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Why do we have so many real-time TDDFT codes?

and many more....
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Part 1: Density Functional Theory
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How to do Kohn-Sham Density Functional Theory?

Kohn-Sham equations[
−1

2
∇2 + vext(r) + vH[n](r) + vxc[n](r)

]
φi(r) = ϵiφi(r)

n(r) =

N∑
i=1

|φi(r)|2

We need to choose an approximation for vxc[n]

We need to solve a Poisson equation to get vH[n]
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How to do Kohn-Sham Density Functional Theory?

Kohn-Sham equations for noncollinear magnetism

[(
−1

2
∇2 + vext(r) + vH[n](r) + vxc[n,m](r)

)
σ0

+
1

2c
Bxc[n,m](r) · σ +

1

4c2
σ · (∇vs(r)×−i∇)

]
φi(r)

= ϵiφi(r)

nσ,σ′(r) =

N∑
i=1

∑
σ=↑,↓

φi,σ(r)φ
∗
i,σ′(r)

We need to choose an approximation for vxc[n,m] and Bxc[n,m]

We need to solve a Poisson equation to get vH[n]
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How to do Kohn-Sham Density Functional Theory?

Kohn-Sham equations[
−1

2
∇2 + vext(r) + vH[n](r) + vxc[n](r)

]
φi(r) = ϵiφi(r)

n(r) =

N∑
i=1

|φi(r)|2

It is a boundary value problem → We need to specify the boundary
conditions
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Boundary conditions

For finite systems, functions go to zero away from the center of mass
of the system:

Force the functions to vanish at the boundaries of the simulation box
The simulation box must be sufficiently large to encompass the
wavefunctions

Other BCs are possible:

periodic (Born-von Kármán)
zero derivative
absorbing
semi-periodic
etc
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What about the wavefunctions?

We need to know the total electronic density

n(r) =

N∑
i=1

|φi(r)|2 .

And hence we need to know the Kohn-Sham wavefunctions → Freedom in
the choice of representations, as long as a (complete) basis is used !

Real-space sampling, splines, ...

Boundary-condition adapted basis (planewaves, localized orbitals)

Most TDDFT codes use different bases for representing the wavefunctions.
The basis also affects the calculation of the Laplacian, but also the forces
and stress tensor.
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How to do Kohn-Sham Density Functional Theory?

Kohn-Sham equations[
−1

2
∇2 + vext(r) + vH[n](r) + vxc[n](r)

]
φi(r) = ϵiφi(r)

n(r) =
N∑
i=1

|φi(r)|2

It is a boundary value problem → We need to specify the boundary
conditions

A self-consistency scheme is used to treat the non-linearity

Solve for eigenstates at fixed vHxc, then update n and vHxc
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Self-consistent field calculation

and many possible variations of this....
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Other decisions to make

Do we need all the electrons? → all electrons vs pseudopotentials

Do you care about spin-degrees of freedom? → collinear or
non-collinear spin-DFT
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Summary for the DFT part

Boundary-value problem → the boundaries need to be specified

The representation of the wavefunctions needs to be chosen

An algorithm to achieve self-consistency needs to be specified (mixing,
preconditioning, subspace diagonalization, convergence criteria, . . . ).

N. Tancogne-Dejean 12 / 23



Part 2: Time-dependent Density Functional
Theory
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Time-dependent Density Functional Theory

Time-dependent Kohn-Sham equation

i
∂

∂t
φi(r, t) =

(
−1

2
∇2 + vext(r, t) + vHxc[n,Ψ0,Φ0](r, t)

)
φi(r)

n(r, t) =
N∑
i=1

|φi(r, t)|2

We need to choose an approximation for vxc[n] → adiabatic
approximation used almost all the time

We need to solve a Poisson equation to get vH[n]
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Time-dependent Density Functional Theory

Time-dependent Kohn-Sham equation

i
∂

∂t
φi(r, t) =

(
−1

2
∇2 + vext(r, t) + vHxc[n,Ψ0,Φ0](r, t)

)
φi(r)

n(r, t) =
N∑
i=1

|φi(r, t)|2

It is an initial value problem

Usually the ground-state is used as initial state
vHxc[n,Ψ0,Φ0] → vHxc[n]

Various numerical schemes for doing the time-propagation
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Time propagation

Propagation of the wavefunctions in time:

φi(r, t
′) = T̂ exp

{
−i

∫ t′

t
dτ Ĥ(τ)

}
φi(r, t) = U(t′, t)φi(r, t)

which means

φi(r, t
′) =

{ ∞∑
n=0

(−i)n

n!

∫ t′

t
dτ1 . . .

∫ t′

t
dτn T̂ Ĥ(τ1) . . . Ĥ(τn)

}
φi(r, t)
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Time propagation

If the Hamiltonian commutes with itself at different times, we can drop
the time-ordering product and we have

φi(r, t
′) = exp

{
−i(t′ − t)Ĥ

}
φi(r, t)

This is not the case in TDDFT, as we have external time-dependent
perturbations fluctuations of the electronic density.
Solution: split the propagation into short-time propagation using the
composition property:

U(t′, t) = U(t′, τ)U(τ, t) , t′ ≥ τ ≥ t → U(t′, 0) =

N−1∏
i=0

U(ti+∆t, ti)
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A practical scheme for the time propagation

The orbitals φj(t+∆t) are computed from the knowledge of φj(τ) and
H(τ) for 0 ≤ τ ≤ t.

Approximate H(τ), for example when τ in between t and t+∆t

Propagate φj(t) to get φj(t+∆t)

Calculate H(t+∆t) from the orbitals φj(t+∆t)

Interpolate the required H(τ) from H(t) and H(t+∆t)

Repeat steps 2-4 until self consistency is reached

In practice, simpler schemes are often used, and self-consistency is
typically neglected. Instead, we rely on a sufficiently small ∆t.
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A practical scheme for the time propagation

φi(r, t
′) = T̂ exp

{
−i

∫ t′

t
dτ Ĥ(τ)

}
φi(r, t)
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Example of a time propagation: exponential mid-point

The exponential mid-point propagator is given by

U(t+∆t, t) ≈ UEM (t+∆t, t) = exp
{
−i∆tĤ(t+∆t/2)

}
Well grounded theoretically:

Unitary (if the exponential is properly computed)

Preserves time-reversal symmetry (if the self-consistency is achieved)
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A last remaining point: the exponential of the Hamiltonian

If the Hamiltonian matrix can be stored in memory, one can compute
exactly exp{H}.
If not, the exponential must be approximated, e.g. via a Taylor expansion

exp{A} =

∞∑
k=0

1

k!
Ak

A fourth-order Taylor expansion appears to yield good results for some
TDDFT codes.
Other choices are possible: Chebyshev basis expansion, Krylov-subspace
projection (Lanczos method), ...
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Summary for the TDDFT part

Initial value problem → the starting point needs to be specified

An approximation to the time-evolution operator needs to be specified
(exponential mid-point, Runge-Kutta, Magnus expansions,
Crank-Nicolson method, . . . ).

A method for computing the exponential is needed (Taylor,
Chebyshev, Krylov,. . . )

You might want to include self consistency

Should ionic motion be included? → Ehrenfest dynamics or methods
beyond Ehrenfest?

N. Tancogne-Dejean 22 / 23



Acknowledgements

Thank you for your attention

N. Tancogne-Dejean 23 / 23


