Practical calculations with the GW approximation and Bethe-Salpeter equation in BerkeleyGW

David A. Strubbe Department of Physics, University of California, Merced

Benasque, Spain 13 April 2025

Band gaps: DFT-LDA and GW

Silicon interpolated bandstructure

GW/Bethe-Salpeter for graphene-based PV

Band structure and density of states

Excitons (electron-hole pairs) from **Bethe-Salpeter equation**

H. Li, D. A. Strubbe, and Jeffrey C. Grossman, Adv. Funct. Mater. 25, 5199 (2015)

Preview: GW approximation/Bethe-Salpeter eqn

Start with wavefunctions and energies from DFT as mean field Add perturbation: difference between Vxc and true exchange-correlation

GW self-energy: single-electron energy levels (band structure)

$$\left[-\frac{1}{2}\nabla^2 + V_{\rm ion} + V_{\rm H} + \Sigma(E_{n\mathbf{k}}^{\rm QP})\right]\psi_{n\mathbf{k}}^{\rm QP} = E_{n\mathbf{k}}^{\rm QP}\psi_{n\mathbf{k}}^{\rm QP}$$

Bethe-Salpeter equation: electron-hole interaction for optical properties

$$\left(E_{c\mathbf{k}}^{\mathrm{QP}} - E_{v\mathbf{k}}^{\mathrm{QP}}\right)A_{vc\mathbf{k}}^{S} + \sum_{v'c'\mathbf{k}'}\left\langle vc\mathbf{k}|K^{\mathrm{eh}}|v'c'\mathbf{k}'\right\rangle = \Omega^{S}A_{vc\mathbf{k}}^{S} \quad \Psi(\mathbf{r}_{e},\mathbf{r}_{h}) = \sum_{\mathbf{k},c,v}A_{vc\mathbf{k}}^{S}\psi_{\mathbf{k},c}(\mathbf{r}_{e})\psi_{\mathbf{k},v}^{*}(\mathbf{r}_{h})$$

widely used massively parallel code www.berkeleygw.org

J. Deslippe, G. Samsonidze, D. A. Strubbe, M. Jain, M. L. Cohen, and S. G. Louie, Comput. Phys. *Comm.* **183**, 1269 (2012)

- Supports a large set of Mean-Field codes: PARATEC, Quantum ESPRESSO, ABINIT, Octopus, PARSEC, SIESTA, EPM (TBPW)
- Supports 3D, 2D, 1D and Molecular Systems. Coulomb Truncation
- Support for Semiconductor, Metallic and Semi-Metallic Systems
- Efficient Algorithms and Use of Libraries. (BLAS, FFTW3, LAPACK, SCALAPACK, ELPA, OpenMP, HDF5)
- Massively Parallel. Scales to 100,000 CPUs, distributed Memory.
- Efficient accurate solution to BSE via k-point Interpolation
- Support for LDA/GGA/Hybrid/HF/COHSEX starting points as well as offdiagonal Σ calculations

$$\langle n\mathbf{k} | \Sigma_{\rm CH}(E) | n'\mathbf{k} \rangle = \frac{\imath}{2\pi} \sum_{n''} \sum_{\mathbf{q} \mathbf{G} \mathbf{G}'} M_{n''n}^*(\mathbf{k}, -\mathbf{q}, -\mathbf{G}) M_{n''n'}(\mathbf{k}, -\mathbf{q}, -\mathbf{G}') \quad (20)$$

