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Introduction to Many-body Theory |

Part | : Basics
- Time-dependent Schrodinger equation
- A perturbation expansion and propagator
- Second quantisation
- Time-evolution
- The contour idea

Sometimes | state things that require a few steps to work out, this is indicated by the sign

LLI

Have a coffee, take pencil and paper, and try to work out this step !



Many-particle Schrodinger equation

The dynamics of a many-electron system is governed by the time-dependent Schrodinger equation

A

o\

in which the Hamiltonian is given by

A A

Ht)=T+V({t)+W

N N N
A 1 9 ~ 1 S . .
T — -5 E_l V; V(t) = ;:1 v(x;,t) W = i§>j:w(XuXJ)

7

kinetic energy external potential two-body interaction

10V (x,t) = H(t)¥(x,1) U(x,to) = D(x) iz (x1, ...



(details not super important now,

Solving the Schrodinger equation: perturbation expansion the focus is on the general idea)

All the complications are in the two-body interactions, as we know how to solve the noninteracting
problem, so let us try to expand in a perturbative parameter and study

100 (x,t) = (Ho(t) + AW)W(x, 1)

We take the solution to be of the form of a perturbation series
U(x,t) = Uo(x,t) + A\ (x, 1) an

with initial conditions

Uo(x,ty) = P(x) U,(x,t5) =0 (n>1)



Inserting our Ansatz in the Schrodinger equation gives

(10 — Ho(t)) ¥ (x,t) = AW ¥ (x, 1)

N

which leads to the set of equations

(10, — Ho())(Wo(x,t) + AU (x,8) +...) = AW (o (x,t) + ANy (x,¢) +...)

(i0y — Ho(t))¥o(x,t) = 0

(10, — Hy(t))U1(x,t) = WUo(x,t)  etcetera

and generally

(10 — Ho(t))W¥n(x,t) = WU,,_1(x,t) n > 1

We obtain an inhomogeneous partial differential equation that can be solved with the Green function method



The Green function or propagator

Take a complete orthonormal set of states {&m(X)}

D Em(x)én(y) =6(x—y)

and propagate the set with the noninteracting Hamiltonian

i0rom(x,t) = Ho(t)om(x,t) om (X, t0) = Em(x)

Since time evolution is unitary the orthonormality is preserved in time and we have

(anti-symmetrised for fermions, discussed in more
detail later)

D om(X e (y, 1) = 6(x — y)

The N-particle Green function is then defined by

Go(xt,yt') = —if(t —t') Y om(x,t)er,(y, 1)

time evolution p1(t)



A quick calculation gives

(i — Ho(1))Go(xt, yt') = 6(t=t') Y om(x, 1) o0 (3, 1))+ Y _[(i0— Ho(t))pm (x, )]0 (3, 1)

m

=0t —1t')o(x —y)

and the Green function therefore obeys the equation of motion

(10— Ho (1)) Go(xt, yt') =8t — #)3(x — y)

The solution of our inhomogeneous equation is now given by

U, (x,t) :/ dt’/dXGo(gt,Xt’)VAV(X)\I!n_l(X,t')
to

=0

f




With the notation i = (x5, ;) / di = / dx,dt; we can write iteratively

by i)

\Ifl(g, t) — /dl Go(gt,l)W(Xl)\Ifo(l)

e\ AN

Uo(x,1) = /d2 Go(gt,Q)W(KQ)\Ifl(Z) — /d1d2 Go(xt,2)W (x5)Go(2, 1) W (x1)Pqo(1)

and in general

U, (x,t) = /dl ...dn Go(xt, n)VAV(gn)Go(n, n—1)...Gy(2, 1)W(§1)\IJO(1)

. . L L
where the solution for \I!O from its homogeneous equation is given by WP

Uo(x,t) = i/dXGo(gt,Xto)CI)(z) lim Wo(x,?) = /dX5(§—Y)(I)(Y)

