Introduction to Many-body Theory Il

Part lll: Linear response and examples
- Conserving approximations and TDDFT
- The 2-particle Green’s function and optical spectra
- Linear response
- Examples: Time-dependent screening in an electron gas



The Phi-functional

The self-energy can be written as the functional derivative
of a so-called Phi-functional.
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The Phi-functional can be defined as
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Approximate self-energies need not be Phi-derivable, for example
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is not a Phi-derivable self-energy

Theorem (Baym): If a self-energy is Phi-derivable and we solve the Dyson equation self-consistently with this
self-energy then the conserving laws of energy, momentum and particle number are satisfied

The theorem is a consequence of the invariance of the Phi-functional under space and time translations as
well as gauge transformations

It is a many-body version of the Noether theorem

LI
For example: self-consistent GW is a Phi-derivable approximation !




Ulf von Barth et al.
Conserving approximations in TDDFT “Conserving approximations in TDDFT”, Phys.Rev.B72, 235109 (2005)
We define the Hartree-exchange-correlation action functional by AHXC [n] — —i(I)[GS [TLH
Theorem |I:  The Hxc potential
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satisfies the linearised Sham-Schluter equation with a Phi-derivable self-energy
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which is precisely the LSS equation



Theorem 2: The Hxc potential from the last equation satisfies the zero-force theorem
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Proof: We use the relation ~ —10® = /dl Vhxe(1)on(1)

and use that the Phi-functional is invariant under the coordinate change  r — r + R(¢)
To first order in R(t) we have  dn(r,t) = n(r + R(?),t) —n(r,t) = R(t) - Vn(r,t)

and therefore
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The 2-particle Green’s function

We can expand the two-particle Green’s function using Wick’s theorem
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Again only connected diagrams contribute. In the same way as before non-connected diagrams cancel and we can
expand in G-skeletons by removing self-energy insertions



Gy reducible kernel K.
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K. irreducible kernel K
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Bethe-Salpeter
equation
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To find the 2-particle Green’s function we have to solve the Bethe-Salpeter equation
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L(1,2:3,4) = G(1;4)G(2; 3) + / G(1:1)G(3:3)K (1,23, 4)L(4,2:2', 4)

If we expand the self-energy in G-skeletonic diagrams then the following important relation is valid

One can prove this diagrammatically



Let us give an example
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The Bethe-Salpeter equation is then given by

This equation is relevant for describing excitons in semiconductors



Linear response functions
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There is a close relation between the density response function and the Bethe-Salpeter equation. Ve have

L(1,2;1,2)) = [G2(1 2:1',2 ) G(1,1’) (2 2)]

and therefore

X(1,2) = =i [(T {an (1) (2)}) —n(1)n(2)] = =i L(1,2;17,27)

In combination with the Bethe-Salpeter equation we can then further derive that

x(1,2) = P(1,2) +/d3d4P(1,3)w(3,4)X(4, 2)

A diagrammatic expansion of the polarisability therefore directly gives an approximation for the density response
function



Random Phase Approximation and plasmons
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If we calculate the Bethe-Salpeter from the Hartree self-energy
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then the Bethe-Salpeter equation becomes




From x(1,2) = —iL(1,2;1%,2%) itthen follows

if we take the retarded component of this expression and Fourier transform then we find

XR(X17X2;w) — X()R(X17X2;w) + /dXBdX4 XOR(X17XB;W)U(X37X4)XR(X47X2;w)

This approximation for the density response function is also known as the Random Phase Approximation (RPA).

A better name is the Time-Dependent Hartree Approximation (it amounts to TDDFT with zero xc-kernel)



Let us now take the case of the homogeneous electron gas. Since the system is translational invariant we can write
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The RPA response function has poles at the poles of Xo(q,w) and when

X
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The extra pole corresponding to this condition is known as the
plasmon and corresponds to a collective mode of the electron gas



Fermi sphere
with radius pr
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Sudden creation of a positive charge (such as in the creation of a core-hole)
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We can calculate the induced density change from the RPA response function. A few manipulations lead to
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The integral can be split into a contribution from particle-hole
excitations and a contribution from the plasmon



© o
plasmons

The positive charge is screened
at a time-scale of the inverse
plasmon frequency

t total

Figure 15.7: This figure shows the 3D plot of the transient density in an electron gas with
rs = 3 induced by the sudden creation of a point-like positive charge () = 1 in the origin
at t = 0. The contribution due to the excitation of electron-hole pairs (a) and plasmons (b)
is, for clarity, multiplied by 47 (rpr)? in the plots to the right. Panel (c) is simply the sum
of the two contributions. Units: r is in units of 1/pg, ¢ is in units of 1/w, and all densities
are in units of pj.



