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Maxwell’s Equations in Free Space

In vacuum the Maxwell equations read:

∇ · E = 0 (Gauss’s Law)

∇ · B = 0 (No magnetic monopoles)

∇× E = −∂B
∂t

(Faraday’s Law)

∇× B = µ0ϵ0
∂E

∂t
(Ampère-Maxwell Law)

Electromagnetic potentials

E = −∇ϕ− ∂A

∂t
, B = ∇× A
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Gauge Freedom and the Coulomb Gauge

The electromagnetic potentials ϕ and A are not uniquely defined; their
redundancy allows a gauge transformation:

A′ = A+∇χ, ϕ′ = ϕ− ∂χ

∂t

where χ(r, t) is an arbitrary scalar function.

In source-free regions or when considering radiation fields (where there
are no free charges), one can always choose the gauge function χ such
that the scalar potential ϕ vanishes.

ϕ = 0

In the Coulomb gauge we also impose:

∇ · A = 0

so that the electric field reduces to:

E = −∂A
∂t
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Wave Equation for the Vector Potential

Ampère-Maxwell law

∇× B = µ0ϵ0
∂E

∂t

Recall that (in Coulomb gauge, for source free regions):

B = ∇× A , E = −∂A
∂t

Then, from the Ampère-Maxwell law we have:

∇× (∇× A) = −µ0ϵ0
∂2A

∂t2

Using the vector identity

∇× (∇× A) = ∇(∇ · A)−∇2A.

∇× (∇× A) = −∇2A (since ∇ · A = 0)

we obtain the wave equation for the vector potential:

∇2A− 1

c2
∂2A

∂t2
= 0
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Separation Ansatz and the Helmholtz Equation

Assume a separable solution of the form:

A(r, t) = a(r)T (t).

Substituting into the wave equation yields:

∇2a(r)

a(r)
=

1

c2
T ′′(t)

T (t)
= −k2

Thus, the spatial part obeys the Helmholtz equation:

∇2a(r) + k2a(r) = 0

and the time-dependent part satisfies harmonic oscillator ODE

T ′′(t) + c2k2T (t) = 0
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Separation of Variables and Mode Expansion

Mode expansion

A(r, t) =
∑
m

√
ℏ

2ϵ0ωm

[
am(t)um(r) + a†m(t)u(r)

]
Here am(t) and a†m(t) are complex numbers.

Inserting this into wave equation yields:

∇2um(r) +
ωm

c
um(r) = 0

∂2am(t)

∂t2
+ ω2

mam(t) = 0
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Solutions for Separation Ansatz

Solution for time-dependent coefficients:

am(t) = ame
−iωmt

a†m(t) = a†me
+iωmt

am(t), a
†
m(t) ∈ C as before.
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Solutions for Separation Ansatz

Use cuboid with volume V for the domain of the solution.
Assume periodic boundary conditions

A(r + km, t) = A(r, t)

with
km = m1a+m2b+m3c, m1,m2,m3 ∈ Z

Solution of Helmholtz equation:

um(r) =
1√
V
em exp(ikm · r)
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Sketch of EM Mode in a 3D Box
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Solutions for Separation Ansatz

Orthogonality of modes ∫
V
u∗m(r)un(r)dV = δm,n

From the Coulomb gauge condition we also can conclude:

∇ · A = 0 −→ em · km = 0

which implies that modes are transversal.

Allowed are two transversal polarizations in the plane perpendicular to the
propagation direction km.
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Explicit form of solutions

Vector potential

A(r, t) =
∑
k,λ

√
ℏ

2ϵ0ωkV
ϵk,λ

[
ak,λ e

i(k·r−ωk t) + a†k,λ e
−i(k·r−ωk t)

]

Electric field

E(r, t) = −∂A(r, t)
∂t

= i
∑
k,λ

√
ℏωk

2ϵ0V
ϵk,λ

[
ak,λ e

i(k·r−ωk t) − a†k,λ e
−i(k·r−ωk t)

]
Magnetic field

B(r, t) = ∇× A(r, t)

= − i

c

∑
k,λ

√
ℏωk

2ϵ0V
ϵk,λ × k

[
ak,λ e

i(k·r−ωk t) − a†k,λ e
−i(k·r−ωk t)

]
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Explicit form of solutions

Energy of the (classical) Multi-Mode field

H =
1

2

∫
V
ϵ0E

2 +
1

µ2
B2dV

=
1

2

∫
V
ϵ0

(
−∂A
∂t

)2

+
1

µ2
(∇× A)2dV

=
1

2

∑
m

ℏωm(ama
†
m + a†mam)