_|_ _— —_—
t—td




The solution

Going back to our expansion U(x,t) = Yo(x,t)

and inserting our results we find that the solution can be written as

)\\Ifl(z, t)

U(x,1) = i/dz G(xt,yto)®(y)

n=0

We act with a time propagator on
the initial state

where the so-called dressed or interacting Green function or propagator is defined as

G(xt,yto) = ZG (xt,yto)

Gn(xt,yto) = A" / dl...dnGo(xt,n)W(x,)Go(n,n—1)...Go(2, 1)W(§1)G0(1,Xt0)

this describes a multiple scattering event with the two-body interaction



The solution has a diagrammatic representation, with a nice physical interpretation as multiple scatterings
n )\W )\W u " )\W
G Go | : :

——— = —— ¢ ————— + —————— ..
Xt yto xt yto Xt 1 yto  xt 2 1 yio

G =G+ Go)\WG() + GO)\WGO)\WGO 4+ ...

= Go + GoAW (Go + GOAW G AW Go + ...) = Go + GoAW G
C O\ Propagator

" 4

_‘— = —— + —1—1—‘—

W(x,t) = i/dz G(xt,yto)®(y)

G = Gy + Go\NWG

(y)

N-particle Dyson equation



How to solve the Schrodinger equation: summary

We conclude that one way of solving the time-dependent Schrodinger equation is to first solve the equation

G =Gy + GoAWG == multiple scatterings with the 2-body interaction

and construct the wave function W(X,%) at a later time from the propagator equation

(x, 1) = i / dy G(xt,yto)B(y) | = time propagation

The problem is that here the noninteracting N-particle Green function is still a high-dimensional object

GO(§t7zt/) = Go(X1,..., XN, t;¥1,. .. 7y]\“t/) == contains all particles

which makes the solution of the N-particle Dyson equation a very high dimensional matrix equation



A physical idea

Instead of propagating an N-body object, we add or remove a particle from the system and see how

the system reacts to this perturbation and derive properties of the system from this probe

The propagation of these particle and hole states are described by single particle propagators and are
therefore low-dimensional objects

energy space

Addition and
removal from
energy levels

position space

Addition and
removal from
spatial positions

addition

removal

T
|

These addition

and removal processes
have precise definitions
in operator language



A bit more precise

The propagation of added and removed particles are described by a Green function satisfying a Dyson equation
of the form

G(1,2) = Go(1,2) + /d3d4 Go(1,3)%(3,4)G (4, 2)

where the various interactions with the other particles are described by a so-called self-energy kernel

el @ Ty §_>§ + %

After solving the Dyson equation various observables of the many-body system can be calculated from
the Green function

Explaining all this is the subject of the lectures!



Relation to TDDFT

The Green function formalism can be used to define the exchange-correlation potential of TDDFT from
an integral equation involving the self-energy (the so-called Sham-Schluter equation)

/d2 G0(1,2)G(2,1)ch(2) — /d3d4 GO(1,3)2X0(3,4)G(4,1)

It can be obtained from a variational diagrammatic expression and can be constructed such that the
xc-potential obtained this way automatically incorporates various conservation laws

From it we can further derive diagrammatic expansions for the xc-kernel of linear response TDDFT

These lectures will provide all the background necessary for you to understand these statements in a
precise way!