Full-Frequency $\int_{-\infty}^{\infty} \left[\epsilon_{\mathbf{q} \mathbf{G} \mathbf{G}'}^{\mathbf{r}} \right]_{-1}^{-1} (\mathbf{q}; E') - \left[\epsilon_{\mathbf{q} \mathbf{G} \mathbf{G}'}^{\mathbf{a}} \right]_{-1}^{-1} (\mathbf{q}; E')$

$$\times \int_0^\infty dE' \; \frac{\left[\epsilon^{\mathbf{r}}_{\mathbf{G}\mathbf{G}'}\right]^{--} (\mathbf{q}; E') - \left[\epsilon^{\mathbf{a}}_{\mathbf{G}\mathbf{G}'}\right]^{--} (\mathbf{q}; E')}{E - E_{n''\mathbf{k}-\mathbf{q}} - E' + i\delta} \; v(\mathbf{q}+\mathbf{G}')$$

$$\langle n\mathbf{k} | \Sigma_{\rm CH}(E) | n'\mathbf{k} \rangle = \frac{1}{2} \sum_{n''} \sum_{\mathbf{q} \mathbf{G} \mathbf{G}'} M_{n''n}^*(\mathbf{k}, -\mathbf{q}, -\mathbf{G}) M_{n''n'}(\mathbf{k}, -\mathbf{q}, -\mathbf{G}')$$
(22)

$$\mathsf{GPP} \times \frac{\Omega_{\mathbf{G}\mathbf{G}'}^2(\mathbf{q}) (1 - i \tan \phi_{\mathbf{G}\mathbf{G}'}(\mathbf{q}))}{\tilde{\omega}_{\mathbf{G}\mathbf{G}'}(\mathbf{q}) (E - E_{n''\mathbf{k}-\mathbf{q}} - \tilde{\omega}_{\mathbf{G}\mathbf{G}'}(\mathbf{q}))} v(\mathbf{q} + \mathbf{G}')$$

GPP is significantly faster. The integral over frequencies can be performed analytically if assume the dielectric response is dominated by a single plasmon pole.

BerkeleyGW supports both. With full-frequency you can compute spectral functions, lifetimes and weights. By contrast, GPP is (incorrectly) purely real.

Practical issues for GW

- 1. Screening models for Epsilon
- 2. Construction of **k**-grids
- 3. Symmetry and degeneracy
- 4. Real and complex version
- 5. Solving Dyson's equation
- 6. Convergence
- 7. Use of Octopus

Screening models: How do we use ϵ ?

Screening models: How do we use ϵ ?

Sigma integrates over **q** with $\varepsilon^{-1}(\mathbf{q})$

$$\begin{aligned} \langle n\mathbf{k} | \Sigma(E) | n'\mathbf{k} \rangle &= \frac{i}{2\pi} \sum_{n''} \sum_{\mathbf{q} \mathbf{G} \mathbf{G}'} M_{n''n}^* (\mathbf{k}, -\mathbf{q}, -\mathbf{G}) M_{n''n'} (\mathbf{k}, -\mathbf{q}, -\mathbf{G}') \\ &\times \int_{-\infty}^{\infty} dE' e^{-i\delta E'} \frac{[\epsilon_{\mathbf{G} \mathbf{G}'}]^{-1} (\mathbf{q}; E')}{E - E_{n''\mathbf{k} - \mathbf{q}} - E' - i\delta_{n''\mathbf{k} - \mathbf{q}}} v(\mathbf{q} + \mathbf{G}') \end{aligned}$$

Absorption interpolates kernel over **q** with $W(\mathbf{q}) = \varepsilon^{-1}(\mathbf{q}) v(\mathbf{q})$

$$\langle vc\mathbf{k}|K^{\mathrm{d}}|v'c'\mathbf{k}'\rangle = \sum_{\mathbf{G}\mathbf{G}'} M^*_{c'c}(\mathbf{k},\mathbf{q},\mathbf{G}) W_{\mathbf{G}\mathbf{G}'}(\mathbf{q};0) M_{v'v}(\mathbf{k},\mathbf{q},\mathbf{G}')$$

Problem 1: Non-smooth behavior

Problem 2: Divergent behavior

Solution: Screening models

Calculate at $\mathbf{q}_0 \approx 0.001$ in periodic direction use to parametrize screening model