Up to here, we still have am, a
†
m ∈ C as before.
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Quantization of the Multi-Mode field

Quantization of the Multi-Mode field: Bosonic commutation relations

[ân, âm] = 0, [â†n, â
†
m] = 0, [ân, â

†
m] = iℏ δnm

Reminder: Harmonic Oscillator (for a single mode)

Hn =
p̂2n
2

+
1

2
ω2
nq̂

2
n, [q̂n, p̂n] = iℏ

Creation and annihilation operators:

ân = (2ℏω2)
−1/2(ωnq̂n + i p̂n), q̂n = (ℏ/2ωn)

1/2(ân + â†n)

â†n = (2ℏω2)
−1/2(ωnq̂n − i p̂n), p̂n = i(ℏ/2ωn)

1/2(ân − â†n)
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Hamilton of the Multi-Mode field

Classical Multi-Mode Hamiltonian

H =
1

2

∑
m

ℏωm(ama
†
m + a†mam)

Quantization: Elevate C numbers to operators

am −→ âm

a†m −→ â†m

Quantized Hamilton of the Multi-Mode field

Ĥ =
1

2

∑
m

ℏωm(âmâ
†
m + â†mâm)

=
∑
m

ℏωm(â
†
mâm + 1/2)

The free EM field corresponds in quantized form to a sum of free quantum
harmonic oscillators.
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a†m −→ â†m
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†
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Fock number states

Single mode
â†mâm |n⟩ = n |n⟩

n photons in state |n⟩.

Fock number states are energy eigenstates of the Oscillator.

Ĥ |n⟩ = ℏω(â†mâm +
1

2
) |n⟩

= ℏω(n +
1

2
) |n⟩

= En |n⟩

Raising and lowering

â† |n⟩ =
√
n + 1 |n + 1⟩

â |n⟩ =
√
n |n − 1⟩
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â† |n⟩ =
√
n + 1 |n + 1⟩
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Multi-mode field

EM field state vector for M oscillators

|n1⟩ ⊗ |n2⟩ ⊗ ...⊗ |nM⟩ = |n1n2...nm⟩

Ground state of the EM field

|0⟩ ⊗ |0⟩ ⊗ ...⊗ |0⟩ = |0, 0, ...., 0⟩ = |0⟩

Energy expectation value of ground state

⟨0| Ĥ |0⟩ = ⟨0|
∑
m

ℏωm(â
†
mâm +

1

2
) |0⟩

=
1

2

M∑
m=1

ℏωm
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Multi-mode field

Vacuum energy diverges

lim
M→∞

1

2

M∑
m=1

ℏωm → ∞

Not a problem in practice, since only energy differences can be measured.

Normal ordering
By imposing

⟨0| : ââ† : |0⟩ = 0

the vaccum expectation value of the Multi-mode Hamiltonian can be set
to zero.
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Multi-mode wavefunction in position space

⟨x1, x2, . . . , xm|n1, n2, . . . , nm⟩ =

1√
n1! n2! · · · nm!

∣∣∣∣∣∣∣∣∣
ϕn1(x1) ϕn2(x1) · · · ϕnm(x1)
ϕn1(x2) ϕn2(x2) · · · ϕnm(x2)

...
...

. . .
...

ϕn1(xm) ϕn2(xm) · · · ϕnm(xm)

∣∣∣∣∣∣∣∣∣
+

The notation |·|+ is used to indicate that the sum over permutations is
taken with only positive signs – that is, this object is the permanent,
rather than the determinant.

The orbitals are the usual oscillator states

ϕn(x) =

(
1

2n n!

) 1
2
(

1

π1/2 a

) 1
2

Hn

(x
a

)
exp

(
− x2

2a2

)
,

where Hn is the nth Hermite polynomial and a =
√

ℏ/ωn is the oscillator
length.
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The notation |·|+ is used to indicate that the sum over permutations is
taken with only positive signs – that is, this object is the permanent,
rather than the determinant.
The orbitals are the usual oscillator states

ϕn(x) =

(
1

2n n!

) 1
2
(

1

π1/2 a

) 1
2

Hn

(x
a

)
exp

(
− x2

2a2

)
,

where Hn is the nth Hermite polynomial and a =
√

ℏ/ωn is the oscillator
length.
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Coherent states / Glauber states - Eigenvalue equation

The coherent state |α⟩ is defined by the eigenvalue equation of the
annihilation operator a

a |α⟩ = α |α⟩ , ⟨α| a† = α∗ ⟨α|

The coherent state can be expressed as an infinite superposition of number
states:

|α⟩ = e−|α|2/2
∞∑
n=0

αn

√
n!

|n⟩

In a similar way, the bra is written as:

⟨α| = e−|α|2/2
∞∑
n=0

(α∗)n√
n!

