–Sham theory: The good, the bad, and the ugly 💿

Cite as: J. Chem. Phys. **154**, 094125 (2021); https://doi.org/10.1063/5.0040447 Submitted: 13 December 2020 . Accepted: 11 February 2021 . Published Online: 05 March 2021

🔟 Tim Gould, and 匝 Leeor Kronik

Range-separated hybrid functionals Coulomb operator decomposition:

$$r^{-1} = r^{-1}\operatorname{erfc}(\gamma r) + r^{-1}\operatorname{erf}(\gamma r)$$

Short Range Long Range Emphasize long-range exchange, short-range exchange correlation!

$$-\frac{1}{2}\nabla^{2} + V_{ion}(r) + V_{H}([n];r) + \hat{V}_{F}^{lr,\gamma} + v_{x}^{sr,\gamma}([n];r) + v_{c}^{sl}([n];r) \bigg) \varphi_{i}(r) = \varepsilon_{i}\varphi_{i}(r)$$

See, e.g.: Leininger et al., *Chem. Phys. Lett.* <u>275</u>, 151 (1997) likura et al., J. *Chem. Phys.* <u>115</u>, 3540 (2001) Yanai et al., *Chem. Phys. Lett.* <u>393</u>, 51 (2004)

But how to choose the range??

Ionization potential theorem:

$$-\varepsilon_{\text{HOMO}}^{\gamma} = E_{gs}(N-1;\gamma) - E_{gs}(N;\gamma)$$

Tune, don't fit, the range-separation parameter!

Stein, Kronik, Baer, J. Am. Chem. Soc. (Comm.) <u>131</u>, 2818 (2009). Stein, Eisenberg, Kronik, Baer, Phys. Rev. Lett. <u>105</u>, 266802 (2010).

Ionization potential and geometry for all 148 molecules in the G2 set

lsaac Tamblyn

Jeff Neaton

Sivan Refaely-Abramson

Tamblyn, Refaely-Abramson, Neaton, Kronik, J. Phys. Chem. Lett. <u>5</u>, 2734 (2014).

Gen 2: Screened range-separated hybrid (SRSH) functionals

Three *inequivalent properties* of the exact functional

Kronik & Kümmel, PCCP 22, 16467 (2020).

Gap renormalization of molecular crystals from density functional theory

Gap renormalization

- SRSH - GW * EXP

Sahar Jeff Sharifzadeh Neaton

Just screen the long-range exchange!

Sivan Refaely-Abramson

Molecular gaps are too small No renormalization

S. Refaely-Abramson, S. Sharifzadeh, M. Jain, R. Baer, J. B. Neaton and L. Kronik, Phys. Rev. B(R) <u>88</u>, 081204 (2013).

Color Polymorphism

Different polymorphs of the same compound with different optical absorption in the visible range, which results in different colors

ROY (5-Methyl-2-[(2-nitrophenyl) amino]-3-thiophenecabonitrile) - Red, Orange, Yellow

Hartstein, Ohad, Kronik, J. Chem. Theory Comp. 20, 5510 (2024)

Novel Organic Molecules Nature Synthesis (2025)

Metal-organic complexes Schneider et al., Chem. Eur. J (2025)

Charge Transfer in biochemical systems Excitons in films for photovoltaics Forde et al., J. Phys. Chem. Lett. (2025) Akram et al., Adv. Funct. Materials (2025)

The solid state quandary: $\Delta I \rightarrow 0$ because the VBM state is delocalized

 $\Delta I = E(N-1) - E(N) + \epsilon_{VBM}$

Mori-Sanchez, Cohen, and Yang, Phys. Rev. Lett. <u>100</u>, 146401 (2008). Kraisler & Kronik, J. Chem. Phys. <u>140</u>, 18A540 (2014). Vlcek et al., J. Chem. Phys. <u>142</u>, 034107 (2015).

Guy Ohad

Use constrained DFT to compute ΔI upon enforcing charge removal from a maximally localized Wannier function

Marzari *et al.*, "Maximally localized Wannier functions: Theory and applications" Rev. Mod. Phys. 84, 1419 (2012)

VBM Wavefunction of Silicon

Dahvyd Wing

Maximally localized Wannier function of Silicon

Gen 3: The <u>Wannier-localized</u>, optimally-tuned screened range-separated hybrid (WOT-SRSH) functional

Ansatz:
$$\Delta I = E_{\text{constr}}[\phi](N-1) - E(N) + \langle \phi | \hat{H}_{\text{SRSH}} | \phi \rangle = 0$$

Wing, Ohad, Haber, Filip, Gant, Neaton, Kronik, PNAS 118, e2104556118 (2021)

Wing, Ohad, Haber, Filip, Gant, Neaton, Kronik, PNAS <u>118</u>, e2104556118 (2021) Highlight: Scuseria, PNAS <u>118</u>, e2113648118 (2021).

