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Chiral topological states in (2+1)D

Characterized by a non-zero chiral central charge, a property of the
bulk (2+1)D Topological Quantum Field Theory, e.g. a (2+1)D Chern-
Simons theory

This is reflected in a boundary exhibiting a (1+1)D chiral gapless
theory (in particular, a conformal field theory—CFT)

Kitaev, Ann. Phys. 2006
Witten, Comm. Math. Phys. 1989
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The Li+Haldane correspondence

Li and Haldane observed a correspondence for chiral topological

states between

the low-energy part of the entanglement spectrum (ES)

(spectrum of the entanglement Hamiltonian)

EaEs -

. Entanglement

Reduced density matrix
y €

pa ="Trz(p) =

—Ha

A

H. Li, F.D.M. Haldane, PRL 2008

Hamiltonian

(also see e.g. X.-L. Qi, H. Katsura, AW.W. Ludwig, PRL 2012)

the physical theory on the edge

(chiral CFT)

L

HA = 6effective HCFT




Entanglement and symmetry

Consider a U(1) charge 3

Q — QA _I_ QA Reduced density matrix: P0A — TTA(p)

where {pA,@A} = 0.
pqlpA(Q1)

PA = @pqu}l(qz) = PgPA (q2) where the q; are_
) .

eigenvalues of Q4.

Pq is the full counting statistics (FCS) for the charge, PA (q) is the symmetry-resolved
a probability distribution. reduced density matrix:

(where II,is the projector onto Tr 4 [pA (q)] =1
the charge sector q)

Pq = Tr(HqPA>



Equipartition of entanglement

We can use ra(q) to understand better how entanglement interacts with the U(1)
symmetry through looking at the symmetry-resolved entanglement spectrum
and quantifying the symmetry-resolved entanglement entropy (SREE).

Rényi SREEs: von Neumann SREE:
1 n—1
mn
Sn(q) = 37— log (Tra [p/i(q))) S1(q) = —Tr[pa(q)log pa(q)]
S1=— Zin 1ngqz' + quz‘sl(q’i)
L )Ll J
Equipartition of entanglement: S, (q) does ! . '.
not depend on q in the thermodynamic limit. number entropy configuration entropy

J. Xavier, F. Alcaraz, and G. Sierra, PRB (2018)




Quantum Hall Effect

Energy

(Spinless) charged particlesin a
uniform magnetic field B fill
Landau levels

N

The filling factor v = -7 = =

In Landau gauge on the cylinder,

these orbitals are ring-like and
centered aroundk,,!%, withk,,
quantized.



Integer Quantum Hall Effect (IQHE):
filled lowest Landau level (LLL)

| B @ flux along the cylinder axis is another knob to turn.
o @

>, The region A covers the cylinder for z < 0.
The wavefunction in the LLL is
1 : 2 2T
1k —(x—k 2
¢km($7y): € mye ( m) / ) kméf(z+q))
L7
The v = 1 ground state is then the Slater determinant of the LLL: [ = /\  [x,.)
ko € 2 (Z4-®)

A A A - 1
We define Q4 = Ng — (: N4 :), where (: N4 :) = 5~ ® up to Gaussian correctionsin L.

(from here on out, taking [z = 1 w.o0.l.0.8.)



IQHE: Entanglement spectrum
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B. Oblak, N. Regnault, and B. Estienne, PRB (2021)

The IQHE entanglement Hamiltonian

(EH) will be given by

Hy = Z €(km) :cl em

meZ

(Peschel)

The edge CFT is a chiral Dirac fermion:

Hepr =0 Z km:clncm:

mez

We have a Li-Haldane correspondence!

HA — BeffectiveHCFT —+ more irrelevant terms
/
Plus important irrelevant terms, that

shape the spectrum at finite size.
More details later

J. Dubail, N. Read, E.H.
Rezayi, PRB (2012)



IQHE: FCS and SREE analytical results

Approximate charged moment for small a:
(parameters can be computed analytically)

~ B 2 4 6
Zn(Oé) ~ e L(an+bra“+cpa™)+O0O(La”)

FCS: p,= Z1(q)

With saddle point approximation,

q2

e 207 ) L

X ——, = ——
b V2mo? g (27)3/2

(valid for ¢ = O(V'L))

B. Oblak, N. Regnault, and B. Estienne, PRB (2021)

T da

Zn(g) = / 09 012 (a) = Tr (T,p%)

- 2T

SREE: S, (q) = —— log 219)

1—n Z1(q)™

We obtain
1 ¢ q*
n ~ n__l L An_Bn_ nraq
Sn(q) ~ S 5 log + 7 +C 73

Equipartition for large L, small ¢!

(Note that S, = a,, L — 7 satisfies an area law,
with v = O for IQHE.)

A.Kitaey, J.Preskill (2006)



IQHE: FCS and SREE numerical results

q2

e 207 1 ¢ 7

X —F/—— ~ — — = 2

P> oro? Sul(a) ~ Su = S log L+ Ay — Bat + 0 L
(valid for ¢ = O(V'L)) Pq Renyi-2 EE

Sa(q)

\/\/ analytic
2 expressions

B. Oblak, N. Regnault, and B. Estienne, PRB (2021)



IQHE: Synthetic entanglement spectrum

Expandthe EH Hy = Z (k) 1 cm

mez
as aseries: 4 = g gj g K2+l e
j>0  mez

The term forj =0is BeffectiveHCFT.

Truncating this series can approximate the ES.

E.g.: we fit the ES with the first 4
terms by choosing the 9j to minimize
weighted squares of differences
between spectrum levels.