Position basis (PA.M.Dirac, The principles of quantum mechanics”)

The use of a position basis is advantageous since the external potential and two-body interaction are
diagonal in this basis (and DFT is naturally defined in position space)

x) = |ro) = state in which there is with certainty a particle at spin-space point X

We then have the relations

) = /dX\If(X)IX> (y|¥) = ¥(y)

—

<y\x> = 5(y — X) ‘\I/(y) \2 = probability to find a particle at position Y

so that

) = [ dxix)(xv) [axpoe =1



The case of two particles:
X1X2) = —|X2X1) o x1x1) =0 Pauli exclusion principle

such that in this case

0(y1 —x1) O(y1 —x2)
0(y2 —x1) 0(y2 —x2)

(Y1y2|x1x2) = 0(y1—x1)0(y2—X2)—0(y1—X2)0(y2—x1) =
(Y1y2|X1X2) = —(yoy1|X1X2) = (Yoy1|XoX1) = —(y1Y2|X2X1)

where we used that swapping rows or columns in a determinant yields a minus sign. Ve have the expansion

1 1

|\If> — §/dX1dX2|X1X2><X1X2‘\If> 5 /XmdX2|X1X2><X1X2‘ — 1

Check:

1
(Y1y2|¥) = 5 /XmdX2<Y1YQ‘X1X2><X1X2|\I’> — %/dX1dX2(5(Y1 —X1)0(y2 — X2) — 0(y1 — X2)d(y2 — x1))(x1X2| V)

— %(<y1y2‘\11> —(y2y1|¥)) = (y1y2|¥)



The case of N particles:

X) = |X1...XN)

Px) = |Xp(1) . .XP(N)> = (—1)|P| X1 ... XN) where P is a permutation with parity |P|

For the overlaps we have

0(y1 —x1) ... 0(y1—Xn)| definition
(yIx) =(y1...yN|x1...XN) = 5 5 = 0(y — x)

and we find the expressions

) = [ dxlx) (<l [ ) =1

where we defined



Second quantization

There is a unique operatorzﬁ(x) that generates the position basis. It is defined by

x1) = I%T(Xl)m A A
X1 Xx2) = I%T(X2) X1>=¢T(X2)¢T({<1)\0> A
x1..oxn) = PT(xn)|xa e oxno1) = 9T (xN) 9T (x0)]0)




Remember that the adjoint of an operator O is defined by
(@|0"|x) = (x[O]®)”

The adjoint @E(X) of the creation operator therefore satisfies
(X1 Xy [OEN) Y-yt = (Y1 yn T ()X xvo)

5()’1 _Xl) 5(}71 —XN)

5(YN._X1) 5(YN._XN)

and hence, by expanding the determinant along the last column, we find %

N
)(x)|y1 - =) ()N o(x = yi) Iy1- - Ye-1Yk+1 .- YN)
k=1




For example:

) = 0
Y(x)ly1) = 6(x—y1)[0)
/ ) = d(x—y2)ly1) — 6(x — y1)ly2)
) 0(x —y3)|y1y2) —0(x —y2)|y1y3) +0(x —y1)|y2¥3)

The operator 1)(x) is called annihilation operator

LLI

It follows, with anti-commutator (A, B|, = AB + BA ,that

) (x), % (y)
(%), 01 (y)

[W(X),W(Y)} =0

0(x —y)




The density operator is defined by

and has the property

N
n(x)|xy .. Z 0(x —X;)|X1...XN)
1=1

For example:

A

W(X) ﬂ(x)b’l}’ﬂ

(%) (6(x — y2)ly1) — 0(x — y1)|y2))
0(x —y2)|ly1x) — 0(x — y1)|y2x)
(0(x—y1) +0(x —¥y2))|y1y2)

The expectation value

n(x) = (Y[n(x)|¥)

is the particle density of the system in state  |W)



The Hamiltonian in second quantization

An operator is defined by specifying its matrix elements in a complete basis. For N particles we define the Hamiltonian by

IN position space
Z#J P P

(x| H (t) (Z ——V2 +o(xj,t) + - Zw X\ X ) (x — x') P !:JotenFie‘lIs are diagonal

The ket representation of the Schrodinger equation 0, |W()) = [:[(t) W(t))

then becomes, when projected on a position basis,

0y (x, 1) = 10y (x|¥(1)) = (x| H(1)[¥(t)) = /dX (x| H (t)]x') (x| W (1))

