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Motivation

We want to describe experimental observables, such as absorption
spectroscopy, electron energy loss spectroscopy (EELS),....
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Experiments: macroscopical world

An experiment always measures averaged quantities over large distances
compared to interatomic distances:

Spot sizes are typically on the order of micrometers

Wavelength of Ti:sapphire laser is 780nm

Sample thickness ranges from a few nanometers to several millimeters

Quick estimate: 1µm spot size ∼ 4× 106 unit cells of Si (a∼ 5Å).
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Perturbation theory

Only small perturbations (no strong-field interaction).

The response can be expanded in powers of the perturbation.

Example: induced polarization in term of electric field

Pi =
∑
j

χ
(1)
ij Ej +

∑
jk

χ
(2)
ijkEjEk +

∑
jkl

χ
(3)
ijklEjEkEl + . . .

We consider only first order (linear response): the response is proportional
to the perturbation.
Example: the response function χ(1) describes the link between a
perturbation V and the density response

n(1)(r, t) =

∫
dt′

∫
drχ

(1)
ij (r, r′, t, t′)V (r′, t′).
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Dielectric function as key quantity

For optical linear response, the dielectric function (ϵ = ϵ1 + iϵ2) is the key
quantity
The refractive index ν and extinction coefficient κ are related to the
dielectric function

ϵ1 = ν2 − κ2, ϵ2 = 2νκ.

Absorption coefficient α is the inverse distance over which intensity drops
by a factor of 1/e

α =
2ωκ

c
=

ωϵ2
νc

.

Reflection coefficient R at normal incidence

R =
(1− ν2) + κ2

(1 + ν)2 + κ2
.

Energy loss by a fast particle

dW

dt
=

∫
d3rj.Etot = − e2

π2

∫
d3r

k2
Im

{ ω

ϵ(k, ω)

}
.
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Dielectric function as key quantity

The measured dielectric tensor is defined by the relation

DM (ω) =
↔
ϵM (ω)EM (ω),

where EM is the total macroscopic electric field.

Macroscopic quantity: does not depend on space.

From TDDFT, we can get:

D(r, ω) =

∫
d3r′

↔
ϵ (r, r′, ω)E(r, ω).

This dielectric tensor is a microscopic quantity.
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How to relate these two quantities?

Answer: macroscopic averaging
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Maxwell’s equations in matter

Maxwell equations reads in real space by

∇.D(r, t) = 4πρ(r, t), ∇×H(r, t)− 1

c

∂D

∂t
(r, t) =

4π

c
J(r, t),

∇.B(r, t) = 0, ∇×E(r, t) +
1

c

∂B

∂t
(r, t) = 0.

D and H: electric displacement and magnetic field.
Constitutive relations connecting E and B to D and H:

D(r, t) = E(r, t) + 4πP(r, t), H(r, t) = B(r, t)− 4πM(r, t),

where P and M are respectively the polarization and magnetization.
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Electric field in TDDFT/Maxwell’s equations

Question: which electric field is considered in Maxwell’s equations and in
TDDFT?
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Local field effects

Applying an external electric field Eext to a
dielectric material → electric dipoles are created at
a microscopic level.
Responsible for the appearance of an induced field
Eind.
Total electric field felt by electrons is microscopic:
E = Eext +Eind.

Effects due to

presence of the induced field

density fluctuations

any kind of microscopic inhomogeneities

must be taken into account.

These effects are often referred in solids as the local-field effects.
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Macroscopic averaging

We now consider perfectly periodic crystals.
The unit of repetition is the unit cell.

If R is a translation from one unit cell to the next one, a periodic function
fulfills

V (r+R;ω) = V (r;ω)

In Fourier space this means that

V (r;ω) =
∑
q,G

V (q+G;ω)ei(q+G).r

where G are reciprocal lattice vectors.
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Macroscopic averaging

Spatial average over a unit cell at R of a periodic function:

V (R;ω) = ⟨V (r;ω)⟩

=
1

Ω

∫
Ω

∑
q,G

V (q+G;ω)ei(q+G).r (1)

=
∑
q

V (q;ω)ei(q).r (2)

Macroscopic average corresponds to the component G = 0.
Wave vector truncation: elimination of all wavevectors outside of the first
Brillouin zone.
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Macroscopic averaging

Let’s try!

