Introduction to Many-body Theory I

Part Il : Feynman diagrams, the Green’s function and TDDFT
- Why Green’s functions?
operator orderings and Wick’s theorem
- Feynman diagrams and the self-energy
- Connections to TDDFT: Sham-Schluter equation and linear response kernel



Operator correlators

We have seen that the expansion of an expectation value leads to products of the form of so-called operator
correlators

A

We want to find an efficient way to evaluation such operator correlators. Let us look at one of the simplest
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If we differentiate with respect to the contour times we can generate relations between various correlators



If we differentiate a time-ordered product with respect to a time variable we find

commutator
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For two fermionic field operators it is, however, more convenient to define
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For a general string of fermionic operators we therefore define
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We just put the operators in the correct order and add a plus/minus sign depending on whether the final permutation
was even/odd

from this definition it follows that

T, {Ol . On} = ()" T, {OP(l) = OP<n>}

We further define that operators at equal time are kept in their relative order. For example
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Pairs of fermionic operators behave like bosonic operators



It follows that operators containing an even number of equal time field operators (such as the Hamiltonian) commute
under the time-ordered product, in agreement with our earlier definition

If we expand an expectation value in powers of one- or two-body interactions we obtain strings with an equal number
of annihilation and creation operators. The most general such string has the form

C(1.omi 1) = ()" T, { (1) ()T () (1) ]

J = Rjzj
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From the equation of motion of the field operator YO
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we can derive equations of motion for the operators G,



We find
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We therefore obtain a set of hierarchy equations for the correlators Gy



The first equation in this hierarchy is
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An example of an equation higher in the hierarchy is

] h(2
_Zd@ ( )_

G2(1,2;1,2) = = 6(2,1) G1(1;2) 4 6(2,2') G1(2;2')

_i/diw(z,i)ég(l,z,i;1',2',i+)

In a2 next step we will convert these operator equations into
differential equations



Many-particle Green’s function

The n-particle Green’s function is defined as

T |7 {e hEHEOG) byt ()BT |
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The n-particle Green’s function satisfies the same set of differential equations as the correlators Gy



Martin-Schwinger hierarchy
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(plus a set of similar equations with respect to the primed coordinates)

The hierarchy equations need to be solved with the boundary conditions

Gi(...,tg,...) = —Gg(...,tg —183,...)

which are known as the Kubo-Martin-Schwinger (KMS) boundary conditions
(which can be derived from the definition of the Green’s functions)

From the n-particle Green’s function we can calculate any n-body observable



For example, if O(t) is a |-body operator :
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O(t) = [ dxiit (o, 15
then
(O(t)) = —i/dxo(x, t) G(xz,x 27 ) |x=x/ 2=t

For instance, the density is given by
n(x,t) = —iG(xt,xt")

The calculation of n-body observables is therefore possible once we know how to solve the Martin-Schwinger
hierarchy equations. How to do this!?

Further insight in the hierarchy is obtained by considering a non-interacting system which has the n-particle
Green’s function

gn(l...n,1"...n") = -



The Martin-Schwinger hierarchy simplifies to
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The solution to this equation is

where we denote 9(1, 1/) _ 91(1’ 1/)

This is known as Wick’s theorem




Perturbation expansion

Wick’s theorem allows for an expansion of the n-particle Green’s function in
powers of the non-interacting one-particle Green’s function.

Let us illustrate this procedure for the one-particle Green’s function given by

We can expand this expression in powers of the two-body interaction



For the numerator we have

The integrand has the form
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This can be rewritten as a
non-interacting (2n+1)-
particle Green’s function
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This gives the following expansion for the one-particle Green’s function
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Using Wick’s theorem we can now replace the non-interacting n-particle Green’s functions by determinants



This gives the perturbation expansion for the Green’s function :
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It is now only a technical matter to evaluate these terms

This leads to Feynman diagrams. Let us give an example and expand the numerator N(a,b) to first order



Expanding the 3x3 determinant in the numerator along the first column we find
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which is represented by the following six diagrams
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By a combinatorial argument is follows that the disconnected diagrams from the numerator are cancelled by those
of the denominator and we can further simplify to
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where in the expansion of the determinant we retain only the connected (C) and topologically inequivalent (T1) terms
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Self energy

The expansion of G has the structure

G= — :«—«Q~—++W+...

where the self-energy is defined as the sum over irreducible diagrams (i.e. can not be cut in two by cutting one g-line)

2(1;2) = 1"@“2 = 1?2 + 1‘5‘@’2 +- 1%2 + ...

