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Does TDDFT really work?
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Quantum defect of Rydberg series

• I=ionization potential, n=principal, l=angular 
quantum no.s

• Due to long-ranged Coulomb potential
• Effective one-electron potential decays    as 

-1/r.
• Absurdly precise test of excitation theory, 

and very difficult to get right.

!"#!
$
!"!!" #

µ
ω

−
−=

10th anniversary Benasque



Kieron Burke, UCI 6

Be s quantum defect: expt

Top: triplet, 
bottom: 
singlet
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Be s quantum defect: KS
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Be s quantum defect: RPA

KS=triplet

RPA

fH
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Be s quantum defect: ALDAX
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Be s quantum defect: ALDA

10th anniversary Benasque

Accurate atomic quantum defects from particle–particle random phase approximation Yang Yang, Kieron 
Burke and Weitao Yang, Molecular Physics 114, 1189-1198 (2016).

http://dx.doi.org/10.1080/00268976.2015.1123316
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From BEFORE Benasque
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20 years of Benasque TDDFT

• Initiated by Angel Rubio and Miguel Marques
• Very fond memories of many late nights, 

discussing twisted logic of TDDFT
• Led to edited volume, TDDFT, 1st and 2nd 

editions (now also have Carsten’s textbook).
• Molecular electronics was a very hot topic for a 

while.
• Carsten Ullrich and I initiated analog in US (St 

John’s school, GRC, Telluride meetings…)
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outline

• Ensemble DFT

• Recent activity

• New work with Kim Daas
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Two old theorems

• Runge-Gross theorem (1984) puts TDDFT on 
firm footing.

• But Gross-Olivera-Kohn (1988) also establish 
EDFT, a variational approach giving access to 
excited state energies (and related properties)

Kieron Burke, UCI 10th anniversary Benasque 15



Many uses of ensembles in DFT

• Most famous:  Ensemble of fractional particle 
numbers, used to see ground-state derivative 
discontinuity (PPLB)

• Thermal ensembles, used for simulating WDM with 
thDFT

• Ensembles of fixed N, differing occupations, used 
for excited states (eDFT)✓

• All originate from Levy-Lieb density matrix 
formulation for F[n].
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Use of Hubbard model in DFT

• Key reviews:

• Extremely limited Hilbert space

• Mostly analytic results-questions of principle

• Can study strong correlation

• But learn NOTHING about approximate functionals 
in ‘real’ world
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The Hubbard dimer: a density functional case study of a many-body problem 
D J Carrascal  D.J., Ferrer, J., Smith, J. and KB 2015 J. Phys.: Condens. 
Matter 27 393001

Linear response time-dependent density functional theory of the 
Hubbard dimer Carrascal, D.J., Ferrer, J., Maitra, N. and KB. Linear response time-
dependent density functional theory of the Hubbard dimer. Eur. Phys. J. B 91, 142 (2018). 



eDFT history

• 1979: Theophilou formulates theorem
• 1988: GOK papers 

– Good theorem, poor approximation
• 2002: GPG Gidapoulus and Gross

– Identify ghosts in Ex and how to remove them
• 2017: Yang, Pribram-Jones, Ullrich, KB

– Exact w-dependent potentials
– DEC: Special ensemble, w->0

• Since then: Much recent activity
– Fromager
– Gould and Pittalis

Kieron Burke, UCI 10th anniversary Benasque 18



Variational theorem

Kieron Burke, UCI 10th anniversary Benasque

A.Theophilou, J. Phys. C 12, 5419 (1979)

18A541-2 Pribram-Jones et al. J. Chem. Phys. 140, 18A541 (2014)
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FIG. 1. Exact densities and equiensemble exchange-correlation potentials of
the 1D box with two electrons. The third excited state (I = 4) is a double
excitation. See Sec. VI A.

Section VI consists of calculations for quite distinct sys-
tems, but all with just two electrons. The one-dimensional flat
box was used for the illustration here, which also gives rise
to double excitations. A box with a high, asymmetric barrier
produces charge-transfer excitations. Hooke’s atom is a three-
dimensional (3D) system, containing two Coulomb-repelling
electrons in a harmonic oscillator external potential.39 It has
proven useful in the past to test ideas and approximations in
both ground-state and TDDFT calculations.40 We close the
section reporting several new results for the He atom, using
ensembles that include low-lying triplet states. Atomic units
[e = ¯ = me = 1/(4πϵ0) = 1] are used throughout unless
otherwise specified.

II. BACKGROUND

A. Basic theory

The ensemble variational principle19 states that, for an
ensemble of the lowest M + 1 eigenstates #0, . . . , #M of
the Hamiltonian Ĥ and a set of orthonormal trial functions
#̃0, . . . , #̃M ,

M∑

m=0

wm⟨#̃m|Ĥ |#̃m⟩ ≥
M∑

m=0

wmEm, (1)

when the set of weights wm satisfies

w0 ≥ w1 ≥ . . . ≥ wm ≥ . . . ≥ 0, (2)

and Em is the eigenvalue of the mth eigenstate of Ĥ . Equal-
ity holds only for #̃m = #m. The density matrix of such an
ensemble is defined by

D̂W =
M∑

m=0

wm|#m⟩⟨#m|, (3)

where W denotes the entire set of weight parameters. Prop-
erties of the ensemble are then defined as traces of the cor-
responding operators with the density matrix. The ensemble
density nW(r) is

nW(r) = tr{D̂W n̂(r)} =
M∑

m=0

wmnm(r), (4)

and the ensemble energy EW is

EW = tr{D̂WĤ } =
M∑

m=0

wmEm. (5)

nW(r) is normalized to the number of electrons, implying∑M
m=0 wm = 1.

A HK1 type theorem for the one-to-one correspondence
between nW(r) and the potential in Ĥ has been proven,18, 20

so all ensemble properties are functionals of nW(r), includ-
ing D̂W . The ensemble HK theorem allows the definition
of a non-interacting KS system, which reproduces the ex-
act nW(r). The existence of an ensemble KS system assumes
ensemble v-representability. EDFT itself, however, only re-
quires ensemble non-interacting N-representability, since a
constrained-search formalism is available.20, 41 Ensemble N-
and v-representability are not yet proven, only assumed.

As in the ground-state case, only the ensemble energy
functional is formally known, which is

EW[n] = FW[n] +
∫

d3r n(r)v(r), (6)

where v(r) is the external potential. The ensemble universal
functional FW is defined as

FW[n] = tr{D̂W[n](T̂ + V̂ee)}, (7)

where T̂ and V̂ee are the kinetic and electron-electron inter-
action potential operators, respectively. The ensemble varia-
tional principle ensures that the ensemble energy functional
evaluated at the exact ensemble density associated with v(r)
is the minimum of this functional, Eq. (5).

The ensemble KS system is defined as the non-interacting
system that reproduces nW(r) and satisfies the following non-
interacting Schrödinger equation:

{
−1

2
∇2 + vS,W[nW](r)

}
φj,W(r) = ϵj,Wφj,W(r). (8)

The ensemble KS system has the same set of wm as the in-
teracting system. This consistency has non-trivial implica-
tions even for simple systems. This will be explored more in
Sec. II B.

The KS density matrix D̂s,W is

D̂S,W =
M∑

m=0

wm|%m⟩⟨%m|, (9)

where %m are non-interacting N-particle wavefunctions, usu-
ally assumed to be single Slater determinants formed by KS
orbitals φj,W . We find that this choice can be problematic, and
it will be discussed in Sec. III A. The ensemble density nW(r)
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DFT version
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18A541-2 Pribram-Jones et al. J. Chem. Phys. 140, 18A541 (2014)
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FIG. 1. Exact densities and equiensemble exchange-correlation potentials of
the 1D box with two electrons. The third excited state (I = 4) is a double
excitation. See Sec. VI A.

Section VI consists of calculations for quite distinct sys-
tems, but all with just two electrons. The one-dimensional flat
box was used for the illustration here, which also gives rise
to double excitations. A box with a high, asymmetric barrier
produces charge-transfer excitations. Hooke’s atom is a three-
dimensional (3D) system, containing two Coulomb-repelling
electrons in a harmonic oscillator external potential.39 It has
proven useful in the past to test ideas and approximations in
both ground-state and TDDFT calculations.40 We close the
section reporting several new results for the He atom, using
ensembles that include low-lying triplet states. Atomic units
[e = ¯ = me = 1/(4πϵ0) = 1] are used throughout unless
otherwise specified.

II. BACKGROUND

A. Basic theory

The ensemble variational principle19 states that, for an
ensemble of the lowest M + 1 eigenstates #0, . . . , #M of
the Hamiltonian Ĥ and a set of orthonormal trial functions
#̃0, . . . , #̃M ,

M∑

m=0

wm⟨#̃m|Ĥ |#̃m⟩ ≥
M∑

m=0

wmEm, (1)

when the set of weights wm satisfies

w0 ≥ w1 ≥ . . . ≥ wm ≥ . . . ≥ 0, (2)

and Em is the eigenvalue of the mth eigenstate of Ĥ . Equal-
ity holds only for #̃m = #m. The density matrix of such an
ensemble is defined by

D̂W =
M∑

m=0

wm|#m⟩⟨#m|, (3)

where W denotes the entire set of weight parameters. Prop-
erties of the ensemble are then defined as traces of the cor-
responding operators with the density matrix. The ensemble
density nW(r) is

nW(r) = tr{D̂W n̂(r)} =
M∑

m=0

wmnm(r), (4)

and the ensemble energy EW is

EW = tr{D̂WĤ } =
M∑

m=0

wmEm. (5)

nW(r) is normalized to the number of electrons, implying∑M
m=0 wm = 1.

A HK1 type theorem for the one-to-one correspondence
between nW(r) and the potential in Ĥ has been proven,18, 20

so all ensemble properties are functionals of nW(r), includ-
ing D̂W . The ensemble HK theorem allows the definition
of a non-interacting KS system, which reproduces the ex-
act nW(r). The existence of an ensemble KS system assumes
ensemble v-representability. EDFT itself, however, only re-
quires ensemble non-interacting N-representability, since a
constrained-search formalism is available.20, 41 Ensemble N-
and v-representability are not yet proven, only assumed.

As in the ground-state case, only the ensemble energy
functional is formally known, which is

EW[n] = FW[n] +
∫

d3r n(r)v(r), (6)

where v(r) is the external potential. The ensemble universal
functional FW is defined as

FW[n] = tr{D̂W[n](T̂ + V̂ee)}, (7)

where T̂ and V̂ee are the kinetic and electron-electron inter-
action potential operators, respectively. The ensemble varia-
tional principle ensures that the ensemble energy functional
evaluated at the exact ensemble density associated with v(r)
is the minimum of this functional, Eq. (5).

The ensemble KS system is defined as the non-interacting
system that reproduces nW(r) and satisfies the following non-
interacting Schrödinger equation:

{
−1

2
∇2 + vS,W[nW](r)

}
φj,W(r) = ϵj,Wφj,W(r). (8)

The ensemble KS system has the same set of wm as the in-
teracting system. This consistency has non-trivial implica-
tions even for simple systems. This will be explored more in
Sec. II B.