In the long time limit we have

has spatial oscillations
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Suppose now that () = q = —lis the same a the electron charge. The total density

change due to this test charge is

q 0ot (1) = q0(r) + 0ms(r)]

The interaction energy between this charge and a generic electron is
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In the static limit W describes the interaction between a test charge an an electron



Linear response: Take home message

- We can derive a diagrammatic expansion for the linear response
function from the diagrammatic rules for the 2-particle Green’s
function

- The linear response function gives direct information on
neutral excitation spectra such as measured in optical absorption
experiments

- The random phase approximation to the linear response function
describes the phenomena of plasmon excitation in metallic systems

- The screening of a an added charge in the electron gas happens
at a time-scale of the inverse plasmon frequency



Spectral properties of an electron gas : GW

We have seen that the spectral function describes the energy distribution of excitations upon addition or removal
of an electron. We therefore expect to see both plasmon and particle-hole excitations when we do a photo-
emission experiment on an electron gas ( or electron gas like metals such a sodium )

Dyson equation
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We calculate the self-energy in the GWV approximation using noninteracting Green’s function we find

k+p

ns _ d’/dkk§k’/d 2(q.w —
(p, w) (%)gp/ o G=(k,w') e qqW=(¢q,w" — w)

The greater and lesser self-energies describe scattering rates for added or removed particles with energy w and
momentum p

The self-energy vanishes when w — [ due to the fact an added particle can maximally lose energy W — it as
states below the Fermi energy are occupied

(X7 (q,w) = 25(q,w)) = —2Im ¥£7(q,w) = I'(q,w)

lim Im X" (q,w) =0 2 (q,w) = A(q,w) — 3.F(q,w)
W— 2



Scattering processes

Loss of energy by a particle. Absorption of energy by a hole.
Scattering rate given by ¥~ (p, w) Scattering rate given by — Y <(p,w)
Only relevant when p > prg Only relevant when p < pr

A plasmon can be excited A plasmon can be absorbed

only when o > 1+ w, only when w < 1 — w,



Absorption of plasmons

by hole states
Energy loss to plasmons
by particle states

1
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Figure 15.9: The imaginary part of the retarded self-energy —Im[X8(p,w + p)] = I'(p, w +
w)/2 for an electron gas at s = 4 within the GoW}, approximation as a function of the
momentum and energy. The momentum p is measured in units of pg and the energy w and
the self-energy in units of €,, = pa/2.



For the spectral function this implies the following

I'(q,w)
(w—€eq — Alq,w))? + (F(%’w))Q

A(q,w) = —2Im G"(q,w) =

If TI'(q,w) is small then the spectral function can only become large
(~1/r') when

w—€q —A(q,w) =0
The Luttinger-Ward theorem tells that this happens when ¢g=DpF, W=
H— €pp — A(meu) =0

(not explained in these lectures, requires a derivation of the
Luttinger-Ward functional, see G.Stefanucci, RvL, Nonequilibrium Many-Body
Theory of Quantum Systems)



w—€p —A(p,w) =0
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Absorption of plasmons
by hole states quasi-particle state

Energy loss
to plasmons
by particle
states

Figure 15.12: The spectral function A(p, u+w) as a function of the momentum and energy for
an electron gas at vy = 4 within the GoW, approximation. The momentum p is measured
in units of pr and the energy w and the spectral function in units of €,, = pz /2.



The momentum distribution in the electron gas is given by

K dw
%:/ “ Ap,w)

o 270

Due to the appearance of a delta peak in the spectral function at the Fermi momentum prthe momentum
distribution jumps discontinuously at the Fermi momentum.The jump is the strength of the quasi-particle peak.
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Y.Pavlyukh, A.-M. Uimonen,
Beyond GW G.Stefanucci, RvL, PRL 2016
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Due to negative corrections around the chemical potential in the rate function, vertex
corrections sharpen the quasi-particle peak as compared to GoWo
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Vertex corrections:

- Reduce the band width by 27 percent ( sc GW
increases by 20 percent

- Wash out the plasmon above the chemical potential

- Reduce the first plasmon energy




Spectral properties of the electron gas: Take home message

- By addition or removal of an electron we create particle-hole
and plasmon excitations

- The self-energy at the Fermi-surface vanishes due to phase-space
restrictions. This has various consequences:

|) The momentum distribution of the electron gas jumps
discontinuously at the Fermi momentum

2) Quasi-particles at the Fermi surface have an infinite life-time.

- The GW approximation gives extra plasmon structure in the
spectral function due to plasmons

- Multiple-plasmons excitations (satellites) are beyond GWV and require
vertex corrections.




That’s all folks!