We have
D(r, ω) = E(r, ω) + 4πP(r, ω)

and

D(r, ω) =

∫
d3r′ϵ(r, r′, ω)E(r′, ω),

The polarization is the response to the total electric field.
The response function is the polarizability α

P(r, ω) = 4π

∫
d3r′α(r, r′, ω)E(r′, ω)

So

D(r, ω) = E(r, ω) + 4π

∫
d3r′α(r, r′, ω)E(r′, ω)
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Macroscopic averaging

In Fourier space, this reads

D(q+G, ω) = E(q+G, ω) + 4π
∑
G′

α(q+G,q+G′, ω)E(q+G′, ω)

Doing directly the macroscopic average

DM (q, ω) = EM (q, ω) + 4π
∑
G′

α(q,q+G′, ω)E(q+G′, ω)

does not give access to the macroscopic dielectric function!

DM (q, ω) = ϵM (q, ω)EM (q, ω)

The average of a product is not the product of the averages.
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Macroscopic averaging

Alternative approach:

The longitudinal dielectric function is given by

Eext(q+G, ω) =
∑
G′

ϵ(q+G,q+G′, ω)Etot(q+G′, ω)

Its inverse is

Etot(q+G, ω) =
∑
G′

ϵ−1(q+G,q+G′, ω)Eext(q+G′, ω)

The external field is macroscopic Eext(q+G′, ω) = Eext
M (q, ω)δG′0

Therefore
Etot

M (q, ω) = ϵ−1(q,q, ω)Eext
M (q, ω)

ϵM (q, ω) =
1

ϵ−1(q,q, ω)
̸= ϵ(q,q, ω) (3)
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Short summary

The dielectric function is the key quantity to describe linear response
spectroscopies.

From macroscopic averaging of Maxwell equations, we showed that we
need to compute the microscopic inverse dielectric function ϵ−1

Dielectric matrix ϵ(q+G,q+G′, ω) contains all the microscopic
fluctuations of the field. We take the inverse and then the macroscopic
average.

Interpretation: All microscopic components of the field couple together to
produce the macroscopic response.
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Next step

How to relate ϵ(q+G,q+G′, ω) to response functions from TDDFT?
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Longitudinal, transverse, and optical limit

Any vector field E can be decomposed into a longitudinal and a transverse
part

E = EL +ET

In real space, we have

∇×EL = 0, ∇.ET = 0

In reciprocal space

EL(k;ω) =
k

k

(
E(k;ω).

k

k

)
,

ET (k;ω) = E(k;ω)−EL(k;ω) = −k

k
×
(
k

k
×E(k;ω)

)
.

This is known as the Helmholtz decomposition.
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Longitudinal, transverse, and optical limit

Dielectric tensor in the longitudinal-transverse basis

↔
ϵM (q;ω) =

(
ϵLLM (q;ω) ϵLTM (q;ω)
ϵTL
M (q;ω) ϵTT

M (q;ω)

)
. (4)

Equation of propagation of the electric field

|q|2ET (q;ω) =
ω2

c2
↔
ϵM (q;ω)E(q;ω), (5)

q is the momentum of the photon.
Normal modes:

Purely longitudinal field: condition of propagation of the plasmon,
ϵTL
M (q;ω) = 0.

Purely transverse electric field: dispersion relation of the photon,

|ω2 ↔
ϵ
TT

M (q;ω)− c2q2
↔
1 | = 0.

This yields the dispersion relation for transverse electromagnetic waves
(photons) and longitudinal electromagnetic waves (plasmons).
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Longitudinal, transverse, and optical limit

A photon is a transverse field, which cannot be represented by a scalar
potential.

TDDFT can only deal with scalar potentials as perturbation.

Solution 1: Take the optical limit

Solution 2: Use Time-Dependent Current Density Functional Theory
(TDCDFT)
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Longitudinal, transverse, and optical limit

Optical limit (or long-wavelength limit, dipole approximation):
The scale of the variation of the field is very large compared to the
characteristic size of the system.

Consequence: at any instant in time, the field can be considered uniform
in the system.

Valid if λ → ∞. Equivalent to the limit q → 0.

Quick estimate: If we take a0 ∼ 0.5nm as characteristic length scale, then
λ > 10a0 corresponds to photon energies below 22.5eV .
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Limitation

If the external field is not macroscopic, this does not work.
The averaging procedure has no meaning.

One needs another definition of the averaging, based on the statistical and
quantum mechanical sense. (Beyond the scope of this lecture.)

Examples:

x-ray spectroscopy (very short wavelength)

EELS with atomic resolution
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Optical limit for cubic materials

For cubic materials

↔
ϵM (q;ω) =

(
ϵLLM (q;ω) 0

0 ϵTT
M (q;ω)

)
.