⟨n|
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Coherent states - Check of the Eigenvalue Equation

Start with the expansion:

|α⟩ = e−|α|2/2
∞∑
n=0

αn

√
n!

|n⟩ .

Acting with a and using a |n⟩ =
√
n |n − 1⟩:

a |α⟩ = e−|α|2/2
∞∑
n=0

αn

√
n!

a |n⟩ = e−|α|2/2
∞∑
n=1

αn

√
n!

√
n |n − 1⟩

Change the summation index via m = n − 1:

a |α⟩ = e−|α|2/2
∞∑

m=0

αm+1√
(m + 1)!

√
m + 1 |m⟩ = α e−|α|2/2

∞∑
m=0

αm

√
m!

|m⟩

Hence, we recover
a |α⟩ = α |α⟩
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Coherent states - Position and Momentum

The position and momentum operators for the harmonic oscillator are
written as:

x̂ =

√
ℏ
2ω

(a+ a†), p̂ = i

√
ℏω
2

(a† − a).

The expectation values in the coherent state |α⟩ are:

⟨x⟩ =
√

ℏ
2ω

(α+ α∗),

⟨p⟩ = i

√
ℏω
2

(α∗ − α).
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Coherent states - Variances / Uncertainty Product

For coherent states, the fluctuations are independent of α, yielding:

∆x2 = ⟨x2⟩ − ⟨x⟩2 = ℏ
2ω
,

∆p2 = ⟨p2⟩ − ⟨p⟩2 = ℏω
2
.

Using the variances,

∆x2∆p2 =

√
ℏ
2ω

· ℏω
2

=
ℏ
2
,

which is the minimum allowed by the Heisenberg uncertainty principle.
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Coherent states - Relation to number operator and states

For the number operator N̂ = a†a, the expectation value in a coherent
state is:

⟨N⟩ = ⟨α| a†a |α⟩ = |α|2.

The variance is given by:

(∆N)2 = ⟨N2⟩ − ⟨N⟩2 = |α|2,

The overlap (or expansion coefficient) is provided directly by the expansion:

⟨n|α⟩ = e−|α|2/2 αn

√
n!
.

This shows that the probability of finding n quanta in the state is a
Poisson distribution.
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Coherent States - Poissonian Distribution

Example: |α|2 = 4, the probability is

Pn = e−4 4
n

n!
,

for n = 0, 1, 2, . . ..

0 1 2 3 4 5 6 7 8 9 10
0

5 · 10−2

0.1

0.15

0.2

n

P
n
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Coherent states - Position Representation

A common form for the coherent state in position space is:

⟨x |α⟩ =
( ω

πℏ

) 1
4
exp

[
− ω

2ℏ
(x − x0)

2 +
i

ℏ
p0 x

]
,

where the displacement parameters relate to α as

x0 =

√
2ℏ
ω

ℜα, p0 =
√
2ℏωℑα.

An overall phase factor may be present but does not affect observables.
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Glauber model for ideal photon detection

The electric field operator is decomposed into positive and negative
frequency components:

Ê (r, t) = Ê (+)(r, t) + Ê (−)(r, t)

The positive frequency component is given by:

Ê (+)(r, t) = i
∑
k

√
ℏωk

2ϵ0V
âk e

i(k·r−ωkt)

Positive and negative components are adjoint to each other

Ê (−)(r, t) =
(
Ê (+)(r, t)

)†

The positive frequency component describes photon absorption at space
time r, t.
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The positive frequency component is given by:
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Intensity in Photon Detection

Transition rate between quantum EM field states |i⟩ and |f ⟩ states
according to Fermi’s Golden Rule

wi→f =
2π

ℏ
∣∣⟨f | Ê (+)(r, t) |i⟩

∣∣2 ρ(Ef )

Intensity (summing over all possible final states)

I (r, t) ∝
∑
f

∣∣⟨f | Ê (+)(r, t) |i⟩
∣∣2

=
∑
f

⟨i | Ê (−)(r, t) |f ⟩ ⟨f | Ê (+)(r, t) |i⟩

= ⟨i | Ê (−)(r, t)Ê (+)(r, t) |i⟩

Similar for mixed states (described by ρ̂ =
∑

j pj |ψj⟩ ⟨ψj |)

