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Solids in Octopus

Solids are periodic objects

Bloch theorem: wavefunctions are labeled by a band index and a
k-point index:

ψn,k(r) = un,k(r)e
ik.r

We can have 1D periodic (like atomic chains), 2D periodic (slabs), 3D
periodic (bulks).
Octopus treats properly these cases as mixed zero-boundary conditions
and periodic boundary conditions

We have two grids:

The real space is sampled by the real-space grid
The Brillouin zone is sampled by a k-grid

Only velocity gauge description in dipole approximation of the
electromagnetic field is possible
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Symmetries in Octopus

Crystals have well defined symmetries

Space group and symmetries of periodic systems are identified using
the spglib library.

Symmetries are restricted to symmorphic symmetries (inversion,
rotations, and mirror planes).

Symmetry-breaking perturbations (kicks, vector potentials, strain, ...)
can be used

Octopus finds the small group of symmetries that are left invariant
the perturbation direction.
These symmetries are used for time-dependent calculations.

Charge and current densities are also symmetrized (and other
observables).
⇒Important for numerical stability
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Non-orthogonal cells

Octopus can work with non-orthogonal cells

The grid points are generated along the non-orthogonal axis
⇒The generated grid preserves rotations and mirror planes

The stencil for finite differences contains cross-terms in the derivatives

Figure: Hexagonal cell generated by u and v, and the corresponding
discretization. Natan et al., PRB 78, 075109 (2008)
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Treatment of the velocity gauge in Octopus

Time dependent Kohn-sham equation within velocity gauge

i
∂

∂t
|ψn,k(t)⟩ = ĤKS(t)|ψn,k(t)⟩,

with

⟨r|ĤKS(t)|r′⟩ =

[
1

2

(
−i∇− 1

c
A(r, t)

)2

+ vs(r, t)

]
δ(r− r′) .
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Treatment of the velocity gauge in Octopus

Within dipole approximation, Octopus uses an accelerated wavefunction

ψA
n,k(r, t) = eiA(t).rψn,k(r, t).

It is easy to show that

e−iA(t).̂r

[
p̂2

2
+ v̂s

]
|ψA

n,k(t)⟩ =
[
1

2
(p̂− 1

c
A(t))2 + v̂s

]
|ψn,k(t)⟩.

The time-evolution of |ψn,k(t)⟩ is described using the ground-state

Hamiltonian Ĥ0 =
[
p̂2

2 + v̂s

]
applied to the accelerated wavefunction.
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Features related to solids

Octopus has many solid-dedicated features

Density-of-states (DOS)

Band-structure calculations

Optical conductivity/dielectric function calculations

Magnons and generalized Bloch theorem

Band structure unfolding

Phonons

...
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The tutorials

You can find the tutorials under this link:
https://octopus-code.org/documentation/16/tutorial/

Periodic systems series:

Lesson 1: Getting started with periodic systems

Lesson 2: Wires and slabs

Lesson 3: Optical spectra of solids (lengthy calculations!)

Lesson 4: Band structure unfolding

Lesson 5: High-harmonic generation in solids

Lesson 6: Cell relaxation
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The tutorials

You can find the tutorials under this link:
https://octopus-code.org/documentation/16/tutorial/

Have Fun !
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