The KS density matrix D̂s,W is

D̂S,W =
M∑

m=0

wm|%m⟩⟨%m|, (9)

where %m are non-interacting N-particle wavefunctions, usu-
ally assumed to be single Slater determinants formed by KS
orbitals φj,W . We find that this choice can be problematic, and
it will be discussed in Sec. III A. The ensemble density nW(r)
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FIG. 1. Exact densities and equiensemble exchange-correlation potentials of
the 1D box with two electrons. The third excited state (I = 4) is a double
excitation. See Sec. VI A.

Section VI consists of calculations for quite distinct sys-
tems, but all with just two electrons. The one-dimensional flat
box was used for the illustration here, which also gives rise
to double excitations. A box with a high, asymmetric barrier
produces charge-transfer excitations. Hooke’s atom is a three-
dimensional (3D) system, containing two Coulomb-repelling
electrons in a harmonic oscillator external potential.39 It has
proven useful in the past to test ideas and approximations in
both ground-state and TDDFT calculations.40 We close the
section reporting several new results for the He atom, using
ensembles that include low-lying triplet states. Atomic units
[e = ¯ = me = 1/(4πϵ0) = 1] are used throughout unless
otherwise specified.

II. BACKGROUND

A. Basic theory

The ensemble variational principle19 states that, for an
ensemble of the lowest M + 1 eigenstates #0, . . . , #M of
the Hamiltonian Ĥ and a set of orthonormal trial functions
#̃0, . . . , #̃M ,

M∑

m=0

wm⟨#̃m|Ĥ |#̃m⟩ ≥
M∑

m=0

wmEm, (1)

when the set of weights wm satisfies

w0 ≥ w1 ≥ . . . ≥ wm ≥ . . . ≥ 0, (2)

and Em is the eigenvalue of the mth eigenstate of Ĥ . Equal-
ity holds only for #̃m = #m. The density matrix of such an
ensemble is defined by

D̂W =
M∑

m=0

wm|#m⟩⟨#m|, (3)

where W denotes the entire set of weight parameters. Prop-
erties of the ensemble are then defined as traces of the cor-
responding operators with the density matrix. The ensemble
density nW(r) is

nW(r) = tr{D̂W n̂(r)} =
M∑

m=0

wmnm(r), (4)

and the ensemble energy EW is

EW = tr{D̂WĤ } =
M∑

m=0

wmEm. (5)

nW(r) is normalized to the number of electrons, implying∑M
m=0 wm = 1.

A HK1 type theorem for the one-to-one correspondence
between nW(r) and the potential in Ĥ has been proven,18, 20

so all ensemble properties are functionals of nW(r), includ-
ing D̂W . The ensemble HK theorem allows the definition
of a non-interacting KS system, which reproduces the ex-
act nW(r). The existence of an ensemble KS system assumes
ensemble v-representability. EDFT itself, however, only re-
quires ensemble non-interacting N-representability, since a
constrained-search formalism is available.20, 41 Ensemble N-
and v-representability are not yet proven, only assumed.

As in the ground-state case, only the ensemble energy
functional is formally known, which is

EW[n] = FW[n] +
∫

d3r n(r)v(r), (6)

where v(r) is the external potential. The ensemble universal
functional FW is defined as

FW[n] = tr{D̂W[n](T̂ + V̂ee)}, (7)

where T̂ and V̂ee are the kinetic and electron-electron inter-
action potential operators, respectively. The ensemble varia-
tional principle ensures that the ensemble energy functional
evaluated at the exact ensemble density associated with v(r)
is the minimum of this functional, Eq. (5).

The ensemble KS system is defined as the non-interacting
system that reproduces nW(r) and satisfies the following non-
interacting Schrödinger equation:

{
−1

2
∇2 + vS,W[nW](r)

}
φj,W(r) = ϵj,Wφj,W(r). (8)

The ensemble KS system has the same set of wm as the in-
teracting system. This consistency has non-trivial implica-
tions even for simple systems. This will be explored more in
Sec. II B.

The KS density matrix D̂s,W is

D̂S,W =
M∑

m=0

wm|%m⟩⟨%m|, (9)

where %m are non-interacting N-particle wavefunctions, usu-
ally assumed to be single Slater determinants formed by KS
orbitals φj,W . We find that this choice can be problematic, and
it will be discussed in Sec. III A. The ensemble density nW(r)
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FIG. 1. Exact densities and equiensemble exchange-correlation potentials of
the 1D box with two electrons. The third excited state (I = 4) is a double
excitation. See Sec. VI A.

Section VI consists of calculations for quite distinct sys-
tems, but all with just two electrons. The one-dimensional flat
box was used for the illustration here, which also gives rise
to double excitations. A box with a high, asymmetric barrier
produces charge-transfer excitations. Hooke’s atom is a three-
dimensional (3D) system, containing two Coulomb-repelling
electrons in a harmonic oscillator external potential.39 It has
proven useful in the past to test ideas and approximations in
both ground-state and TDDFT calculations.40 We close the
section reporting several new results for the He atom, using
ensembles that include low-lying triplet states. Atomic units
[e = ¯ = me = 1/(4πϵ0) = 1] are used throughout unless
otherwise specified.

II. BACKGROUND

A. Basic theory

The ensemble variational principle19 states that, for an
ensemble of the lowest M + 1 eigenstates #0, . . . , #M of
the Hamiltonian Ĥ and a set of orthonormal trial functions
#̃0, . . . , #̃M ,

M∑

m=0

wm⟨#̃m|Ĥ |#̃m⟩ ≥
M∑

m=0

wmEm, (1)

when the set of weights wm satisfies

w0 ≥ w1 ≥ . . . ≥ wm ≥ . . . ≥ 0, (2)

and Em is the eigenvalue of the mth eigenstate of Ĥ . Equal-
ity holds only for #̃m = #m. The density matrix of such an
ensemble is defined by

D̂W =
M∑

m=0

wm|#m⟩⟨#m|, (3)

where W denotes the entire set of weight parameters. Prop-
erties of the ensemble are then defined as traces of the cor-
responding operators with the density matrix. The ensemble
density nW(r) is

nW(r) = tr{D̂W n̂(r)} =
M∑

m=0

wmnm(r), (4)

and the ensemble energy EW is

EW = tr{D̂WĤ } =
M∑

m=0

wmEm. (5)

nW(r) is normalized to the number of electrons, implying∑M
m=0 wm = 1.

A HK1 type theorem for the one-to-one correspondence
between nW(r) and the potential in Ĥ has been proven,18, 20

so all ensemble properties are functionals of nW(r), includ-
ing D̂W . The ensemble HK theorem allows the definition
of a non-interacting KS system, which reproduces the ex-
act nW(r). The existence of an ensemble KS system assumes
ensemble v-representability. EDFT itself, however, only re-
quires ensemble non-interacting N-representability, since a
constrained-search formalism is available.20, 41 Ensemble N-
and v-representability are not yet proven, only assumed.

As in the ground-state case, only the ensemble energy
functional is formally known, which is

EW[n] = FW[n] +
∫

d3r n(r)v(r), (6)

where v(r) is the external potential. The ensemble universal
functional FW is defined as

FW[n] = tr{D̂W[n](T̂ + V̂ee)}, (7)

where T̂ and V̂ee are the kinetic and electron-electron inter-
action potential operators, respectively. The ensemble varia-
tional principle ensures that the ensemble energy functional
evaluated at the exact ensemble density associated with v(r)
is the minimum of this functional, Eq. (5).

The ensemble KS system is defined as the non-interacting
system that reproduces nW(r) and satisfies the following non-
interacting Schrödinger equation:

{
−1

2
∇2 + vS,W[nW](r)

}
φj,W(r) = ϵj,Wφj,W(r). (8)

The ensemble KS system has the same set of wm as the in-
teracting system. This consistency has non-trivial implica-
tions even for simple systems. This will be explored more in
Sec. II B.

The KS density matrix D̂s,W is

D̂S,W =
M∑

m=0

wm|%m⟩⟨%m|, (9)

where %m are non-interacting N-particle wavefunctions, usu-
ally assumed to be single Slater determinants formed by KS
orbitals φj,W . We find that this choice can be problematic, and
it will be discussed in Sec. III A. The ensemble density nW(r)
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Ensemble KS equations
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is reproduced by the KS system, meaning

nW(r) =
M∑

m=0

wmnm(r) =
M∑

m=0

wmnS,m(r), (10)

where nm(r) = ⟨!m|n̂(r)|!m⟩, and nS,m(r) = ⟨"m|n̂(r)|"m⟩.
The KS densities of the individual states are generally not re-
lated to those of the interacting system; only their weighted
sums are equal, as in Eq. (10).

EW[n] is decomposed as in ground-state DFT,

EW[n] = TS,W[n] + V [n] + EH[n] + EXC,W[n]

= tr{D̂S,W T̂ } +
∫

d3r n(r)v(r)

+EH[n] + EXC,W[n], (11)

where only the ensemble XC energy EXC,W is unknown. The
form of vS,W(r) is then determined according to the variational
principle by requiring δEW[nW]/δnW(r) = 0, resulting in

vS,W[nW](r) = v(r) + vH[nW](r) + vXC,W[nW](r), (12)

where vH[n](r) = δEH[n]/δn(r), and vXC,W[n](r) = δEXC,W[n]
/δn(r). EH is generally defined to have the same form as the
ground-state Hartree energy functional. Although this choice
is reasonable, we find that it is more consistent to consider
EHX, the combined Hartree and exchange energy. This point
will be discussed in Sec. III A.

The ensemble universal functional FW[n] depends on the
set of weights wm. Reference 20 introduced the following set
of weights, so that only one parameter w is needed:

wm =
{ 1−wgI

MI −gI
m ≤ MI − gI ,

w m > MI − gI ,
(13)

where w ∈ [0, 1/MI ]. In this ensemble, here called GOK for
the authors Gross, Oliveira, and Kohn,34 I denotes the set of
degenerate states (or “multiplet”) with the highest energy in
the ensemble, gI is the multiplicity of the Ith multiplet, and MI

is the total number of states up to the Ith multiplet. GOK en-
sembles must contain full sets of degenerate states to be well-
defined. The weight parameter w interpolates between two en-
sembles: the equiensemble up to the Ith multiplet (w = 1/MI )
and the equiensemble up to the (I − 1)th multiplet (w = 0).
All previous studies of EDFT have been based on this type of
ensemble.