/dx Z——VQ—I—U(X], + — Zw x;,%;) | 0(x —x"U(x',1)
, @#J

Z——VQ—I—fU X;,t) + = Zw x;,%;) | U(x',t)
@#J

We now want to rewrite the Hamiltonian in terms of the field operators



For the 2-particle interaction we have

N
- 1
Wi xi...xy) = 5 Zw(xi,xj)\xl XN
17
Since the density operator has the property

N
A1 xn) = ) O(x = x5) [x1. . Xw)
it follows that -
W = %/dxdyw(x,y)ﬁ(x)n(y) —% dx w(x, X)n(x)
= 5 [ axdywxy) (F B )0() - 3x — 3)9 (x)9)
- 2 / dxdy w(x,y) ¥t (x)dT (y)d(y)d (x)




Similarly for the one-body potential

N

V(t)xy...xn) = Zv(xj,t)\xl XN = /dxﬁ(x)v(x,tﬂxl XN

J

A

V() = / dx (%) (x) v(x, t)

The kinetic energy operator is only slightly more difficult. Let’s illustrate it for 3 particles; remember that
Y(x)y1y2ys) = 0(x—ys)ly1y2) — 6(x — y2)ly1ys) + 6(x — y1)ly2 y3)
T (%) V() [y1yays) = V3(x — y3)|y1 y2x) + V3(x — ya)[y1xys) + VZ(x — y1)[xy2¥3)
Such that
o] [ dx () V3000 [y 1y23s)

N /dx (V26(x — y3)(x1xax3]y1 y2 X) + V20(x — y2) (x1x2x3|y1x y3) + V20(x — y1)(x1X2x3|x y2 y3))

= (Vy, + V5, + Vi) (xixax3|y1y2y3)



If we therefore define
n 1 " n
F— 5 [ dxdi Vi
then since T is Hermitian
. . § 1 )
(Y1y2y3|T|x1x2xX3) = (x1x2x3|T|y1y2y3)" = —3 (V?,l + V?,Q + Vf,g) (X1X9X3|y1y2Y3)

1
=3 (V?,l T V?Q + V?,B) (Y1Y2y3|X1X2X3)

yielding exactly the matrix element of the kinetic energy operator. Hence

() = [ il ) (~57 4 v6t) ) i

1

s / dxdy w(x,y) P ()T (y)d (y)d(x)

Hamiltonian in second quantization



General basis states

We can also rewrite everything in a general basis. Let consider an orthonormal set of one-particle states |7L>
(nm) = dnm

and define the spatial orbitals (o (X) = (x|n)

Then the orbitals (P form an orthonormal set in the sense that

/ 0% 0% (X) o (X) = / dx(nlx) (x|m) = (nm) = Sum

We define the operators

i =[xt (0000 il = [ dxn(x)9! (0

Let us see how these operators act



When acting on the empty state we have

al[0) = / dx o (x) O ()[0) = / dx|x) (x|n) = |n)

N——’
%)
and similarly we can check that @, |1) = Opmn|0)

Furthermore from the commutation relation of the field operators it follows immediately that

iy @]+ = G (G, ] = [a),al 1, =0

In general we can generate N-particle states

nl...nN> — ALN...&L1‘0>

which describes a state in which we have N-particles with in one-particle states (ni,...,nyN)



We can relate them to position basis states as follows

A

ni...ny) = /dX1...dXngnl(Xl)...gpnN(XN) wT(XN)...wT(XlﬂO)

— /dx1 o dXN Ong (X1) - op e (XN) XD XN

and find that their overlaps are given by Slater determinants

(X1 ...XN|n1...nN) = /dy1 e dYN O (V1) - Oy (YN (XD - XN YL Y N) =

Ony(X1) -0 Ony(X1)

©ns (.XN) oo Ony .(XN)

0(x1 —y1)

5(XN._ Y1)

0(X1 —yYN)

0(xn - YN)