_—_—m)

The IQHE can serve as benchmark
for ES fitting approaches.
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Fractional guantum Hall effect (FQHE)

The fractional quantum Hall effect occurs for partially filled Landau
levels at certain filling fractions v in the presence of interactions.

For FQH states captured by a CFT, the entanglement Hamiltonian is:

27V
HA = L (LO — —) + E g; ( ) j (per corrected Li-Haldane)
Beftec t;HCFT ~~ - (central charge ¢ = 1 for Laughlin)

more irrelevant terms

As an example, for Laughlin states (filling fraction v = 1/p),

1
L() = §J§ —|— Z J_an topological sectors

n>0 0=0,..., p—1
J, is a mode of the bosonic U(1) current, Jy = \/_QA



MPS on the cylinder for the FQHE

FQHE states are interacting, so this demands a more
sophisticated numerical approach: MPS

) = Y (o] A Ao ag) Iy, L ma,)

{m;} N
70 |  C=EEE
60 | ::E§
Physical indices [mi] correspond to orbital occupation. 50 1 _—E % §
Auxiliary indices range from 1 toX. w40 _===E==—=
The auxiliary space is the Hilbert space of the edge CFT. 30 gmax(DMRG) ..... _;g%%?f ............................
The truncation is at conformal weight Prax . 20 ¢ ==
10} ZZEEE_ Pmax (MPS)
In general, X ™~ €XP Sa 0 0 2 4 6 8 10 12 14

Zaletel, Mong (2012)



Bosonic Laughlin state (p = 2) MPS results

A~ n—1 2 4
Zn(oz) ~ P e—L(an+bna +cna”)+O0(La

2PV —_
0.7
L=10 —
L=15
0.6 | L=20
05 =
04} £ N
@ B \
N 0.3 B ‘;“Il
1,;/,}:“
0.2 t q il \
/¢ 8l
01| Vi \N
0 A & " ok e :__.—./// L § 1 \:»‘L! e &

5 analogous to IQHE, though now
params. not known analytically

assuming Li- 1 g g
Haldane, Sn(Q) — Sy + 2 logL ~ A, — an + Cnﬁ
can extract
from fits that Renyi-2 EE
v = 0.144(1) o |

Ao, /




Bosonic Moore-Read (MR) state atv=1: CFT

In addition to the bosonic U(1) current .J, we also have a real fermion Tb

3 topological sectors: two Abelian (vacuum and ) and one non-Abelian (o).

Hcepr = 27%) (Lo — i) = %(JJ)O — %(wﬁw)o , Where ¢ = 3/2.
(Up and Uy, are the boson and
fermion velocities, respectively)
We can write down U(1)-charged moments for the non-Abelian sector and
for fixed (even and odd) fermionic parity in the Abelian sectors:

- n_1 2 4 6 ‘
Zn,a(a) ~ Da? e~ L(an,a+bn aa”+cn 0a”)+0(La”), analogous to Laughlin and IQHE

!

prefactor depends on Abelian or non-Abelian sector

G. Moore, N. Read, Nucl. Phys. B (1991)



Bosonic MR state: FCS and SREE from MPS

2

_ a2 2 4
Pq,vacuum + Pq,y _ Pg,even —I—pq,odd e 202 1 q q
9 = 9 ~ Pg,o0 ™~ NG Sn,a(Q) - Sn,a + 5 IOgL ~ An,a - Bn,af + Cn,a I3
, Full counting statistics for select system sizes in the o and averaged vacuum and v sectors Sl(l)tgtoracted second Rényi symmetry-resolved entanglement entropy with quartic fits by sector, for L = 12
— L=6 ' A vacuum (even parity)
. _ @® ¢ (even parity)
0.6 - 2 L —_— L =12 0.25 1 A vacuum (odd parity)
o = — L=15 ® ¥ (odd parity)
2TV, \
0.00
0.5 1 i square =0
can extract from fits

dot =vacuum/ avg.

v, & 2.19 El
0.4 2
—o
. (not fully ;,—aw—
“03{  accounting
for corrections to = 075
nn

Li-Haldane)

0.2 4
—1.00 A
01- Fit for small |¢| <4
—1.25 A A e
0.0
—1.50 T T T T T T T T T
T T T T T T T T r -5 -4 -3 -2 -1 0 1 2 3 4 5
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q

MJA, V. Crépel, N. Regnault, B. Estienne (in prep.) We expect equipartition in the thermodynamic limit!



Bosonic MR state: synthetic ES

L = 12, o sector comparison of synthetic entanglement spectrum in the charge 0 sector
Pseudoenergy

oo L
Hay = Zgz/ ¢i(y)dy
i=0 70

We approximate with operators of A; < 4:

A, ¢i(y) /

40 -

i
[0 2] 0w L] g A
Herr 5105w (Y A A Fit

2| 4 (0J0J)(y) o 4SS !
3| 4 —(090*¢)(y) Vi
414 | ((JN)IJI) () -
51 4 | —((JN)@o))(y) Can calculate topological EE, FCS, SREE, ...

g; can be fit by minimizing the weighted sum of o N F;; Coefﬁd‘;zts . ,

squares of differences with the ES from MPS. 05318 114834 2.36093 1.11083 0.313558 L50018

1 1

This gives Uy and Uy accounting for Li-Haldane corrections!
MJA, V. Crépel, N. Regnault, B. Estienne (in prep.) (cf. v, & 2.19 from FCS)



Conclusions

* The Li-Haldane correspondence and entanglement equipartition
are powerful principles, and their corrections help us understand
the structure of entanglement

* The quantum Hall states provide an excellent platform for
exploration of symmetry-resolved entanglement

* IQHE, Laughlin, and bosonic Moore-Read all satisfy entanglement
equipartition!

* Outlook:
* Can any QH state violate entanglement equipartition?