Francisca Sagredo

WOT-SRSH of Halide (single and double) Perovskites

Ohad, Wing, Gant, Cohen, Haber, Sagredo, Filip, Neaton, Kronik Phys. Rev. Materials <u>6</u>, 104606 (2022).

Sagredo, Gant, Ohad, Haber, Filip, Kronik, Neaton Phys. Rev. Materials <u>8</u>, 105401 (2024).

WOT-SRSH is an optimal starting point for GW calculations

Stephen Gant

Gant, Haber, Filip, Sagredo, Wing, Ohad, Kronik, Neaton, Phys. Rev. Materials <u>6</u>, 053802 (2022)

Dahvyd Wing Optical absorption spectra from linear response time-dependent DFT

Jonah

Three major challenges:

Semi)-local functionals underestimate the band gap – the spectrum is red shifted.

3

- Standard functionals do not have the correct asymptotic behavior, an essential property to accurately describe excitonic peaks.
- The xc kernel cannot be derived from approaches that use correction terms

OT-SRSH:

• Has the correct band gap.

Has the correct long-range behavior.

Proper density functional.

Wing, Haber, Noff, Barker, Egger, Ramasubramaniam, Louie, Neaton, Kronik, Phys. Rev. Materials <u>3</u>, 064603 (2019).

WOT-SRSH is excellent for absorption spectra in closed-shell transition metal oxides

Ohad, Gant, Wing, Haber, Camarasa-Gomez, Sagredo, Filip, Neaton, Kronik Phys. Rev. Materials <u>7</u>, 123803 (2023).

WOT-SRSH for 2d Materials

Maria Camarasa-Gómez

Ashwin Ramasubramaniam

Camarasa-Gómez, Gant, Ohad, Neaton, Ramasubramaniam, Kronik, npj Comput. Materials <u>10</u>, 288 (2024).

WOT-SRSH for 2d Materials

$$\epsilon_{\infty} = \operatorname{Tr}[\boldsymbol{\epsilon}_{\infty}]/3$$
 (Bulk)
 $\epsilon_{\infty} = 1$ (Monolayer)

Camarasa-Gómez, Gant, Ohad, Neaton, Ramasubramaniam, Kronik, npj Comput. Materials <u>10</u>, 288 (2024).

One example

Molybdenum disulfide

Monolayer & bulk medium band gap

WOT-SRSH functional yields good band structure !!

WOT-SRSH functional yields <u>excellent spectrum</u> <u>eliminating empiricism</u>!!

WOT-SRSH functional yields good starting point for GW-BSE!!

Camarasa-Gómez, Gant, Ohad, Neaton, Ramasubramaniam, Kronik, npj Comput. Materials <u>10</u>, 288 (2024).

Resolving contradictory estimates of band gaps of bulk PdSe₂ for IR detection: 0 to 0.5 eV

Approaching the solid-state limit

OT and WOT agree well for small systems! Can WOT be interpreted as a generalized optimal tuning strategy?

Ohad, Hartstein, Gould, Neaton, and Kronik, J. Chem. Theory Comput., 20(16), 7168 (2024).

Limitations of the approach

Strong heterogeneity

Stretched heterodimers: Karolewski, Kronik, and Kümmel, J. Chem. Phys. <u>138</u>, 204115 (2013). Molecule/metal interface: Egger, Liu, Neaton, Kronik, Nano Lett. <u>15</u>, 2448 (2015); Liu, Egger, Refaely-Abramson, Kronik, Neaton, J. Chem. Phys. <u>146</u>, 092326 (2017).

- Strong correlation

Small copper oxide clusters: Shi, Weissman, Bruneval, Kronik, Öğüt, J. Chem. Phys. <u>149</u>, 064306 (2018). Spin cross-over complexes: Prokopiou & Kronik, Eur. J. Chem. <u>24</u>, 5173 (2018).

Optimal tuning of a double hybrid: Prokopiou, Hartstein, Govind, Kronik, J. Chem. Theo. Comp. <u>18</u>, 2331 (2022).

Conclusions

 <u>WOT-SRSH</u>: Wannier-localized optimal tuning of a screened range-separated hybrid functional

 A systematic, non-empirical solution for the longstanding challenges of the <u>bandgap</u> problem in DFT and solid-state <u>excitonic effects</u> in TDDFT