Sigma: Integrate over region around **q** = 0

$\epsilon_{{f G}{f G}'}^{-1}$	head	wing	wing'	body
Semiconductor	const	q	\mathbf{q}/q^2	const
Metal	q^2	q^2	const	const
$W_{\mathbf{GG}'}$	head	wing	wing'	body
Semiconductor	$1/q^{2}$	\mathbf{q}/q^2	\mathbf{q}/q^2	const
Metal	const	const	const	const

Truncation for non- or partially periodic systems

Periodicity in 0, 1, 2, or 3 dimensions. Eliminate spurious image interactions.

Slab (for graphene or surface)

Wire (for nanotube or nanowire)

Truncation of Coulomb potential

• GW and BSE utilize the Coulomb and screened Coulomb interaction

$$W = \varepsilon^{-1} V_c$$

- Long-range interactions make it computationally infeasible to increase lattice vectors until periodic images do not interact.
- Rule of thumb: non-periodic direction should include 99% of density

Truncation Schemes within BerkeleyGW

- Cell box: 0D
- Cell wire: 1D
- Cell slab: 2D
- Spherical: Define radius of truncation
- **Cell truncation**: at half lattice vector length
 - Analytical form for Coulomb potential in k-space
- **Spherical truncation**: convenient, available in many packages

$$v_{
m t}({f r})=rac{\Theta(f({f r}))}{r}$$

Regular **k**-grids

Epsilon

$$\chi_{\mathbf{GG}'}(\mathbf{q};0) = \sum_{n}^{\mathrm{occ}} \sum_{n'}^{\mathrm{emp}} \sum_{\mathbf{k}} M_{nn'}^{*}(\mathbf{k},\mathbf{q},\mathbf{G}) M_{nn'}(\mathbf{k},\mathbf{q},\mathbf{G}') \frac{1}{E_{n\mathbf{k}+\mathbf{q}} - E_{n'\mathbf{k}}}.$$

where

$$M_{nn'}(\mathbf{k}, \mathbf{q}, \mathbf{G}) = \langle n\mathbf{k} + \mathbf{q} | e^{i(\mathbf{q} + \mathbf{G}) \cdot \mathbf{r}} | n'\mathbf{k} \rangle$$

Sigma

$$\langle n\mathbf{k} | \Sigma_{\mathrm{SX}}(E) | n'\mathbf{k} \rangle = -\sum_{n''}^{\mathrm{occ}} \sum_{\mathbf{q} \mathbf{G} \mathbf{G}'} M_{n''n}^*(\mathbf{k}, -\mathbf{q}, -\mathbf{G}) M_{n''n'}(\mathbf{k}, -\mathbf{q}, -\mathbf{G}') \\ \times \left[\epsilon_{\mathbf{G} \mathbf{G}'} \right]^{-1} (\mathbf{q}; E - E_{n''\mathbf{k} - \mathbf{q}}) v(\mathbf{q} + \mathbf{G}')$$

Kernel

$$\begin{aligned} \langle vc\mathbf{k} | K^{\mathrm{d}} | v'c'\mathbf{k}' \rangle &= \sum_{\mathbf{G}\mathbf{G}'} M_{c'c}^{*}(\mathbf{k}, \mathbf{q}, \mathbf{G}) W_{\mathbf{G}\mathbf{G}'}(\mathbf{q}; 0) M_{v'v}(\mathbf{k}, \mathbf{q}, \mathbf{G}') \\ &\epsilon^{-1}(\mathbf{q}) \text{ for } \mathbf{q} = \mathbf{k} - \mathbf{k}'. \end{aligned}$$