I (r, t) ∝ Tr(ρ̂Ê (−)(r, t)Ê (+)(r, t))
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Intensity for a Single Fock State

Example: single mode with frequency ωk, field in Fock number state |nk⟩

Ê (+)(r, t) = i

√
ℏωk

2ϵ0V
âk e

i(k·r−ωkt)

Intensity

I (r, t) ∝ ⟨nk | Ê (−)(r, t)Ê (+)(r, t) |nk⟩

=
ℏωk

2ϵ0V
⟨nk | â†kâk |nk⟩

=
ℏωk

2ϵ0V
nk

The intensity is proportional to the photon number.
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Correlation Functions of the EM field

n-th order correlation function of the EM field

G (n)(r1, t1 . . . rn, tn; r
′
1, t

′
1 . . . r

′
n, t

′
n) =

⟨Ê (−)(r1, t1) · · · Ê (−)(rn, tn)Ê
(+)(r ′n, t

′
n) · · · Ê (+)(r ′1, t

′
1)⟩

Intensity and first order correlation

I (r, t) = G (1)(r , t; r , t)

Positive definiteness

G (1)(r , t; r , t) ≥ 0

G (n)(r1, t1 . . .rn, tn; r1, t1 . . . rn, tn) ≥ 0
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Young’s Double-Slit Experiment

Source

Slit 1

Slit 2
d Screen

L

Positive frequency component of the electric field on the observation
screen

Ê (+)(r, t) = Ê
(+)
1 (r, t) + Ê

(+)
2 (r, t)

Spherical waves from slit j

Ê
(+)
j (r, t) = Ê

(+)
j (rj , t − sj/c)︸ ︷︷ ︸
field at slit j

1

sj
eksj−ωt
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Young’s Double-Slit Experiment

Intensity

I (r, t) = G (1)(r , t; r , t)

≈ 1

R2

G (1)(x1, x1)︸ ︷︷ ︸
I at slit 1

+G (1)(x2, x2)︸ ︷︷ ︸
I at slit 2

+ 2 cos(k(s1 − s2))G
(1)(x1, x2)︸ ︷︷ ︸

Interference


where xj = (rj , t − sj/c), R ≈ s1, R ≈ s2

Interference maxima

cos(k(s1 − s2)) = 1 −→ k(s1 − s2) = 2πq, q ∈ N
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Young’s Double-Slit Experiment

Two spherical modes

Ê (+) = i

√
ℏωk

2ϵ0V

e−ωkt

R

(
â1 e

ik·s1 + â2 e
ik·s2

)

Intensity
I ∝ ⟨a†1a1⟩+ ⟨a†2a2⟩+ 2| ⟨a†1a2⟩ | cos(k(s1 − s2))
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Young’s Double-Slit Experiment

Examples for different field states

1. Fock state

|ψ⟩ = |n1 = 1, n2 = 1⟩ = |1, 1⟩ = a†1a
†
2 |0⟩

Gives no interference, since

⟨ψ| a†1a2 |ψ⟩ = ⟨0| a2a1a†1a2a
†
1a

†
2 |0⟩ = 0

2. Coherent state
|ψ⟩ = |α, α⟩ = |α⟩ |α⟩

Interference visible, since

I ∝ ⟨a†1a1⟩+ ⟨a†2a2⟩+ 2| ⟨a†1a2⟩ | cos(k(s1 − s2))

= 2(1 + cos(k(s1 − s2)))|α|2
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Young’s Double-Slit Experiment

Examples for different field states

1. Fock state

|ψ⟩ = |n1 = 1, n2 = 1⟩ = |1, 1⟩ = a†1a
†
2 |0⟩

Gives no interference, since

⟨ψ| a†1a2 |ψ⟩ = ⟨0| a2a1a†1a2a
†
1a

†
2 |0⟩ = 0

2. Coherent state
|ψ⟩ = |α, α⟩ = |α⟩ |α⟩

Interference visible, since

I ∝ ⟨a†1a1⟩+ ⟨a†2a2⟩+ 2| ⟨a†1a2⟩ | cos(k(s1 − s2))

= 2(1 + cos(k(s1 − s2)))|α|2
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Young’s Double-Slit Experiment

3. Single photon state

|ψ⟩ = 1√
2
(a†1 + a†2) |0⟩

Interference visible, since

I ∝ 1

2
+

1

2
+ cos(k(s1 − s2)))|α|2

−→ the single photon is interfering with itself
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