The purpose of EDFT is to calculate excited-state prop-
erties, not ensemble properties. With the GOK ensemble, the
excitation energy of multiplet I from the ground state, ωI, is
obtained using ensembles up to the Ith multiplet as

ωI = 1
gI

∂EI,w

∂w

∣∣∣∣
w=wI

+
I−1∑

i=0

1
Mi

∂Ei,w

∂w

∣∣∣∣
w=wi

, (14)

which simplifies to

ω1 = ωs,1,w + ∂EXC,w[n]
∂w

∣∣∣∣
n=nw

(15)

for the first excitation energy. Equation (14) holds for any
valid wi’s if the ensemble KS systems are exact, despite ev-
ery term in Eq. (14) being w-dependent. No existing EXC,w

approximations satisfy this condition.21, 24

Levy42 pointed out that there is a special case for w → 0
of bi-ensembles (I = 2, with all degenerate states within a
multiplet having the same density),

&vXC = lim
w→0

∂EXC,w[n]
∂w

∣∣∣∣
n=nw

=
[

lim
w→0

vXC,w[nw](r)
]

− vxc,w=0[nw=0](r) (16)

for finite r, where &vXC is the change in the KS highest-
occupied-molecular-orbital (HOMO) energy between w = 0
(ground state) and w → 0+.43 &vXC is a property of electron-
number-neutral excitations, and should not be confused with
the ground-state derivative discontinuity &XC, which is related
to ionization energies and electron affinities.44

B. Degeneracies in the Kohn-Sham system

Taking the He atom as our example, the interacting sys-
tem has a non-degenerate ground state, triply degenerate first
excited state, and a non-degenerate second excited state. How-
ever, the KS system has a fourfold degenerate first excited
state (corresponding to four Slater determinants), due to the
KS singlet and triplet being degenerate (Fig. 2). Consider an
ensemble of these states with arbitrary, decreasing weights, in
order to work with the most general case. Represent the en-
semble energy functional Eq. (5) as the KS ensemble energy,
ES,W , plus a correction, GW . This correction then must encode
the switch from depending only on the sum of the weights of
the excited states as a whole in the KS case to depending on
the sum of triplet weights and the singlet weight separately.

For the interacting system, the ensemble energy and
density take the forms

EW = E0 + wTω1 + wSω2,

nW(r) = n0(r) + wT&n1(r) + wS&n2(r),
(17)

where ωi = Ei − E0, and so on, wT is the sum of the triplet
weights, and wS is the singlet weight. On the other hand, for
the KS system we have

ES,W = ES,0 + (wT + wS) &ϵ1,w,
(18)

nW(r) = 2|φ1s |2 + (wT + wS)(|φ2s |2 − |φ1s |2).

FIG. 2. Diagram of the interacting and KS multiplicity structure for He. De-
generacy of the Ith multiplet is g(I); tildes denote KS values. For instance,
Ĩ = 2 refers to the KS multiplet used to construct the second (singlet) multi-
plet of the real system (I = 2), as is described in Sec. III B.
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is reproduced by the KS system, meaning

nW(r) =
M∑

m=0

wmnm(r) =
M∑

m=0

wmnS,m(r), (10)

where nm(r) = ⟨!m|n̂(r)|!m⟩, and nS,m(r) = ⟨"m|n̂(r)|"m⟩.
The KS densities of the individual states are generally not re-
lated to those of the interacting system; only their weighted
sums are equal, as in Eq. (10).

EW[n] is decomposed as in ground-state DFT,

EW[n] = TS,W[n] + V [n] + EH[n] + EXC,W[n]

= tr{D̂S,W T̂ } +
∫

d3r n(r)v(r)

+EH[n] + EXC,W[n], (11)

where only the ensemble XC energy EXC,W is unknown. The
form of vS,W(r) is then determined according to the variational
principle by requiring δEW[nW]/δnW(r) = 0, resulting in

vS,W[nW](r) = v(r) + vH[nW](r) + vXC,W[nW](r), (12)

where vH[n](r) = δEH[n]/δn(r), and vXC,W[n](r) = δEXC,W[n]
/δn(r). EH is generally defined to have the same form as the
ground-state Hartree energy functional. Although this choice
is reasonable, we find that it is more consistent to consider
EHX, the combined Hartree and exchange energy. This point
will be discussed in Sec. III A.

The ensemble universal functional FW[n] depends on the
set of weights wm. Reference 20 introduced the following set
of weights, so that only one parameter w is needed:

wm =
{ 1−wgI

MI −gI
m ≤ MI − gI ,

w m > MI − gI ,
(13)

where w ∈ [0, 1/MI ]. In this ensemble, here called GOK for
the authors Gross, Oliveira, and Kohn,34 I denotes the set of
degenerate states (or “multiplet”) with the highest energy in
the ensemble, gI is the multiplicity of the Ith multiplet, and MI

is the total number of states up to the Ith multiplet. GOK en-
sembles must contain full sets of degenerate states to be well-
defined. The weight parameter w interpolates between two en-
sembles: the equiensemble up to the Ith multiplet (w = 1/MI )
and the equiensemble up to the (I − 1)th multiplet (w = 0).
All previous studies of EDFT have been based on this type of
ensemble.

The purpose of EDFT is to calculate excited-state prop-
erties, not ensemble properties. With the GOK ensemble, the
excitation energy of multiplet I from the ground state, ωI, is
obtained using ensembles up to the Ith multiplet as

ωI = 1
gI

∂EI,w

∂w

∣∣∣∣
w=wI

+
I−1∑

i=0

1
Mi

∂Ei,w

∂w

∣∣∣∣
w=wi

, (14)

which simplifies to

ω1 = ωs,1,w + ∂EXC,w[n]
∂w

∣∣∣∣
n=nw

(15)

for the first excitation energy. Equation (14) holds for any
valid wi’s if the ensemble KS systems are exact, despite ev-
ery term in Eq. (14) being w-dependent. No existing EXC,w

approximations satisfy this condition.21, 24

Levy42 pointed out that there is a special case for w → 0
of bi-ensembles (I = 2, with all degenerate states within a
multiplet having the same density),

&vXC = lim
w→0

∂EXC,w[n]
∂w

∣∣∣∣
n=nw

=
[

lim
w→0

vXC,w[nw](r)
]

− vxc,w=0[nw=0](r) (16)

for finite r, where &vXC is the change in the KS highest-
occupied-molecular-orbital (HOMO) energy between w = 0
(ground state) and w → 0+.43 &vXC is a property of electron-
number-neutral excitations, and should not be confused with
the ground-state derivative discontinuity &XC, which is related
to ionization energies and electron affinities.44

B. Degeneracies in the Kohn-Sham system

Taking the He atom as our example, the interacting sys-
tem has a non-degenerate ground state, triply degenerate first
excited state, and a non-degenerate second excited state. How-
ever, the KS system has a fourfold degenerate first excited
state (corresponding to four Slater determinants), due to the
KS singlet and triplet being degenerate (Fig. 2). Consider an
ensemble of these states with arbitrary, decreasing weights, in
order to work with the most general case. Represent the en-
semble energy functional Eq. (5) as the KS ensemble energy,
ES,W , plus a correction, GW . This correction then must encode
the switch from depending only on the sum of the weights of
the excited states as a whole in the KS case to depending on
the sum of triplet weights and the singlet weight separately.

For the interacting system, the ensemble energy and
density take the forms

EW = E0 + wTω1 + wSω2,

nW(r) = n0(r) + wT&n1(r) + wS&n2(r),
(17)

where ωi = Ei − E0, and so on, wT is the sum of the triplet
weights, and wS is the singlet weight. On the other hand, for
the KS system we have

ES,W = ES,0 + (wT + wS) &ϵ1,w,
(18)

nW(r) = 2|φ1s |2 + (wT + wS)(|φ2s |2 − |φ1s |2).

FIG. 2. Diagram of the interacting and KS multiplicity structure for He. De-
generacy of the Ith multiplet is g(I); tildes denote KS values. For instance,
Ĩ = 2 refers to the KS multiplet used to construct the second (singlet) multi-
plet of the real system (I = 2), as is described in Sec. III B.

 Reuse of AIP Publishing content is subject to the terms: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to  IP:  169.234.41.31 On: Thu, 23 Jun 2016
21:58:42

18A541-2 Pribram-Jones et al. J. Chem. Phys. 140, 18A541 (2014)

-4

-3

-2

-1

 0

 0  0.2  0.4  0.6  0.8  1
eq

ui
en

se
m

bl
e 

v
xc

(x
)

x(a.u.)

I=1
I=2
I=3
I=4
I=5

 0

 1

 2

 3

 4

n I
(x

)

I=1
I=2
I=3
I=4
I=5

FIG. 1. Exact densities and equiensemble exchange-correlation potentials of
the 1D box with two electrons. The third excited state (I = 4) is a double
excitation. See Sec. VI A.

Section VI consists of calculations for quite distinct sys-
tems, but all with just two electrons. The one-dimensional flat
box was used for the illustration here, which also gives rise
to double excitations. A box with a high, asymmetric barrier
produces charge-transfer excitations. Hooke’s atom is a three-
dimensional (3D) system, containing two Coulomb-repelling
electrons in a harmonic oscillator external potential.39 It has
proven useful in the past to test ideas and approximations in
both ground-state and TDDFT calculations.40 We close the
section reporting several new results for the He atom, using
ensembles that include low-lying triplet states. Atomic units
[e = ¯ = me = 1/(4πϵ0) = 1] are used throughout unless
otherwise specified.

II. BACKGROUND

A. Basic theory

The ensemble variational principle19 states that, for an
ensemble of the lowest M + 1 eigenstates #0, . . . , #M of
the Hamiltonian Ĥ and a set of orthonormal trial functions
#̃0, . . . , #̃M ,

M∑

m=0

wm⟨#̃m|Ĥ |#̃m⟩ ≥
M∑

m=0

wmEm, (1)

when the set of weights wm satisfies

w0 ≥ w1 ≥ . . . ≥ wm ≥ . . . ≥ 0, (2)

and Em is the eigenvalue of the mth eigenstate of Ĥ . Equal-
ity holds only for #̃m = #m. The density matrix of such an
ensemble is defined by

D̂W =
M∑

m=0

wm|#m⟩⟨#m|, (3)

where W denotes the entire set of weight parameters. Prop-
erties of the ensemble are then defined as traces of the cor-
responding operators with the density matrix. The ensemble
density nW(r) is

nW(r) = tr{D̂W n̂(r)} =
M∑

m=0

wmnm(r), (4)

and the ensemble energy EW is

EW = tr{D̂WĤ } =
M∑

m=0

wmEm. (5)

nW(r) is normalized to the number of electrons, implying∑M
m=0 wm = 1.

A HK1 type theorem for the one-to-one correspondence
between nW(r) and the potential in Ĥ has been proven,18, 20

so all ensemble properties are functionals of nW(r), includ-
ing D̂W . The ensemble HK theorem allows the definition
of a non-interacting KS system, which reproduces the ex-
act nW(r). The existence of an ensemble KS system assumes
ensemble v-representability. EDFT itself, however, only re-
quires ensemble non-interacting N-representability, since a
constrained-search formalism is available.20, 41 Ensemble N-
and v-representability are not yet proven, only assumed.

As in the ground-state case, only the ensemble energy
functional is formally known, which is

EW[n] = FW[n] +
∫

d3r n(r)v(r), (6)

where v(r) is the external potential. The ensemble universal
functional FW is defined as

FW[n] = tr{D̂W[n](T̂ + V̂ee)}, (7)

where T̂ and V̂ee are the kinetic and electron-electron inter-
action potential operators, respectively. The ensemble varia-
tional principle ensures that the ensemble energy functional
evaluated at the exact ensemble density associated with v(r)
is the minimum of this functional, Eq. (5).