k-grids and bands

recommended approach

	k-grid	# bands	Comments
SCF	Uniform, 0.5 shift	occupied	as usual in DFT
WFN	Uniform, 0.5 shift	many	
WFNq	WFN + q -shift	occupied	
epsilon.inp q -points	WFN but no shift, q ₀	many	bands to sum over
WFN_inner	WFN but no shift	many	bands to sum over
sigma.inp k -points	subset of WFN_inner	few	can choose to calculate Sigma just for bands of interest
WFN_co	WFN_inner	few	
WFN_fi (absorption)	Uniform, random shift	few	
WFNq_fi	WFN_fi + q -shift	occupied	
WFN_fi (inteqp)	anything	few	whatever is of interest

epsilon.inp

k-grid construction: 4×4 grid for graphene

k-grid construction: 4×4 grid for graphene

Degeneracy

Epsilon, Sigma: symmetry of Hamiltonian

$$\langle n\mathbf{k} | \Sigma_{\mathrm{SX}}(E) | n'\mathbf{k} \rangle = -\sum_{n''}^{\mathrm{occ}} \sum_{\mathbf{q} \mathbf{G} \mathbf{G}'} M_{n''n}^*(\mathbf{k}, -\mathbf{q}, -\mathbf{G}) M_{n''n'}(\mathbf{k}, -\mathbf{q}, -\mathbf{G}') \\ \times \left[\epsilon_{\mathbf{G} \mathbf{G}'} \right]^{-1} (\mathbf{q}; E - E_{n''\mathbf{k} - \mathbf{q}}) v(\mathbf{q} + \mathbf{G}')$$

Absorption: symmetry of e-h basis

$$\left(E_{c\mathbf{k}}^{\rm QP} - E_{v\mathbf{k}}^{\rm QP}\right)A_{vc\mathbf{k}}^{S} + \sum_{v'c'\mathbf{k}'}\left\langle vc\mathbf{k}|K^{\rm eh}|v'c'\mathbf{k}'\right\rangle = \Omega^{S}A_{vc\mathbf{k}}^{S}$$

Summing over only some of a degenerate space will break symmetry. Degeneracy in mean-field => broken in *GW*! Results depends on arbitrary linear combinations in mean-field. Not reproducible! Incorrect oscillator strengths in absorption!

Degeneracy check utility

\$ degeneracy check.x WFN Reading eigenvalues from file WFN Number of spins: 1 Number of bands: 35 Number of k-points: 8 == Degeneracy-allowed numbers of bands (for epsilon and sigma) == 4 8 14 18 20 32 Note: cannot assess whether or not highest band 35 is degenerate.

So, use number bands 32 in Epsilon.

Real or complex flavor?

e.g. bin/epsilon.real.x, bin/epsilon.cplx.x

Complex is general, but real is faster, uses less memory and disk space

Real: only with inversion symmetry about the origin $u(-\mathbf{r}) = au(\mathbf{r})$

and time-reversal symmetry $u^{*}(\mathbf{r}) = bu(\mathbf{r})$

a,b each equal to ± 1

What breaks time-reversal? Magnetic fields, spin-polarization, spinors Plane-wave codes generally just use complex wavefunctions. Conditions for reality depends on the basis! Real-space: *k* = 0, time-reversal.

Real output not implemented in Octopus yet.

Solving Dyson's equation in Sigma

$$E_{n\mathbf{k}}^{\mathbf{QP}} = E_{n\mathbf{k}}^{\mathbf{MF}} + \langle \psi_{n\mathbf{k}} | \Sigma(E_{n\mathbf{k}}^{\mathbf{QP}}) - \Sigma^{\mathbf{MF}} | \psi_{n\mathbf{k}} \rangle$$

How can we solve when we don't know E^{QP} yet?