The creation and annihilation operators therefore add and remove orbitals (columns)

from Slater determinants




Example
addition removal

T

€3 — —
S ¥ 4+
€1 41_‘_ H_
|1234> 112345) = a-|1234) 1123) = a4]1234)

We can take the one-particle states to be eigenstates of a one-body Hamiltonian such
as the Hartree-Fock or Kohn-Sham system. Then if, for example, we label

(17 27 3747 57 6) — (61 Ta €1 \1/7 €2 Ta €2 \La €3 Ta €3 \L)

then
\12345> — &5\1234> \123} — &4\1234)



How does the Hamiltonian look like for the new operators?

| e an 1
W =5 [ dxdy woe.y) 6100 R0 = 53wy dfafina
where o
1 2 % %
hij(t) = / dx ¢} (x) (—§V +v(x,t)) (%) Wijkl = / dxdy w(x,y) ¢; (X)¢; (¥)er(y)ei(x)

one-electron integrals two-electron integrals



The Hamiltonian in a general one-particle basis then attains the form

The action of the Hamiltonian on a single Slater determinant generates an infinite number of particle-
hole excitations

i Ay =al) _d te®) ____ 4.
-

The time-evolved state is therefore, in general, a infinite expansion in Slater determinant states



Second quantization: Take home message

- Second quantisation is nothing but a convenient way to generate a
many-particle basis that automatically has the correct (anti)symmetry.

Basis states are created by (anti)-commuting operators with
simple (anti)-commutation relations

- As we will see, second quantisation is very convenient in many-body
theory as it allows for simple manipulation of perturbative terms
without the need to deal with (anti)-symmetrised orbital products

- The derivation of the Hamiltonian in second quantisation
is easy in position basis as the Hamiltonian is almost diagonal
in this basis.

- In general one-particle basis the Hamiltonian has an intuitive interpretation as
generating particle-hole excitations



Expectation values

initial state

A general expectation value is of the form
(O()) = (WD) O®)[W(t)) = (Wo|U(to,t) O(t) Ut to)|Wo) = (Wo|Om (t)|Wo)

where we defined the evolution operator and the operator O(t) in the Heisenberg picture as

A A

U (t)) = Ul(t, to)|¥(to)) O (t) = Ulto, t) O(t) U(t, to)

It follows from the Schrodinger equation that

10U (t,to) = HU(t, to) Ul(to, to) = 1

In the particular case that the Hamiltonian is time-independent we have that

H(t)=H - Ut t) = e )



Let us divide [to, T ] into small intervals A then

. A A A tpi1 —tp = A
U(T,tg) =U(tps1,tn)...Ulte,t1)U(t1,10) e
. - too1 =T

such that

A

(7)) e e A A g (1)) = T femiltA | iflt0)d ] (1))

= 7 {e X A w (1))

where 7 denotes time-ordering that orders the latest operator most left, where we used that
operators commute under time-ordering

T{A(t)B(t2) | = T { B(t2) A1) |
and hence, in particular

T {emmeéuz)} T {€A<t1>+é<tz>}



In the limit A => 0 then

W) =T {f ‘“ﬁ“)} WUt)) = U(T, t0) | W (o))

\

By a similar procedure we have Time-evolution operator

Ulty,T) = eiﬁ(tl)Aeiﬁ(tz)A o eiﬁl(tn)A _ 7‘-{6@' >or ﬁ(tj)A}

Ulty, T) = T{ei Jio <t>dt}

where 7 denotes anti-time-ordering that orders the latest operator most right



We find therefore that the evolution operator can then be written as

i to 2
Uty t) = { © A0Sy < g,
1,02) — _ . rtq 3

and the expectation value
(O(t)) = (Wo|U(to, )O(t)U (¢, t0)|¥o)

can therefore be written as

A

<O(t)> — (U, T ftto dt H(t)dt @(t) T tto dt H(t)dt W)