Longitudinal perturbation induces a longitudinal response.
Transverse perturbation induces a transverse response.

In the optical limit

ϵTT
M (q → 0;ω) = ϵLLM (q → 0;ω)

Knowledge of the longitudinal response to a longitudinal perturbation is
enough!

This can be readily generalized to other symmetries, except monoclinic
and triclinic.
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Connecting with TDDFT

Approach by Del Sole and Fiorino1.
Consider a perturbing field EP

EP = Eext +Eind,T = E−Eind,L,

Why? EP is macroscopic !
One can show that

ET (q+G;ω) =
ω2

c2|q+G|2
DT (q+G;ω) (6)

In the optical limit, ω2

c2
≪ 1

|q+G|2 for G ̸= 0.

Microscopic components of the transverse induced field are negligible in
the optical limit.

1Phys. Rev. B 29, 4631 (1984)
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Connecting with TDDFT

Consider a perturbing field EP = E−Eind,L.

Polarization is related to induced electric field via a quasi-polarizability
↔
α̃

P(q+G;ω) =
∑
G′

[ ↔
α̃ (q;ω)

]
GG′E

P (q+G′;ω)

Eind(q;ω) = −4πP(q;ω)

Combining these equations give

P(q;ω) =
[ ↔
α̃ (q;ω)

]
00
E(q;ω) + 4π

[ ↔
α̃ (q;ω)

]
00

q

q

q

q
P(q;ω).

Polarization on both sides: self-consistent equation
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Connecting with TDDFT

Self consistent equation: directly linked to local-field effects

P(q;ω) =
[ ↔
α̃ (q;ω)

]
00
E(q;ω)

+4π
[ ↔
α̃ (q;ω)

]
00

q

q

q

q
P(q;ω).

After some algebra

↔
ϵM (q;ω) =

↔
1 +4π

[ ↔
α̃ (q;ω)

]
00

[
↔
1 +4π

q

q

q

q

[ ↔
α̃ (q;ω)

]
00

1− 4π
[
α̃LL(q;ω)

]
00

]
.
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Connecting with TDDFT

We only need the longitudinal-longitudinal part

ϵLLM (q;ω) =
1

1− 4π
[
α̃LL(q;ω)

]
00

One can show that [
α̃LL(q;ω)

]
00

= −
[
χρρ(q;ω)

]
00

q2
.

where χρρ the density-density response function from TDDFT.

Putting everything together:

ϵLLM (q;ω) =
1

1 + 4π/q2
[
χρρ(q;ω)

]
00

.
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Link with quantum electrodynamics (QED)

In quantum electrodynamics,2 both matter and photon field are quantized
and treated within one Hamiltonian.

Taking the non-relativistic limit (Pauli-Fiertz Hamiltonian) and assuming
no back-reaction of light on matter, one arrives at the coupled
(self-consistent) Schrödinger-Maxwell equations.

Assuming linear response, one can further decouple Maxwell and
Schrödinger equations.

2Ruggenthaler, Tancogne-Dejean, Flick, Appel, Rubio, Nature Reviews
Chemistry 2, 0118 (2018)
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Comparison to Lorentz model

Classical model for the local-field correction.
The local field: sum of the applied external field and an induced field
created by neighboring dipoles

Eloc(ω) = Eext(ω) +Edip(ω),

with Edip(ω) = 4π
3 P(ω) for a cubic media.

We get

ϵLorentz(ω) =
1

1− 4π
3 α(ω)

.

Exact result

ϵLLM (q;ω) =
1

1− 4π
[
α̃LL(q;ω)

]
00

N. Tancogne-Dejean 29 / 32



Some references

H. Ehrenreich, in the Optical Properties of Solids, Varenna Course
XXXIV, edited by J. Tauc (Academic Press, New York, 1966), p. 106

R. M.Pick, in Advances in Physics, Vol. 19, p. 269

D. L. Johnson, Physical Review B 12, 3428 (1975)

S. L. Adler, Physical Review 126,413 (1962)

N. Wiser, Physical Review 129, 62 (1963)

R. Del Sole and E. Fiorino, Physical Review B 29, 4631 (1984)

W. L. Mochan and R. Barrera, Physical Review B 32, 4984 (1985);
ibid 4984 (1985)

N. Tancogne-Dejean 30 / 32



Summary

The key quantity is the dielectric tensor

Relation between microscopic and macroscopic fields

The longitudinal part is enough to describe the full optical response in
the long wavelength limit (q → 0)

How to connect with response function from TDDFT
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