(1) eqp0: evaluate at E^{MF} .

$$E_{n\mathbf{k}}^{\text{QP0}} = E_{n\mathbf{k}}^{\text{MF}} + \langle \psi_{n\mathbf{k}} | \Sigma(E_{n\mathbf{k}}^{\text{MF}}) - \Sigma^{\text{MF}} | \psi_{n\mathbf{k}} \rangle$$

(2) eqp1: solve linearized approximation (Newton's Method)

$$E_{n\mathbf{k}}^{\text{QP1}} = E_{n\mathbf{k}}^{\text{QP0}} + \frac{d\Sigma_{n\mathbf{k}}/dE}{1 - d\Sigma_{n\mathbf{k}}/dE} \left(E_{n\mathbf{k}}^{\text{QP0}} - E_{n\mathbf{k}}^{\text{MF}} \right)$$

Available as columns in sigma_hp.log, and eqp0.dat and eqp1.dat files

Quasiparticle renormalization factor Z

A. Damascelli, Z. Hussain, Z.-X Shen, Rev. Mod. Phys. 75, 473 (2003)

There are many convergence parameters in a GW calculations: convergence with each must be checked

Coupled convergence parameters

ZnO: B. Shih et al., *Phys. Rev. Lett.* 105, 146401 (2010)

See convergence and "When things go wrong" slides on BerkeleyGW 2022 tutorial page!

Octopus interface to BerkeleyGW

Real space transformed to plane-waves for GW.

Can only produce complex wavefunctions currently.

Good for:

- very large systems
- finite or perhaps partially periodic systems (molecules, nanowires, 2D sheets)
- charged systems
- model systems
- interfacing with special features of Octopus

Domain parallelization for real-space scales better than plane waves.

Application for spin-flip Bethe-Salpeter equation on molecules and defects: B. A. Barker and D. A. Strubbe, <u>https://arxiv.org/abs/2207.04549</u> (2022)

Fourier transform to plane-wave form

$$\psi_{n\mathbf{k}}\left(\mathbf{r}
ight) = e^{i\mathbf{k}\cdot\mathbf{r}}u_{n\mathbf{k}}\left(\mathbf{r}
ight) = e^{i\mathbf{k}\cdot\mathbf{r}}\sum_{\mathbf{G}}u_{n\mathbf{k}}\left(\mathbf{G}
ight)$$
eal space: cube for all quantities $|\mathbf{k}+\mathbf{G}|^2 < E_{\mathrm{cutoff}}$

Must check norm, renormalize.

Finite vs. periodic boundary conditions for vacuum

Are plane waves more natural basis for unbound vacuum states?

"Particle in a box" spectrum

x = 0 x = L

$$\psi_n(x) \sim e^{in\pi x/L}$$
$$E_n = \frac{n^2 \pi^2 \hbar^2}{2\pi L^2}$$

$$c = \frac{1}{2mL^2}$$

periodic (plane waves) $\psi'(0)=\psi'(L)=0$ $n = \pm 2, \pm 4, \pm 6, \dots$ finite (real space) $\psi(0)=\psi(L)=0$ *n* = 1, 2, 3, ...

An opportunity: real-space dipole matrix elements

Plane waves (inherently periodic) need the auxiliary shifted grid (WFNq_fi).

length gauge
$$\langle v\mathbf{k} | \mathbf{r} | c\mathbf{k} \rangle = \lim_{\mathbf{q} \to 0} \frac{\langle v\mathbf{k} + \mathbf{q} | e^{i\mathbf{q}\cdot\mathbf{r}} - 1 | c\mathbf{k} \rangle}{iq}$$
$$= -i \lim_{\mathbf{q} \to 0} \frac{\langle v\mathbf{k} + \mathbf{q} | e^{i\mathbf{q}\cdot\mathbf{r}} | c\mathbf{k} \rangle}{q}$$

In finite direction, Octopus can calculate directly. Only one grid. Simpler, less computation, no concern of finite differences or consistent phases

In principle, can use *k.p* perturbation theory for derivatives in periodic directions.

The tutorial

Three examples:

- (1) benzene molecule, with Octopus
- (2) silicon, with plane wave code Quantum ESPRESSO (can be done in Octopus too in principle)
- (3) LiCl exciton visualization