If we expand in powers of the Hamiltonian then a typical term is

T{ﬁ(tl) . ﬁ(tn)} O(t) T{f](t’l) . ﬁ(t,’n)}
ecarly < late late < early




A useful idea: contour ordering

A
t() Zl Z_
P— > % > Y= (tOvt)@(tvtO)
z, Y N—— N~
Y — Y+

We define a contour ¥ consisting of two copies of the interval [to, t]. A generic element z of ¥ can lie on the
forward branch ¥ or the backward branch y-

Notation

2z =1  when 5 ¢ v_ and its real value is t’

P when > € ~, and its real value is !

We can define operators on the contour

. O_(t) 2 =t_
O(z') =1 *
(Z) { O.(t) =t



2o > 21
to Zl Z_
> @
— >,
Z, )4

A A

Ty {AP(I)(ZP(l)) - --AP(l)(ZP(l))} = A1(21)... Ap(zn) 21> ...> 2z

With this definition we can write

T{ﬁ(tl) . ..ﬁ(tn)} O(t) T{ﬁ(tg) | ..ﬁ(t;)}

— 7;, {H(t1_|_) ‘e H<tn—|—)OA(t)ﬁ(t/1—) e I:I(tf/n—)}

where

H(z=1t,)=H(t)

With this trick we can write the expectation value in a compact way



— >
Y
[ ft? dt A_ (E) if z1 =t1_ and 29 = to_
to Zl. > ‘f Z2 . ; . b |
—, > dz A(z) = < ftl dt A_(t) + [, dt AL (t) if 21 =t1— and 23 = toy
2 21
\ fttlz dffiqt (E) if L1 =— t1_|_ and 29 = t2_|_
[
0—0—(—. )t
) Z 4

The expectation value can then be written as

O(t)) = (o, {f 19Oty e - mZ)dZ} W)

and since the operators commute under the time-ordering we obtain the elegant expression

(O(t)) = (w0l T, { e H 1O O(t1) | |wy)




It will be useful to extend the concept of expectation value to ensembles

; probability distribution of initial states

A very common relevant case is that of the grand canonical ensemble, which describes a system at
initial equilibrium at a given temperature and chemical potential

A A A\

W, = M, = E,|v,) HM = H(ty) — uN

w

initial Hamiltonian




The density operator can be viewed as a time-propagation in imaginary time

o—BHM _ —i[(to—iB)—to] HM _ U(to —if3, o)

If we therefore define

sy [ H(E) 2 € [to, o]
H(z) { HM  z € [to,to — 10

then we can write

A A

T {0(t0 — i68.10)0 (1. DO (T (1, 10)

0m) = Tr {U(to - zﬂ,to)}

Now we can gain apply our contour trick, in which we add a vertical track to our contour that
describes the initial ensemble



(L.V.Keldysh, Sov.Phys.JETP20, 1018 (1965),

Expectation values as contour orderings Konstantinov, Perel’, JETP12,142 (1961))

The final result is now that we can regard expectation values as contour orderings. This considerably
simplifies the subsequent formalism which will be valid for general time-dependent systems

(to, —if3) Tr {U(to — Zﬂ,to)U(to,t)é(t)ﬁ(tato)}
Tr {ﬁ(to —zﬂ,to)}

Tr T {e‘ifv dzmz)é(t)}

<O(t)> — - {6_”; dzﬁ(z)}

Time ordering is now defined along the extended contour



Time-ordering: Take home message

- Time-ordering is a direct consequence of the structure of
time-dependent Schrodinger equation.

- Expectation values consist of a time-ordered evolution operator
for the ket state and an anti-time-ordering for the bra state

- The expectation of any operator value can be rewritten in terms of a
single time-ordered exponential by introducing contour ordering

- In case of systems prepared in an initial ensemble the expectation
value can be rewritten as a time-ordering on a contour with an
additional vertical track