The ensemble KS system is defined as the non-interacting
system that reproduces nW(r) and satisfies the following non-
interacting Schrödinger equation:

{
−1

2
∇2 + vS,W[nW](r)

}
φj,W(r) = ϵj,Wφj,W(r). (8)

The ensemble KS system has the same set of wm as the in-
teracting system. This consistency has non-trivial implica-
tions even for simple systems. This will be explored more in
Sec. II B.

The KS density matrix D̂s,W is

D̂S,W =
M∑

m=0

wm|%m⟩⟨%m|, (9)

where %m are non-interacting N-particle wavefunctions, usu-
ally assumed to be single Slater determinants formed by KS
orbitals φj,W . We find that this choice can be problematic, and
it will be discussed in Sec. III A. The ensemble density nW(r)
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FIG. 4. (Color online) The exact XC potential for the helium
singlet ensemble at various ensemble weights.

Figure 5 shows the exact XC potential jump for small w
values. A step structure occurs since the ensemble density at
small r is dominated by the HOMO density, and at large r
the dominating behavior switches to the lowest-unoccupied-
molecular-orbital (LUMO) density, which decays more slowly
than the HOMO density. As w decreases, the switching point
rC moves to the right. In the limit of w → 0, the HOMO density
dominates nw(r) for finite r , so !vXC(r) becomes a constant.
The ground-state limit is thus recovered since an additional
constant on a potential has no physical effect. Though this
difference is not close to a constant in the small-r region for
larger w (Fig. 6), evidence of the step down remains in the
shoulder present before the sharp decrease to the ground-state
potential. We showed [31] that the switching point rC for
small values of w depends on log w, so the w → 0 limit
is achieved slowly as w decreases. The large-w difference
between the ground-state and ensemble XC potentials (Fig. 4)
appears to emerge continuously from the steplike small-w
behavior, suggesting that the derivative discontinuity is crucial
for replication of the bump in vXC(r).

With the exact ensemble XC potentials available, we can
numerically verify exact conditions of EDFT, such as the virial
theorem [32,33]. With traditionally defined Hartree, its form
is similar to its ground-state counterpart [34]:

TC,w[n] = −EXC,w[n] −
∫

d3r n(r)r · ∇vXC,w(r). (16)
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FIG. 5. (Color online) The exact potential jump !vXC as w → 0.
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the drop off to the w = 0 value moves infinitely far from the origin.
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FIG. 6. (Color online) The exact potential jump !vXC, showing
the shoulder in the XC potential developing from the small-w step as
w increases. Since w is no longer near zero, the asymptotic formula
for the position of the drop off no longer holds.

The virial as defined by Nagy yields the same results as directly
calculated kinetic correlation to within 1%.

Equation (10) converts the w-dependent KS transition en-
ergies !ϵw into the exact, w-independent transition frequency.
The last term in Eq. (10) is significant for all values of w and is
strongly w dependent. Figure 7 shows the exact cancellation of
the w dependence as required by Eq. (10). If this cancellation
is incomplete, as it is in existing approximations, w-dependent
excitation energies will result.

The strong w dependence in the exact KS gap !ϵw is related
to the bumps in the exact XC potentials (Fig. 4). The bump near
r = 2.5 creates a local confinement effect near the nucleus,
shifting the KS eigenvalues upward from the ground-state
values. The effect is smaller for the 1s orbital because the 1s
orbital density is already small and monotonically decaying at
the position of the bump. The KS gap becomes larger as the
bump is more prominent, as can be seen in the large-w region
of Fig. 7. The sharp change of !ϵw in the small-w region of
Fig. 7 is due to the ensemble derivative discontinuity since
!vXC(r) effectively creates a bump in the XC potential in the
small-r region.

-0.04

-0.02

 0

 0.02

 0.04

 0  0.1  0.2  0.3  0.4  0.5

En
er

gy
 (a

.u
.)

w

∂EHxc,w[n]/∂w|n=n
∆εw-ω
ωw-ω

FIG. 7. (Color online) Equation (10) applied to the exact helium
singlet ensemble, demonstrating the exact cancellation of all w

dependence in KS gaps (red bottom line for small w) and corrections
to the KS gap (green top line for small w), leading to no w dependence
in the calculated optical gap (blue middle line). Gaps are shifted by
the true optical gap ω for ease of comparison.
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Zenghui’s insight

• Uses a different ensemble
• Takes w->0, so produces a correction on 

ground-state calculation (no longer need find 
w-dependent density).

• We call it Direct Excitation Correction (DEC)
• Insert SEHX
• Find all intermediate levels cancel, so can get 

e.g.,12th excitation as simple correction to KS 
transition.
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Hartree and Exchange in Ensemble Density Functional Theory:
Avoiding the Nonuniqueness Disaster
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(Received 13 August 2017; revised manuscript received 1 October 2017; published 13 December 2017)

Ensemble density functional theory is a promising method for the efficient and accurate calculation of
excitations of quantum systems, at least if useful functionals can be developed to broaden its domain of
practical applicability. Here, we introduce a guaranteed single-valued “Hartree-exchange” ensemble
density functional, EHx½n", in terms of the right derivative of the universal ensemble density functional with
respect to the coupling constant at vanishing interaction. We show that EHx½n" is straightforwardly
expressible using block eigenvalues of a simple matrix [Eq. (14)]. Specialized expressions for EHx½n" from
the literature, including those involving superpositions of Slater determinants, can now be regarded as
originating from the unifying picture presented here. We thus establish a clear and practical description for
Hartree and exchange in ensemble systems.

DOI: 10.1103/PhysRevLett.119.243001

Density functional theory [1,2] (DFT) is, arguably, the
most important methodology in electronic structure theory
due to its remarkable accuracy in numerically efficient
approximations. But “open” systems that mix different
numbers of electrons, degenerate ground states, and excited
states have long posed a challenge to conventional
approaches (see, e.g., Refs. [3–9]), and can make even
qualitative accuracy very difficult to achieve. One promising
route around these problems is to employ ensemble density
functional theory [10–17] (EDFT), in which ensembles of
quantum states extend the original pure state approach of
DFT to such systems. Asmany quantum systems [18,19] are
better understood bymodels involving ensembles, ideas and
constructions at the heart of EDFT offer a more promising
approach for their study, compared to conventional DFT.
The ability to use EDFTas successfully and easily aswe now
use DFT could thus transform quantitative understanding of
numerous quantum systems and processes, such as charge
transfer and diabatic reactions.
In standard DFT, we decompose the universal functional,

F, of the particle density n, as

F½n" ¼ Ts½n" þ EHx½n" þ Ec½n"; ð1Þ

where Ts is the kinetic-energy density of the Kohn-Sham
(KS) reference system,

EHx½n" ¼
Z

drdr0

2jr − r0j
fnðrÞnðr0Þ − jρsðr; r0Þj2g; ð2Þ

is the Hartree energy plus the exchange energy—in which
ρsðr; r0Þ is the KS one-body reduced density matrix and
nðrÞ ¼ ρsðr; rÞ equals the interacting ground state particle
density—and Ec½n" is the correlation energy.

It may be tempting to switch to EDFT by replacing the
pure state quantities with ensembles (statistical mixtures of
pure states) by performing a simple replacement of the
particle density by its ensemble generalization. We thus set
ρsðr; r0Þ → Tr½Γ̂n

0ρ̂ðr; r0Þ"where Γ̂n
0 is the “ensemble density

matrix” operator describing the reference Kohn-Sham state,
and use Tr½Γ̂n

0ρ̂ðr; rÞ" ¼ nðrÞ to write

EHx½n" →
Z

drdr0

2jr − r0j
fnðrÞnðr0Þ − jTr½Γ̂n

0ρ̂ðr; r0Þ"j2g:

This, however, comes at the price of introducing spurious
“ghost interactions” to both the Hartree and exchange
terms—with sometimes disastrous consequences in appro-
ximate calculation [20].
A ghost interaction error can be understood as a

generalization of the one- or N-particle self-interaction
error [4]. But, rather than an orbital spuriously interacting
with itself it instead spuriously interacts with its ghost
counterpart in a different replica of the same system. From
this understanding comes a desire to correct these ghost
interactions in the Hartree and exchange energies. A formal
justification of these corrections was put forward by
Gidopoulos et al. [20] by importing the result for the
Hartree-Fock approximations for ensembles—which was
noticed to be ghost-interaction free for the cases considered
in the same cited work—and then invoking an extended
optimized effective potential method [21–23], as in pure
state exchange theory.
The principle espoused by Gidopoulos et al. is clear.

Unpleasantly, however, the resulting prescription must be
worked out for each case at hand. This process entails
rather tedious and system-specific bookkeeping. For

PRL 119, 243001 (2017) P HY S I CA L R EV I EW LE T T ER S
week ending

15 DECEMBER 2017

0031-9007=17=119(24)=243001(5) 243001-1 © 2017 American Physical Society

 

Density-Driven Correlations in Many-Electron Ensembles:
Theory and Application for Excited States
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Density functional theory can be extended to excited states by means of a unified variational approach
for passive state ensembles. This extension overcomes the restriction of the typical density functional
approach to ground states, and offers useful formal and demonstrated practical benefits. The correlation
energy functional in the generalized case acquires higher complexity than its ground state counterpart,
however. Little is known about its internal structure nor how to effectively approximate it in general.
Here we show that such a functional can be broken down into natural components, including what we call
“state-” and “density-driven” correlations, with the former amenable to conventional approximations, and
the latter being a unique feature of ensembles. Such a decomposition provides us with a pathway to general
approximations that are able to routinely handle low-lying excited states. The importance of density-driven
correlations is demonstrated, and an approximation for them is introduced and shown to be useful.