The Green’s function thus satisfies the equation

G(1,2) =9(1,2) + / d3d4 g(1,3) X(g](3,4) G(4, 2) Dyson equation
Y



Skeletons

A skeleton diagram is a diagram without self-energy insertions, for example

The corresponding skeleton is therefore

T

By replacing ‘g’ by ‘G’ in the skeleton we sum over all self-energy insertions
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It follows that

Z[G]=©+ Lo SR S G e

where we sum over all dressed irreducible skeletons in terms of G




We therefore find the Dyson equation

G(1,2) =g(1,2) + / d3d4 g(1,3) X|G|(3,4) G(4, 2)

or, if we use the equation of motion for g : (105, — h(1))g(1,2) = 4(1, 2)

(10,, — h(1))G(1,1") = §(1,1") + / d2X[G](1,2)G(2,1)
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This is a self-consistent equation of motion for the Green’s function that
needs to be solved with the boundary conditions

Kadanoff-Baym
G(x1tg — i0,2) = —G(x1to, 2) equations



Wh-skeletons

We can further renormalize the interaction lines, by removing all interaction line insertions. For example

1 5 1 0 irreducible
polarizability



We can then define the screened interaction W by
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In formula

Wi(1,2) =w(1,2) + /d3d4w(1,3) P(3,4)W(4,2)

We can then in W-skeletonic diagrams replace w by W with the exception of the Hartree diagram. Ve have

3 - @ ¥ =gs|G, W] =2Xg|G,w] + Xss xc |G, W]

§> double skeletonic



This gives the double-skeletonic expansion for the self-energy
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and the polarizability
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The lowest order in WV gives the GVWV approximation

ZSS,XC(]‘72) = —1 G(172)W(172) m

g

P(1,2) = —i G(1,2)G(2,1) D

Wi(1,2) =w(1,2) + /d3d4 w(l,3) P(3,4) W(4,2)

G(1,2) =g(1,2) + / d3d4 g(1,3)(Xg |G, w|(3,4) + Xssxc |G, W](3,4)) W(4,2)

These form a self-consistent set of equations for G and W



Diagrammatic expansion: Take home message

- Wick’s theorem allows for a straightforward expansion of the
Green’s function in powers of the interaction

- The number of diagrammatic terms can be drastically reduced
by introduction of the self-energy.

- The self-energy can be expanded in powers of the dressed Green’s
function and the screened interaction W by the introduction of

skeletonic diagrams. This leads to self-consistent equations in terms
of G and W.

- The lowest order in this expansion is the famous GWV approximation



Connection to TDDFT: Sham-Schluter equation

Many-body theory can be used to derive an equation for the exchange-correlation potential of TDDFT for a given
diagrammatic expansion

The Kohn-Sham system is a particular many-body system and therefore has a Green'’s function

(@'at | ;V2+v(1)+vHXC(1)]> Gs(1,2) = 5(1,2)
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Hartree + xc potential Kohn-Sham Green’s function

The interacting many-body system satisfies the equation

(i@t | ;V2+v(1)]) G(1,2):5(1,2)+/dSZ[G](l,S)G(S,Z)

| \ Many-body interactions in the self-energy
We now rewrite this equation



(101~ (57 + (1) + vmsc(1)]) G(1,2) = 51,2+ [ 3 (S[6)(1,3)-8(1,3)omee ()G, 2
and we see from the equation of motion of the Kohn-Sham Green’s function that
G(1,2) = G4(1,2) + /d3d4 Gs(1,3)(2|G](3,4) — (3, 4)viaxc(3))G(4, 2)
Since both the exact and the Kohn-Sham system have the same density we have
n(x,t) = —iG(xt,xt") = —iGy(xt, xt™")
and by taking an equal space-time limit we there obtain that

0= / 1344 G (1,3)(S[G1(3.4) — 6(3. 4)vrise(3))G(4.1)

which we can rewrite as



/d3 Gs(1,3)G(3, 1)vpc(3) = /d3d4 Gs(1,3)X|G(3,4)G(4,1) Sham-Schliiter equation

It is an integral equation of the form /d3K(1, 3)?1ch(3) — Q(l) with diagrammatic representation

The equation can be used to derive approximate xc-potentials in TDDFT if we make the replacement G — G

/ 03 Ga(1,3) G (3. 1) vpae(3) = / d3d4. G (1,3)5[G] (3, 4)Ga(4,1)

