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Superfluorescence in hybrid perovskites

Cs 

Pb 

Br

quasi-2D CsPbBr3 thin films

Experiments by Gundogdu et al. suggest that large polarons in these 

systems protect electronic excitation from dephasing even at room 

temperature. We aim to elucidate the mechanism enabling SF in hybrid 

perovskites at high temperatures.

Phenethylammonium cesium lead bromide
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Dicke model of superradiance
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Eigenstates of  H are eigenstates |R,M〉 of R² and R3.   

According to the theory of angular momentum, 

| | R N/ 2M  

Spontaneous radiation probabilities are 

0( )( 1)I I R M R M= + − +

If M=R=N/2 (i.e., all N molecules excited), 

radiation rate of one excited molecule).

Coherent radiation is emitted when R is large but |M| small. 

For example, if R=N/2 and M=0,

This is the largest rate at which a 

gas of molecules can radiate spontaneously. 
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The Dicke model undergoes the superradiant phase transition. 

It is possible to distinguish between static and dynamic

critical phenomena that characterize time-dependent 

behavior like relaxation times. We will focus on studying a 

dynamical critical phenomenon - the decay of the 

superradiant state in the presence of vibrations - which 

allows us to restrict the models to collective emission from 

single excitation states (R=N/2, M=-N/2+1). Then

The coherent state decays at an enhanced superradiance rate 

NG, which is N times larger than the single-molecule emission

rate G.
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Wannier excitons in polar crystals interacting with LO phonons
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- the Fourier transform of the charge distributions of the electron (hole) 

in the internal motion.                             . It represents the effectivity of 

the electron (hole) charge for a particular phonon k:
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TIME-DEPENDENT COHERENT STATES BASIS & 

MULTISCALE HARTREE APPROACH

Dirac-Frenkel variation principle allows one to separate time evolution 

of vibrational subsystem and evolution of  exciton wave function 

expansion coefficients. 

The correspondence to the original description by the 

Schrödinger equation is exact.

V.Al. Osipov, B.D. Fainberg, Phys. Rev. B, 2023, 107, 

075404.

Equations of motion for vibration-assisted single-

exciton wave-function

We use coherent states |σ〉 basis as the basis for the phonon states:
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Equations of motion for a single-exciton wave-function
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Small deviations from the coherent superradiant state

Under perpendicular incidence of the pump field, excitons with q=0 are 

created. This q=0 state having the lowest energy is a coherent 

superradiant state.          (k equals 0 when k=0. This behavior arises 

because for k=0, the macroscopic electric field of the LO phonon is 

uniform in space. The exciton is neutral, so its energy cannot be 

changed by a uniform field. Thus,                                                   

similar to the matrix element for optical quadrupole transitions. 

Therefore a state with a specific wave vector q behaves like 

metastable state in optics when there is no dipole transition.
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Procedure for limiting possible wave vector values, k<K, is similar to 

deriving a block Hamiltonian using the Kadanoff transformation in the 
theory of phase transitions. The last equation demonstrates that even for 

nonzero k, the "vibrational" contribution to the superradiant state 

attenuation is absent up to order k² terms. This is true on a scale greater 

than 2/K= 2a0.



What happens in case of multiple excited 
state?



Semiclassical Hamiltonian:
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Exactly solvable model for long-wave excitons – LMG model that 

assumes the same interaction between different sites: 
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Eigenstates of             are eigenstates |R,M〉 of R² and R3. The ground

state of            is the totally symmetric Dicke state with R=N/2 and 

M<<N. In the theory of PTs, the wave number expansion is used. Up to 

terms of order k²
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Presence of the vibrational coupling does not violate the isotropic 

LMG model up to terms of order k².

This is due to                                                    Such an approximation is 

analogous to the decay        for systems where certain conservation laws 

require the constant part of the decay to be zero. For an isotropic 

Heisenberg ferromagnet, the total spin, (k=0 mode) is conserved due to 

spin rotational invariance. Thus, noise cannot change magnetization for 

k=0 at any temperature, requiring                                        if total spin is 

conserved.                                .  

Perturbation theory calculations illustrate this rule well:
1) Electron-vibrational interactions in a model of N identical two-level 

molecules, where                                     independent of k, lead to 

destroying the coherence of the collective molecular excitation and 

suppressing SF [Nitzan et al. PRA(2022)].

2) In contrast, LO phonon-exciton Frohlich interactions, for which                                

has no a constant component, do not disrupt the 

superradiant coherent state q=0.
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Solution of nonlinear equations for k>1/a0

New manifestations of the exciton-phonon interaction, 

which are associated with nonlinearity (e.g., soliton 

formation, instability, etc.). 

Significant difference between the case of the LO phonon-

Wannier exciton Fröhlich interaction and that of the 

Frenkel exciton-local phonon interaction. In the latter 

case, the nonlinearity is local, leading to the formation of 

Davydov's soliton in 1D molecular aggregates. In contrast, 

the LO phonon-Wannier exciton Fröhlich interaction 

results in an essentially nonlocal nonlinearity reflecting a 

significant increase in the range of interaction. 



V.Al. Osipov and B.D. Fainberg, Phys. Rev. B, 2023, 107, 075404.

B.D. Fainberg and V.Al. Osipov, J. Chem. Phys., 2024, 161, 114705. 



Conclusion

1. Hartree approach for the exciton wave 

function, where vibrations interact with the 

exciton quantum field.

2. Application to the high-temperature 

superfluorescence in hybrid perovskite thin films.

3. Nonlinear Hartree equations in the real space (for   

any value of the wave vector) with nonlocal non-

linearity.
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