DOI: 10.1103/PhysRevLett.123.016401

Electronic structure theory has transformed the study of
chemistry, materials science, and condensed matter physics
by enabling quantitative predictions using computers. But a
general solution to the many-electron problem remains
elusive, because the electron-electron interactions imply
highly nontrivial correlations among the relevant degrees of
freedoms. Out of the numerous electronic structure method-
ologies, density functional theory [1–3] (DFT) has become
the dominant approach thanks to its balance between
accuracy and speed, achieved by using the electron density
as the basic variable, then mapping the original interacting
problem onto an auxiliary noninteracting problem.
DFT gives access to ground states, but not excited

states, meaning alternatives must be used for important
processes like photochemistry or exciton physics [4].
Its time-dependent extension (TDDFT) does offer access
to excited states at a reasonable cost [5,6], and it is thus
commonly employed for this purpose. Routine applica-
tions of TDDFT reuse ground-state approximations by
evaluating them on the instantaneous density, the so-
called adiabatic approximation. This approach fails badly,
however, when many-body correlations defy a time-
dependent mean-field picture, including for important
charge transfer excitations [7,8].
One highly promising alternative involves tackling both

ground and excited eigenstates by means of one and the
same density functional approach [9–12], using ensemble
DFT (EDFT). EDFT is appealing because it can automati-
cally deal with otherwise difficult orthogonality conditions
and can potentially tap into more than 30 years of density

functional approximation development. EDFT has been
shown to solve problems that are difficult for TDDFT, such
as charge transfers, double excitations, and conical inter-
sections [13–23].
Consolidating the preliminary success of EDFT into

useful approximations requires further understanding of
how many-body correlations get encoded in EDFTand how
they can be approximated generally. The correlation energy
of many-electron ground states is traditionally divided into
dynamical (weak) and static (strong) correlations. This
decomposition is by no means unambiguous, yet is very
useful both for designing, and understanding the limitations
of, approximations [24]. Both static and dynamic correla-
tions are also present in ensembles. But the internal
structure of the correlation energy functional for ensembles
is, by necessity, more complex. Little is known about its
specific properties and quirks.
In this Letter, we reveal a decomposition of the ensemble

correlation energy that lends itself both to an exact
evaluation and to a universal approximation scheme. Our
decomposition uncovers components of the correlation
energy in multistate ensembles that will be missed by
direct reuse of existing density functional approximations
on pure-state contributions. We show that the additional
components are unique features of EDFT and can lead to
significant errors, if ignored. We thus point out a crucial
missing step on the path to upgrade existing approxima-
tions for correlations.
The components revealed through our decomposition—

density-driven correlations—have so far gone unnoticed
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Density functional theory can be generalized to mixtures of ground and excited states, for the purpose of
determining energies of excitations using low-cost density functional approximations. Adapting approxi-
mations originally developed for ground states to work in the new setting would fast-forward progress
enormously. But, previous attempts have stumbled on daunting fundamental issues. Here we show that
these issues can be prevented from the outset, by using a fluctuation dissipation theorem (FDT) to dictate
key functionals. We thereby show that existing exchange energy approximations are readily adapted to
excited states, when combined with a rigorous exact Hartree term that is different in form from its ground
state counterpart, and counterparts based on ensemble Ansatzë. Applying the FDT to correlation energies
also provides insights into ground statelike and ensemble-only correlations. We thus provide a
comprehensive and versatile framework for ensemble density functional approximations.

DOI: 10.1103/PhysRevLett.125.233001

Introduction.—Averages and fluctuations are essential
concepts to make sense of data of any sort. In physics, these
quantities are also used to explore the formal relationships of
theories and approximations. Via Feynman’s path integrals
[1], for example, classical physics itself can be seen to emerge
in terms of an averaged path that, in the limit of ℏ → 0,
dominates over otherwise irreducible quantum fluctuations.
In condensed-matter physics, to mention another important
example, mean-field approximations are used to formalize
the concept of the order parameters and their estimations [2];
consideration of fluctuations are then necessary to fully
characterize second-order phase transitions.
Density functional theory (DFT) [3,4] can also be

conceptualized in terms of averages and fluctuations. In
one and the same step [4] it overcomes the semiclassical
Thomas-Fermi approximation [5] and the mean-field
approximation by mapping the original many-body prob-
lem onto a one-electron problem capturing key fluctuations
—the exchange and correlation (xc) terms in DFT parlance.
Simple and effective xc approximations for these fluctua-
tions have enabled DFT to become the workhorse of
electronic structure calculations [6].
In this Letter, we turn to a generalization of DFT through

which excitation energies (not just the ground state energy)
of a many-electron system can be computed and invoke an
extension of the (so-called) fluctuation dissipation theorem
(FDT) to effectively deal with fluctuations relative to

excited states. We shall refer to this formulation of DFT
[7,8] as “ensemble DFT” (EDFT) but, strictly, we deal with
EDFT for excited states (rather than other formulations
such as the one that accounts for states with different
particle numbers [9]). EDFT is a primary competitor of
linear-response time-dependent DFT for the evaluation of
excitation energies. Previous attempts at deriving improved
approximations have, however, stumbled on a series of
difficulties. Progress has recently attained a faster pace due
to new fundamental and practical results [10–27].
Current wisdom stresses that ensembles are best dealt

with by treating Hartree-Fock (Hartree-exchange, Hx, in
DFT) energies as a “conjoint” unit [10,18]. Indeed, two of
the authors have previously strongly espoused this
approach [21]. But, much of the progress in devising
density functional approximations (DFA) for ground
states has been enabled by treating Hartree (H) and
exchange (x) components on different footings: with the
former almost always employed in its exact form and the
latter approximated in full, EHxc ≈ EH þ EDFA

xc (standard
approximations) or partially, EHxc ≈ αEHx þ ð1 − αÞðEH þ
EDFA
x Þ þ EDFA

c (hybrid approximations). DFAs of this form
have been refined over decades to balance accuracy and
practicality. It is imperative that we can transfer such
experience to excited states. Attempts so far have been
positive, but of somewhat narrow scope. Has the time come
to surrender?

PHYSICAL REVIEW LETTERS 125, 233001 (2020)
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We propose and work out a reduced density matrix functional theory (RDMFT) for calculating energies
of eigenstates of interacting many-electron systems beyond the ground state. Various obstacles which
historically have doomed such an approach to be unfeasible are overcome. First, we resort to a
generalization of the Ritz variational principle to ensemble states with fixed weights. This in combination
with the constrained search formalism allows us to establish a universal functional of the one-particle
reduced density matrix. Second, we employ tools from convex analysis to circumvent the too involved N-
representability constraints. Remarkably, this identifies Valone’s pioneering work on RDMFT as a special
case of convex relaxation and reveals that crucial information about the excitation structure is contained in
the functional’s domain. Third, to determine the crucial latter object, a methodology is developed which
eventually leads to a generalized exclusion principle. The corresponding linear constraints are calculated
for systems of arbitrary size.

DOI: 10.1103/PhysRevLett.127.023001

Developing a comprehensive understanding of excita-
tions in many-body systems is of utmost importance from
both a fundamental and technological point of view. For
instance, quantum excitations intervene in crucial processes
such as vision [1], define the properties of advanced
materials [2] and of states of matter in general [3–5] and
give rise to distinctive functionalities of devices [6,7].
Although modern computational methodologies can deter-
mine the ground state energies of a wide range of systems
relatively inexpensively and rather accurately [8], meth-
odological innovations are called for handling excitations
on an equal footing [9].
The workhorse of modern electronic structure calcula-

tions is the Kohn-Sham formulation [10] of density-func-
tional theory (DFT) [11]. As far as excitations are
concerned, its time-dependent extension could deal with
them rigorously, at least in principle [12]. In practice,
however, the widely used time-dependent DFT is not only
blessed but unfortunately also cursed by the so-called
adiabatic approximation [13–15]. Circumventing at least
some of the deficiencies of adiabatic time-dependent DFT,
ensemble DFT has become in recent years a promising
alternative for calculating excitations [16–29]—for exam-
ple, it can capture charge transfers, double excitations, and
avoided or conical crossings.
From a general perspective, density functional theories

are, however, not particularly well suited for the description
of strongly correlated systems. The particle density,
namely, does not directly reflect the correlation strength,

in striking contrast to the full one-particle reduced density
matrix (1RDM) with fractional occupation numbers in case
of strong correlations. This motivates one-particle reduced
density matrix functional theory (RDMFT) [30] as a more
suitable approach to strongly correlated quantum systems
and explains why RDMFT has become an active field of
research in recent years [31–44]. While the accuracy of
ground state calculations compares favorably to those of
DFT [45], no proper foundation for targeting excited states
within RDMFT exists yet. For instance, a formal justifi-
cation of a fully dynamical RDMFT is lacking and the
approach based on an adiabatic approximation to be
exploited through linear response techniques turns out to
be technically involved and numerically rather demanding
[34,46]. Most remarkably, the RDMFT analog of ensemble
DFT for excited states has not even been considered yet,
despite its numerous potential advantages over time-de-
pendent functional theories.
In this Letter, we propose and work out the ensemble

version of RDMFT for calculating the energies of (selected)
low-lying excited states. For this, we put forward a
generalization of the Ritz variational principle which
together with the constrained search formalism leads to
the definition of a universal functional. The crucial ingre-
dient which makes this method viable is a convex relax-
ation scheme. It allows us to circumvent the corresponding
too intricate one-body N-representability constraints and
leads instead to an easy-to-calculate generalization of
Pauli’s exclusion principle for mixed states.
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Density functional theory (DFT) has greatly expanded our ability to affordably compute and understand
electronic ground states, by replacing intractable ab initio calculations by models based on paradigmatic
physics from high- and low-density limits. But, a comparable treatment of excited states lags behind. Here,
we solve this outstanding problem by employing a generalization of density functional theory to ensemble
states (EDFT). We thus address important paradigmatic cases of all electronic systems in strongly (low-
density) and weakly (high-density) correlated regimes. We show that the high-density limit connects to
recent, exactly solvable EDFT results. The low-density limit reveals an unnoticed and most unexpected
result—density functionals for strictly correlated ground states can be reused directly for excited states.
Nontrivial dependence on excitation structure only shows up at third leading order. Overall, our results
provide foundations for effective models of excited states that interpolate between exact low- and high-
density limits, which we illustrate on the cases of singlet-singlet excitations in H2 and a ring of quantum
wells.

DOI: 10.1103/PhysRevLett.130.106401

Preamble.—Density functional theory (DFT) [1,2] is
best known as a computational modeling tool used in tens
of thousands of applicative scientific papers every year.
What is less widely known is that DFT offers a natural
connection between quantum mechanics and paradigmatic
physical conditions (high- and low-density limits) of
matter, in which electronic correlations attain two quanti-
tatively (weak and strong, respectively) and qualitatively
different fundamental ends. In this context, DFT serves
as a formal tool to understand the behavior of ground
state electronic structure via a rigorous constrained varia-
tional approach to the electronic structure problem.
Understanding of paradigmatic conditions then informs
model development, e.g., the popular “PBE” [3] approxi-
mation, and computational studies therefrom.
Unfortunately, DFT is only defined for ground states, so

cannot elucidate the structure of excited states. This Letter
will demonstrate that ensemble density functional theory
(EDFT) for excited states [4,5] can tackle this outstanding
problem. We shall show that recently derived Hartree and
exchange physics [6,7] become exact in the high density
(weak interaction) limit; so high-density excited electronic

states may be solved using these tools. More importantly,
we shall show that the low density (strong interaction) limit
of excited states behaves exactly like a ground state.
Therefore, the full suite of ground state strictly correlated
electron (SCE) tools and approximations [8–13] may be
used to solve both ground and excited states of low-density
many-electron systems.
Our Letter thereby improves understanding of excited

states in paradigmatic limits and connects their behavior to
well-defined density functionals for which exact forms and
approximations are available. It presents a crucial step
toward efficient excited state approximations that capture
important limits; and promises to accelerate and generalize
recent progress on low cost modeling of single [14–19] and
double excitations [16,20–23] that may range from weakly
to strongly correlated regimes.
The rest of this Letter proceeds as follows: First, we

introduce EDFTand show how it can be used to understand
the high- and low-density limits of interacting electrons in
realistic inhomogeneous systems. Then, using as an illus-
tration the strong interaction limit of electrons in a
harmonic well, we derive the asymptotic properties of
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• New exact conditions for eDFT functionals

• Illustration on Hubbard dimer

• New derivative discontinuity

• Comprehensive Supp Info of many figures for 
Hubbard dimer

Kieron Burke, UCI 10th anniversary Benasque 27



Introducing ETDDFT

• Create an ensemble of fixed weights

• Time-evolve a Hamiltonian with those fixed 
weights

• Consider linear response with those weights

• Weights are static, chosen by the user,  and same 
in both systems

• The usual theorems go through
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Ensemble-weighted response function
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Ensemble Hubbard dimer exact Time-dependent ensemble density functional theory

TABLE II: Contains the numerical results for w = 0.4
for the exchange correlation energy from the 3 di!erent

formula’s, using 3 di!erent ω’s.