This is the so-called linearized Sham-Schluter (LSS) equation



TDOEP equations

Solve the Kohn-Sham equations together with the LSS equation using the self-consistency loop

10ppi(1) = (—%V% +0(1) + vnxc(1)) @i (1) —> Gs(1,2)

) '4

/ 43 Go(1,3)C4(3, 1) vpec(3) = / d3d4 G4(1,3)2[G](3,4) G (4, 1) 4— ;;:stiefn$gn5%¥

These are the so-called optimised effective potential (OEP) equations. In case the self-energy is given by the Hartree-
Fock terms obtain the exchange-only TDOEP equations

N
X

Uy  Hartree potential



In the case of x-only TDOEP we have the self-consistency loop

i0101(1) = (5 V3 +0(1) + g (1) + vse(1) (1)

The integral equation can also be written directly in terms of orbitals.

An excellent discussion of TDDFT and many of the issues is given in the textbook
Carsten Ullrich,“Time-dependent density-functional theory: Concepts and applications”

Many more intriguing features of time-dependent xc-potentials in the lectures of Neepa Maitra



The xc-kernel of linear response TDDFT

Let us first see what happens when we make a small change in the Kohn-Sham potential

(z’é’t | ;V2+vs(1)]> Gs(1,2) = §(1,2)

We get

(i@t | ;V2—|—vs(1)—|—5vs(1)]> G'(1,2) = §(1,2)

(@'at | ;V2+vs(1)]> G'(1,2) = 6(1,2) + dvs(1)G(1,2)

The solution of which is

G'(1,2) )+ | d3G4(1,3)0vs(3)G(3,2)

+/ d3 G4(1,3)0vs(3) Gy (3,2)+/ d3d4 G4(1,3)0v5(3)Gs(3, 4)6vs(4)Gs(4,2)+. . . ...



From this expression we see that

0Gs(1,2)
0vs(3)

= G4(1,3)G4(3, 2)

In particular we see that the Kohn-Sham density response function is given by

Coon(l)  0G.(1,17)
=503~ sy~ G262 )

Xs(1,2)
So we could rewrite the linearised Sham-Schluter equation also as

/ d3 xs(1,2)vpe(3) = —i / d3d4 Gs(1,3)%[Gs)(3,4)Gs(4,1)

or, if we subtract out the Hartree potential

Yxe|Gs)(1,2) = X[Gs[(1,2) — o(1,2)vy (1)



So we obtain

/dSXS(l,S)quC(S) = /d3d4G (1,3)xc[G5](3,4)Gs(4, 1)

We can derive an equation for the xc-kernel if we take the functional derivative with respect to the Kohn-Sham
potential. On the left hand side we obtain

5%5(2) / 43 x5 (1, 3)vxe(3) = / d3 5}(@(22)3 )vxc(3)+ / d3xs(1,3) 5?‘5(3)

The two terms on the right can be worked out as

s(1, . .
(@(1,2,3) = 263 a1 9)6,(2,8)G4(3,1) — iGa(1,3)Ga(3,2)Ga(2, 1)

0vs(2) : 3
1 /b\ 3 1 /;\2
5UXC(3) 57}}(0(3) 5%(4)
504 (2) :/ o) 50,2) :/ M fe(3:4)x:(4,2) - = @Q




The term on the right hand side of the LSS equation depends on the choice of self energy and can be worked out
in a similar way

In the x-only approximation we obtain the diagrammatic equation

)

OO

Ulf von Barth et al.
“Conserving approximations in TDDFT”,

<> T
: @ Phys.Rev.B72, 235109 (2005)
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This equation has been usefully applied, for example, in Erhard, Bleiziffer, Gorling, Phys.Rev.Lett. | 17, 143002 (2016)



By choosing more sophisticated approximations to the self-energy we get more elaborate approximations for
the xc-kernel

For example, using the GWV approximation to the self-energy, we obtain the equation

l lec

D
o
<D

| 1
%

e D

screened interaction W



Connection to TDDFT: Take home message

- From the Dyson equation for the Kohn-Sham and the exact system we

can derive the Sham-Schluter equation which an exact equation for the
xc-potential of TDDFT

- The linearised version is equivalent to the TDOEP method and can be
used in a self-consistent manner for the construction of approximate xc-
potentials in TD Kohn-Sham calculations

- By taking a functional derivative of the Sham-Schluter equation we can
derive diagrammatic equations for the xc-kernel of TDDFT