Full ωw Full ωw(→A12) only w̄ω0

Eq. 6 + Eq. 9 -0.37082 -0.37082 -0.37082

Eq. 7 -0.352786 -0.447214 -0.37082

Eq. 8 -0.276393 -0.37082 -0.37082

define an integral like

Ex = → U

4ε

∫ →

0

dϑ Imωw

s
(ϑ)→ w̄

UN

2
. (10)

Lastly, we have again a simpler equation given by the
CFMB18,

Ex = → U

4N
(w̄N2

+”n2

w
). (11)

These give the same result if we only insert ωw

s,0
. For the

full ωw

s
we also get the correct result, but that is because

As,12 = As,01. If we add the minus sign to As,12, we need
to change again w̄ ↑ (1→ 2w) in the second term of Eq.10
and the first term of Eq.11. It seems like integrating over
only ωw

0
for both exchange and exchange correlation energy

seems yield consistently the correct answers and it might be
something one needs to do in the symmetric limit.

I think the only thing left to do is just derive the A’s
for both KS and the physical system by hand. However,
Steven mentioned that there could be sum rules, i.e. A01+

A12 + A02 = c and A+s, 01 + As,12 = c with c being a
constant. I did mention that in the symmetric limit, I find
c = 4. Furthermore, this is also the case for exchange in
the symmetric limit. However, this is not the case for the
general case where it does not go to the same constant
for any ”v. This is fixable in the KS system by changing
Ws,12 = 2(1+ ϖ2) but I would need to check my derivation
if that is correct. But I do not know if it is generally true.

Combining both equation of the french gives

Exc,w =
1

2
(w → 1)




√

4 +

(
U

2t

)2

→ 1



 (12)

=
(1→ w)

2
→ (1→ w)

2

(
4 +

(
U

2t

)2
)

(13)

Ensemble Hubbard dimer exact

Generally, we can start from the ensemble which we can
write as the following density matrix,

#
w
=

S∑

s=0

ws |$w↓ ↔$w| , (14)

with S being the number of states included in the Ensemble
and M the number of eigenstates including in your
predefined space, which we need to fill into the standard
equation for the density density response function by taking
the trace,

ωw
(r, r↑,ϑ) = Tr{#w

(r, r↑)ω(r, r↑,ϑ)} (15)

This can be written out as,

ωw
(r, r↑,ϑ) =

M∑

m=0

W∑

J ↓=m

wm

↔m| n̂(r) |J↓ ↔J | n̂(r↑) |m↓
ϑ → (EJ → Em) + iϱ

+ cc..,

(16)

with cc. being the complex conjugate term that we must
not ignore. This equation shows that we are now summing
over two di!erent sums to get all the important terms for
the density density response function. To better organize
all our density density response functions, we introduce the
following definition,

ωw
(r, r↑,ϑ) =

S∑

s=0

ωw

s
(r, r↑,ϑ), (17)

where ωw

s
(r, r↑,ϑ) are defined as,

ωw

s
(r, r↑,ϑ) =

M∑

J ↓=s

ws

↔s| n̂(r) |J↓ ↔J | n̂(r↑) |s↓
ϑ → (EJ → Es) + iϱ

+ cc.. (18)

Lets now start from the biensemble that we can write as,

#
w

0,1
(r, r↑) = (1→ w) |$0↓ ↔$0|+ w |$1↓ ↔$1| , (19)

where will only include the singlet states consisting of the
groundstate, first excited singlet state and double excited
state labeled respectively |0↓ |1↓ and |2↓. We can substitute
the biensemble into equation 2 above, resulting into

ωw
(r, r↑,ϑ) =ωw

0
(r, r↑,ϑ) + ωw

1
(r, r↑,ϑ) (20)

=

1∑

s=0

2∑

J ↓=s

ws

↔s| n̂(r) |J↓ ↔J | n̂(r↑) |s↓
ϑ → (EJ → Es) + iϱ

+ cc.

(21)

=(1→ w)
↔0| n̂(r) |1↓ ↔1| n̂(r↑) |0↓
ϑ → (E1 → E0) + iϱ

+ cc. (22)

+(1→ w)
↔0| n̂(r) |2↓ ↔2| n̂(r↑) |0↓
ϑ → (E2 → E0) + iϱ

+ cc. (23)

+w
↔1| n̂(r) |0↓ ↔0| n̂(r↑) |1↓
ϑ → (E0 → E1) + iϱ

+ cc. (24)

+w
↔1| n̂(r) |2↓ ↔2| n̂(r↑) |1↓
ϑ → (E2 → E1) + iϱ

+ cc., (25)

which we can work out for the Hubbard dimer as if we use
the same trick that was used in the Neepa-paper [2] to
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The van Leeuwen proof of linear-response time-dependent density functional theory (TDDFT) is
generalized to thermal ensembles. This allows generalization to finite temperatures of the Gross-Kohn
relation, the exchange-correlation kernel of TDDFT, and fluctuation dissipation theorem for DFT. This
produces a natural method for generating new thermal exchange-correlation approximations.

DOI: 10.1103/PhysRevLett.116.233001

Kohn-Sham density functional theory (KS DFT) is a
popular and well-established approach to electronic struc-
ture problems in many areas, especially materials science
and chemistry [1]. The Kohn-Sham method imagines a
fictitious system of noninteracting fermions with the same
density as the real system [2] and from which the ground-
state energy can be extracted. Only a small fraction of the
total energy, called the exchange-correlation (XC) energy,
need be approximated to solve any ground-state electronic
problem [1], and modern approximations usually produce
sufficient accuracy to be useful [3]. The advent of time-
dependent density functional theory (TDDFT) generalized
this method to time-dependent problems [4]. Limiting
TDDFT to linear response yields a method for extracting
electronic excitations [5,6], once another functional, the
XC kernel, is also approximated.
But there is growing interest in systems in which the

electrons are not close to zero temperature. Warm dense
matter (WDM) is partially ionized, solid-density matter
having a temperature near the Fermi energy. It has wide-
ranging applications including the astrophysics of giant
planets and white dwarf atmospheres [7–14], cheap and
ultracompact particle accelerators and radiation sources
[15–17], and the eventual production of clean, abundant
energy via inertial confinement fusion [18,19]. One of the
most successful methods for simulating equilibrium warm
dense matter combines DFT [2,20] and molecular dynam-
ics [21] to capture the quantummechanical effects of WDM
electrons and the classical behavior of ions [7–14,22–24].
Such simulations use the Mermin theorem [25] to generate
a KS scheme at finite temperature, defined to generate the
equilibrium density and free energy. In practice, the XC
free energy is almost always approximated with a ground-
state approximation, but formulas for thermal corrections
are being developed [26–30].
Many processes of interest involve perturbing an

equilibrium system with some time-dependent (TD)

perturbation, such as a laser field [31] or a rapidly moving
nucleus, as in stopping power [32–34]. Of great interest
within the WDM community are calculations of spectra,
dynamic structure factors, and the flow of energy between
electrons and ions [35–38]. Spectra expose a material’s
response to excitation by electromagnetic radiation, which
would facilitate experimental design and analysis. Dynamic
structure factors can be related to the x-ray scattering
response, which is being developed as a temperature and
structural diagnostic tool for WDM [39]. Thus, it would
appear that a TD version of the Mermin formalism is
required. A theorem is proven in Li et al. [40,41], but the
formalism assumes the temperature is fixed throughout the
process, and so cannot describe, e.g., equilibration between
electrons and ions. Moreover, the proof requires the Taylor
expansion of the perturbing potential as a function of time,
just as in the Runge-Gross (RG) theorem [4]. This can be
problematic for initial states with cusps [42], such as at the
nuclear centers. (Recent efforts [43,44] have focused on
avoiding these complications at zero temperature.) Finally,
the RG proof requires invocation of a boundary condition
to complete the one-to-one correspondence between den-
sity and potential [45], which create subtleties when
applied to extended systems [46].
In the present work, we prove the RG theorem at finite

temperature within linear response by generalizing the
elegant linear response proof of van Leeuwen [43] to
thermal ensembles. Our proof avoids several of the draw-
backs mentioned above, while still providing a solid
grounding to much of WDM theoretical work. We then
define the exchange-correlation kernel at finite temperature
and generalize the Gross-Kohn equation. Finally, we extend
the fluctuation-dissipation theorem of ground-state DFT to
finite temperatures, and show how this provides a route to
equilibrium free energy XC approximations.
Consider a system of electrons in thermal and particle

equilibrium with a bath at some temperature τ and with
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static equilibrium density nτðrÞ. The system extends
throughout space with a finite average density; i.e., the
thermodynamic limit has been taken. The limit of isolated
atoms or molecules is achieved by then taking the sepa-
ration between certain nuclei to infinity. In this sense, no
surface boundary condition need be invoked [45], as the
density never quite vanishes, while the average particle
number per atom or molecule molecule is finite. These
electrons are perturbed at t ¼ 0 by a potential δvðr; tÞ that
is Laplace transformable. To avoid complex questions of
equilibration, we consider only the linear response of the
system, so that the perturbation does not affect the temper-
ature of the system as, e.g., Joule heating is a higher order
effect [47]. The Kubo response formula for the density
change in response to δv is

δnτðr; sÞ ¼
Z

d3r0χτðr; r0; sÞδvðr0; sÞ; ð1Þ

where the Laplace transform

δvðr; sÞ ¼
Z

∞

0
dte−stδvðr; tÞ ð2Þ

is assumed to exist for all s > 0. Within the grand canonical
ensemble [48,49], the equilibrium density-density response
function is [50]

χτðr; r0; sÞ ¼ i
X

ij

wi
Δnτ$ij ðrÞΔnτijðr0Þ

s − iωji
þ c:c:; ð3Þ

where

ΔnτijðrÞ ¼ hijn̂ðrÞjji − δijnτðrÞ ð4Þ

are matrix elements of the density fluctuation operator. The
energy-ordered indices i, j run over all many-body states
(both bound and continuum [51]) with all particle numbers,
but Δnτij vanishes unless Ni ¼ Nj. The transition frequen-
cies ωji ¼ Ej − Ei, and the statistical weights wi are
thermal occupations for the equilibrium statistical operator
Γ̂τ ¼

P
iwijΨiihΨij and obey wi < wj if Ei > Ej and

Ni ¼ Nj. This condition is satisfied by the grand cano-
nical ensemble of common interest with wi ¼
exp½−ðEi − μNiÞ=τ'=

P
i exp½−ðEi − μNiÞ=τ'.

We also need the (Laplace-transformed) one-body poten-
tial operator:

δV̂ðsÞ ¼
Z

d3rn̂ðrÞδvðr; sÞ; ð5Þ

and its matrix elements

δVijðsÞ ¼ hijδV̂ðsÞjji: ð6Þ

Its expectation value is

δVτðsÞ ¼
X

i

wiViiðsÞ ¼
Z

d3rnτðrÞδvðr; sÞ; ð7Þ

so that matrix elements of its fluctuations are

ΔVτ
ijðsÞ ¼ δVijðsÞ − δijδVτðsÞ: ð8Þ

Then consider the expectation value

mτðsÞ ¼
Z

d3rδnτðr; sÞδvðr; sÞ: ð9Þ

Inserting Eq. (1) and using the definitions, we find
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X
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wijΔVτ
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s2 þ ω2
ji
: ð10Þ

This is rearranged as

mτðsÞ ¼ −2
X∞

i¼0

X∞

j¼iþ1

ðwi −wjÞωji

s2 þ ω2
ji

jΔVτ
ijðsÞj2: ð11Þ

We have ordered all states by energy regardless of particle
number here for simplicity, though this is not strictly
necessary since different particle number subsystems do
not interact. For now, we assume no degeneracies.
Then the above expression mτðsÞ vanishes only if every
ΔVτ

ijðsÞ does for i ≠ j because of our assumption that
ðwi−wjÞωji>0 if i ≠ j.
The usual statement of the RG theorem is that no two

potentials that differ by more than an inconsequential
function of time alone can give rise to the same density
(for fixed statistics, interparticle interaction, and initial state
[4]). Imagine two such perturbations exist, yielding the
same density response. Since, in linear response, the
density response is proportional to the perturbation, we
can subtract one from the other, and the statement to be
proved is that there is no nontrivial perturbation with zero
density response. If it did exist, then mτðsÞ would vanish
and our algebra shows that every ΔVτ

ijðsÞ with i ≠ j would
also. Finally,

XNi

k¼1

δvðrk; sÞΨjðr1;…; rNi
Þ ¼

X

i

δVijðsÞΨiðr1;…; rNi
Þ;

ð12Þ

which can be proven by integrating over all coordinates
with Ψ$

k. Then, as ΔVτ
ijðsÞ ¼ δVijðsÞ for i ≠ j, and must

vanish if there is no density response, the sum on the right
of Eq. (12) collapses to just the jth term, showing that
δvðr; sÞ must be spatially independent.
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Time-dependent density functional theory (DFT) is a standard approach for calculating optical
excitations of molecules and solids, while ensemble DFT is a promising alternative under development.
We prove a theorem establishing TD ensemble DFT (TDEDFT), a practical theory that combines the two.
We generalize the Gross-Kohn relation, the exchange-correlation kernel of TDDFT, and the fluctuation
dissipation theorem to ensemble DFT. We relate coordinate scaling to the adiabatic connection and
outline several new approximations. We illustrate with some examples.

Time-dependent density functional theory (TDDFT) is
ubiquitous in electronic structure calculations of molecules
and solids[book]. The most common application is in
the linear optical response regime, yielding the absorption
spectrum (both transition frequencies and oscillator
strengths). While successful for many routine applications,
such as low-lying excitations of large molecules, its
limitations with standard approximations are now well
documented[Neepa review].

A promising alternative to TDDFT is provided by
ensemble DFT[any review?]. This theory is formulated in
close analogy with ground-state DFT. The HK theorem
was generalized to weighted ensembles of low-lying states,
and corresponding Kohn-Sham equations for the ensemble
energy and density can be defined and solved with some
approximate ensemble XC energy. There has been a
recent explosion of interest in finding usefully accurate
approximations using EDFT, which is now available in some
quantum chemical codes. However, such calculations have
not yet become widespread. While EDFT can overcome
some limitations of standard TDDFT, it has its own
limitations, such as not predicting oscillator strengths.

The current work generalizes the proof of TDDFT to
initial states that begin from an ensemble, rather than
from a non-degenerate ground state. We first generalize
the linear response proof of van Leeuwen. The standard
theorems of EDFT apply only when weights are non-
increasing with excitation level, and our proof fails explicitly
when this condition is not enforced. We next discuss

the more general case of Runge-Gross, and explain why
an early generalization of the RG proof to ensembles is
not the applicable one here. The linear response proof

TABLE I: The names of di!erent fhxc approximations

that will be used throughout this paper.

w → 0 w ↑= 0

ω → 0 Pure Adiabatic Ensemble Adiabatic
ω ↑= 0 Pure Dynamic Ensemble Dynamic

immediately allows the generalization of the XC kernel of
TDDFT to an ensemble XC kernel, yielding an adiabatic-
connection formula for the ensemble energy. We also derive
various properties of the XC kernel and suggest several
approximations. All results are illustrated on the two-
site Hubbard model. Our work can be considered either
as a generalization of linear-response TDDFT to initial
ensembles, or a generalization of (static) ensemble DFT to
time-dependent response.

Formalism We consider first the linear-response case of
time-dependent density functional theory (TDDFT), applied
to cases with a non-degenerate ground state. We define
the Kohn-Sham (KS) response function, ωS(r, r↑,ε), as the
response of the non-interacting electrons making up the KS
single Slater determinant of N occupied orbitals. The exact
interacting response function ω is related to this via the
celebrated Gross-Kohn relation:

ωw(r, r
↑,ε) = ωs,w(r, r

↑,ε) +

∫
d3r1

∫
d3r2 ωs,w(r, r1,ε)fHXC,w(r1r2,ε)ωw(r2, r

↑,ε) (1)

where fHXC(r, r↑,ε) is the Hartree-exchange-correlation
(HXC) kernel. Eq 1 may be considered a definition of that
kernel, whose existence is guaranteed with a uniqueness
theorem. Here, we use van Leeuwen’s response proof, which

applies to all Laplace-transformable external potentials, and
avoids the complications of the time-series expansion of the
Runge-Gross theorem.
In practice, almost all TDDFT calculations use the

1



Ensemble HXC kernel

• Linguistics:
– Adiabatic and dynamic just like in TDDFT
– Pure- and ensemble- mean w=0 or non-zero

• 5 approximations of RPA type:
– Hartree, i.e., RPA
– Hartee-exchange (w-dependent)
– Exact pure adiabatic approx.
– Exact pure dynamic approx.
– Exact ensemble adiabatic
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outline several new approximations. We illustrate with some examples.

Time-dependent density functional theory (TDDFT) is
ubiquitous in electronic structure calculations of molecules
and solids[book]. The most common application is in
the linear optical response regime, yielding the absorption
spectrum (both transition frequencies and oscillator
strengths). While successful for many routine applications,
such as low-lying excitations of large molecules, its
limitations with standard approximations are now well
documented[Neepa review].

A promising alternative to TDDFT is provided by
ensemble DFT[any review?]. This theory is formulated in
close analogy with ground-state DFT. The HK theorem
was generalized to weighted ensembles of low-lying states,
and corresponding Kohn-Sham equations for the ensemble
energy and density can be defined and solved with some
approximate ensemble XC energy. There has been a
recent explosion of interest in finding usefully accurate
approximations using EDFT, which is now available in some
quantum chemical codes. However, such calculations have
not yet become widespread. While EDFT can overcome
some limitations of standard TDDFT, it has its own
limitations, such as not predicting oscillator strengths.

The current work generalizes the proof of TDDFT to
initial states that begin from an ensemble, rather than
from a non-degenerate ground state. We first generalize
the linear response proof of van Leeuwen. The standard
theorems of EDFT apply only when weights are non-
increasing with excitation level, and our proof fails explicitly
when this condition is not enforced. We next discuss

the more general case of Runge-Gross, and explain why
an early generalization of the RG proof to ensembles is
not the applicable one here. The linear response proof

TABLE I: The names of di!erent fhxc approximations

that will be used throughout this paper.

w → 0 w ↑= 0

ω → 0 Pure Adiabatic Ensemble Adiabatic
ω ↑= 0 Pure Dynamic Ensemble Dynamic

immediately allows the generalization of the XC kernel of
TDDFT to an ensemble XC kernel, yielding an adiabatic-
connection formula for the ensemble energy. We also derive
various properties of the XC kernel and suggest several
approximations. All results are illustrated on the two-
site Hubbard model. Our work can be considered either
as a generalization of linear-response TDDFT to initial
ensembles, or a generalization of (static) ensemble DFT to
time-dependent response.

Formalism We consider first the linear-response case of
time-dependent density functional theory (TDDFT), applied
to cases with a non-degenerate ground state. We define
the Kohn-Sham (KS) response function, ωS(r, r↑,ε), as the
response of the non-interacting electrons making up the KS
single Slater determinant of N occupied orbitals. The exact
interacting response function ω is related to this via the
celebrated Gross-Kohn relation:

ωw(r, r
↑,ε) = ωs,w(r, r

↑,ε) +

∫
d3r1

∫
d3r2 ωs,w(r, r1,ε)fHXC,w(r1r2,ε)ωw(r2, r

↑,ε) (1)

where fHXC(r, r↑,ε) is the Hartree-exchange-correlation
(HXC) kernel. Eq 1 may be considered a definition of that
kernel, whose existence is guaranteed with a uniqueness
theorem. Here, we use van Leeuwen’s response proof, which

applies to all Laplace-transformable external potentials, and
avoids the complications of the time-series expansion of the
Runge-Gross theorem.
In practice, almost all TDDFT calculations use the

1



Ensemble relation between coupling constant and scaling

Kieron Burke, UCI 10th anniversary Benasque 34

Time-dependent ensemble density functional theory

adiabatic approximation, setting the frequency dependence
to zero, in which case the kernel is just the second functional
derivative of the Hartree-XC ground-state energy. Even
without this approximation, this scheme does not predict all
desired properties. In particular, transition matrix elements
between excited states are not accessed[]. These are needed
for beyond-TDDFT treatments[], but require higher-order
response properties[].

On the other hand, ensemble DFT (EDFT) also predicts
excitation energies. Any ensemble of the ground state
and excited states whose weights are monotonically non-
increasing satisfies Hohenberg-Kohn theorems of one-
to-one correspondence between potentials and ensemble
densities, and for which a KS scheme can be created,
with a corresponding ensemble-dependent XC functional.
From several calculations with distinct ensembles, one can
estimate the transition frequencies. There has been a recent
flurry of suggestions for such approximations[,,,], which can
overcome some limitations of standard TDDFT approaches.

We introduce the nomenclature that standard TDDFT is
called pure (as in pure state rather than ensemble) while
standard EDFT is called static, i.e., not time-dependent.
Proof All DFT depends on uniqueness, and here is no
exception. We must show that, starting from an ensemble
of states, at most a single one-body potential can give rise
to a given time-dependent density response.

Writing the response function of the ensemble as

(2)

where....

We consider only finite systems....

As a pratical example, we extend the results from Scott
et al. from w → [0, 0.5] to w → [0, 1] in Fig 1. It can be seen
that at high and intermediate U, w > 0.5 has two potentials
yielding the same density. This makes sense since when
U ↑ ↓, the density will go 2w, whereas when !v ↑ ↓
the density tends to 2w̄. So at small !v, the high U term is
leading and causes the density to go 2w until !v gets large
enough and pushes the densities to 2w̄. This means that for
w > 0.5 at high U , the density will not be monotonously
increasing in !v and will therefore break the Runge-Gross
theorem. At small U < 1, it depends on the choice of w if
the Runge-Gross theorem holds. Therefore, we will always
constrain our weights to be below w ↔ 0.5.
Properties We can easily generalize our XC kernel to
include coupling-constant dependence, by simply inserting a
ω in front of the electron-electron interaction, while holding
the density fixed. Then, by coordinate scaling of the time-
depdendent Schrodinger equation, we find the following
relation:

fω

HXC,w
[n](r, r,ε) = ω2fHXC,w[n1/ω](ωr,ωr,ε/ω

2
) (3)

Next, we note the adiabatic connection fluctuation
dissipation formula

Exc,w[n] = ↗
∫

1

0

dω

∫
d3r

∫
d3r→

1

|r↗ r→|

{
nw(r)

2
ϑ(r↗ r

→
) +

∫ ↑

0

dε

2ϖ
Imϱω

w
(r, r→,ε)

}
, (4)

which now yields the ensemble XC energy instead of the
ground-state energy. This can be written in a di!erent way
by substituting in the Dyson-like equation.

In similar fashion, one can derive the scaling relation of
the time dependent exchange correlation potential,

vω
xc,w

[n](r,ε) = ω2vxc,w[n1/ω](ωr,ω
2ε). (5)

Approximations

We can define a variety of interesting approximations for
the ensemble XC kernel. The simplest is the pure adiabatic
(PA) approximation , corresponding to the usual adiabatic
approximation of standard TDDFT, which ignores both
weight- and freqency dependence. We can also consider
the ensemble static (ES) approximation, in which we use
the second derivative of the variational ensemble theory. A
third variation is pure dynamic (PD), in which a frequency-
dependent kernel is used from pure TDDFT. Each leads
to its own approximations. Moreover, in each case, there
is an ’exact’ version, in which one uses the exact object
from the less general theory, analogous to the adiabatically

exact approximation in pure TDDFT, which uses the exact
ground-state XC functional. Such model cases show the
absolute limits of such schemes. Furthermore, each can be
used either to generate approximate excitations or, inserted
in the ACFDT formula, new approximations for EDFT.

Hubbard model illustrations

2
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and excited states whose weights are monotonically non-
increasing satisfies Hohenberg-Kohn theorems of one-
to-one correspondence between potentials and ensemble
densities, and for which a KS scheme can be created,
with a corresponding ensemble-dependent XC functional.
From several calculations with distinct ensembles, one can
estimate the transition frequencies. There has been a recent
flurry of suggestions for such approximations[,,,], which can
overcome some limitations of standard TDDFT approaches.

We introduce the nomenclature that standard TDDFT is
called pure (as in pure state rather than ensemble) while
standard EDFT is called static, i.e., not time-dependent.
Proof All DFT depends on uniqueness, and here is no
exception. We must show that, starting from an ensemble
of states, at most a single one-body potential can give rise
to a given time-dependent density response.

Writing the response function of the ensemble as

(2)

where....

We consider only finite systems....

As a pratical example, we extend the results from Scott
et al. from w → [0, 0.5] to w → [0, 1] in Fig 1. It can be seen
that at high and intermediate U, w > 0.5 has two potentials
yielding the same density. This makes sense since when
U ↑ ↓, the density will go 2w, whereas when !v ↑ ↓
the density tends to 2w̄. So at small !v, the high U term is
leading and causes the density to go 2w until !v gets large
enough and pushes the densities to 2w̄. This means that for
w > 0.5 at high U , the density will not be monotonously
increasing in !v and will therefore break the Runge-Gross
theorem. At small U < 1, it depends on the choice of w if
the Runge-Gross theorem holds. Therefore, we will always
constrain our weights to be below w ↔ 0.5.
Properties We can easily generalize our XC kernel to
include coupling-constant dependence, by simply inserting a
ω in front of the electron-electron interaction, while holding
the density fixed. Then, by coordinate scaling of the time-
depdendent Schrodinger equation, we find the following
relation:

fω

HXC,w
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Next, we note the adiabatic connection fluctuation
dissipation formula

Exc,w[n] = ↗
∫

1

0

dω

∫
d3r

∫
d3r→

1

|r↗ r→|

{
nw(r)

2
ϑ(r↗ r

→
) +

∫ ↑

0

dε

2ϖ
Imϱω

w
(r, r→,ε)

}
, (4)

which now yields the ensemble XC energy instead of the
ground-state energy. This can be written in a di!erent way
by substituting in the Dyson-like equation.

In similar fashion, one can derive the scaling relation of
the time dependent exchange correlation potential,

vω
xc,w

[n](r,ε) = ω2vxc,w[n1/ω](ωr,ω
2ε). (5)

Approximations

We can define a variety of interesting approximations for
the ensemble XC kernel. The simplest is the pure adiabatic
(PA) approximation , corresponding to the usual adiabatic
approximation of standard TDDFT, which ignores both
weight- and freqency dependence. We can also consider
the ensemble static (ES) approximation, in which we use
the second derivative of the variational ensemble theory. A
third variation is pure dynamic (PD), in which a frequency-
dependent kernel is used from pure TDDFT. Each leads
to its own approximations. Moreover, in each case, there
is an ’exact’ version, in which one uses the exact object
from the less general theory, analogous to the adiabatically

exact approximation in pure TDDFT, which uses the exact
ground-state XC functional. Such model cases show the
absolute limits of such schemes. Furthermore, each can be
used either to generate approximate excitations or, inserted
in the ACFDT formula, new approximations for EDFT.

Hubbard model illustrations
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We can also work out all the excitations from the first
excited state, which will be

!10 = w10→2(1→2w)

∫
dr

∫
dr→ ”10

(
r) fw

Hxc

(
r, r→;ω

)
”01

(
r→).

(105)

and

!12 = w12 + 2w

∫
dr

∫
dr→ ”12

(
r) fw

Hxc

(
r, r→;ω

)
”21

(
r→).

(106)

Notice that the backwards transition is still opposite sign
from the forward transition, i.e. !10 = →!01, when ω10 =

→ω01 since the minus sign is also contained in the ensemble
weight dependence.

PROOF REDONE

vHxc[nGS + εn](r, t) = vHxc[nGS](r) +

∫
dt→

∫
d3r→fHxc[nGS](r, r

→, t→ t→)εn(r→, t→). (107)

εn(r, t) =

∫ ↑

0

dt→
∫

d3r→ ϑ(r, r→, t→ t→)εvext(r
→, t→). (108)

εvKS(r, t) = εvHXC(r, t) + εvext(r, t) (109)

εn(r, t) =

∫ ↑

0

dt→
∫

d3r→ ϑKS(r, r
→, t→ t→)εvKS(r

→, t→).

(110)

fHxc[nGS ](r, r
→, t→ t→) =

εvHxc[n](r, t)

εn(r→, t→)

∣∣∣∣
n=nGS

, (111)

This proof follows the proof of Aurora, where we start
with the Kubo response formula for the ensemble.

εnw(r, s) =

∫
d3r→ϑw(r, r

→, s)εv(r→, s), (112)

with its laplace transform being,

εv(r, s) =

∫ ↑

0

dte↓stεv(r, t), (113)

which exists for all s > 0. We can find the ϑw for our
ensemble as,

ϑw(r, r
→, s) =

∑

ij

wi

#nw↔
ij

(r)#nw

ij
(r

→
)

s→ iωji

+ c.c. (114)

with

#nw

ij
(r) = ↑i|n̂(r)|j↓ → εijnw(r) (115)

We can also find the laplace-transformed one-body opeator
as,

εV̂ (s) =

∫
d3rn̂(r)εv(r, s) (116)

and its matrix elements as,

εVij(s) = ↑i|εV̂ (s)|j↓. (117)

With this we can write th expectation value as,

εV w
(s) =

∑
wiVii(s) =

∫
d3rnw(r)εv(r, s), (118)

where the matrix elements are given by

#V w

ij
(s) = εVij → εijεV

w
(s). (119)

We can then consider the following expectation value as,

mw(s) =

∫
d3rεnw(r, s)εv(r, s). (120)

Inserting Eq.98 into it gives,

mw(s) = →
∑

ij

wi

∣∣#V w

ij
(s)

∣∣2 2ωji

s2 + iω2

ji

, (121)

which can be rearranged as,

mw(s) = →2

∑

i=0

∑

j=i+1

wi

(wi → wj)ωji

s2 + ω2

ji

|#V w

ij
(s)|2. (122)

Finally, we find

∑

i

εv(rk, s)$j(r1, . . . , rN ) =

∑

i

εVij(s)$i(r1, . . . , rN ).

(123)
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Connection to general time-dependence

• In fact, full RG proof generalized to initial 
ensemble density matrix

• In general case, this leads to dependence on initial 
density-matrix (both interacting and KS) as well as 
time-dependent density

• But, for an initial non-degenerate ground-state, 
this initial dependence is eliminated via HK 
theorems

• Real content: For a (monotonically decreasing) 
initial ensemble, initial density matrix dependence 
is absorbed via GOK
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5 topical questions in TDDFT

1. How to go beyond the adiabatic approximation?
2. Why not report adiabatic LDA and PBE results to 

show spread whenever calculations done?
3. Is there an analog of the RG theorem for the one-

body Green’s function?
4. What is the semiclassical limit of TDDFT, 

analogous to the Lieb-Simon limit of ground-state 
DFT?

5. Can one derive iDFT for molecular electronics 
from TDDFT?

6. How to use ML in TDDFT?
Kieron Burke, UCI 10th anniversary Benasque 38



What does ETDDFT buy us?

• Access to transitions between excited states
• Possibility of feedback: 

– Approximate kernel, extract approximate transitions 
from resulting static ensemble functional

– Construct approximate kernel using approx. 
transitions

– EDFT does give double excitations
• Maybe best of both worlds?
• Hope to have answers shortly on Hubbard 

dimer…
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Summary

• EDFT is a growing competitor to TDDFT for 
low-lying excitations

• ETDDFT is a new alternative that combines the 
best(?) of both

• Will illustrate on the Hubbard dimer
• All work of Kim Daas, Chancellor’s Postdoctoral 

Fellow, UCI
• Also support of NSF.
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