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Motivation

The eventual goal is to unify the eikonal High energy evolution (BFKL) with
the ”partonic” high virtuality evolution (DGLAP).

We often think about the BFKL or JIMWLK evolution in terms of their
different time scales. As we increase energy, time dilates, faster modes live
longer and contribute to scattering. This is how the original JIMWLK
papers pictured the physics of the evolution.

But in fact JIMWLK does not work quite like that: one also includes in the
evolution eikonal contribution of very low transverse momentum modes, as
long as their longitudinal momentum is high enough. These modes may have
low frequency irrespective of the boost. They do not ”freeze” as a result of
the boost (evolution), but are frozen all the way through.

The practical effect of including these extraneous modes in the evolution is
the appearance of (some of the) large transverse logs in NLO JIMWLK: too
many low transverse momentum modes are produced.
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What if we implement mathematically this physical
picture, i.e. evolve directly in frequency?

Frequency evolution has been discussed in the context of BFKL Salam
(1998), Sabio Vera (2005).

In NLO BFKL switching to frequency (k−) evolution eliminates higher
poles in the characteristic function at γ = 0, and makes the kernel better
behaved.

Beyond BFKL frequency or ”Ioffe time” evolution was discussed in
Altinoluk et.al. (2014), Ducloe et. al. (2019), but these discussions are
incomplete.

Balitsky and Tarasov (I think) are using a very similar approach, but I am
still far from understanding their papers.
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Frequency evolution.

What should happen if we evolve in frequency?

In the eikonal limit frequency ordering should impose life time ordering.

But that’s not the whole story. DGLAP evolution is in fact also an
evolution in frequency. Increasing Q2 increases the frequency of the
fluctuations in the target resolved by the hard scattering:

DGLAP collinear splittings
(k+, k⊥ ∼ 0) → (p+ ∼ k+, p⊥ ≫ k⊥) + (k+ − p+ ∼ k+,−p⊥) increase

the frequency of the relevant modes
p2⊥
2p+ ≫ k2

⊥
2k+ .

And that’s exactly what we want!
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Frequency increase ↔ Born-Oppenheimer physics

The physics principle for frequency evolution is exactly the same as for the
famous Born-Oppenheimer approximation. As the external frequency with
which we probe the system is increased (be it the total energy E or the
transverse resolution scale Q2), faster modes participate in the process.

Thus to understand the evolution, we need to solve for ”fast” modes
(higher frequency) on the background of the slower modes (lower
frequency).

Of course as we go higher and higher in the resolution (energy, Q2 ...) we
need to include faster and faster modes. We call this procedure ”the
Born-Oppenheimer RG”. The BO RG should unify the BFKL-type and the
DGLAP-type evolution in a single framework.
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The setup I

To be clear about terminology: we will be deriving the evolution of the
wave function of a hadron, which we refer to as ”projectile”.

The projectile is a right mover and has a large longitudinal momentum
P+.

The target hadron is present only in the sense of providing the ”Ioffe time”
resolution τIoffe , i.e. the typical time scale over which the projectile gluons
have to live in order to contribute to the scattering amplitude.

This defines the frequency ”cutoff” up to which we account for gluon

modes in the projectile wave function p− ≡ p2

2p+ < E ≡ 1/τIoffe .

In this discussion we neglect quarks for simplicity, even though to take the
full DGLAP physics into account we will have to restore them already at
LO.
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The Setup II

As always, we assume factorization between the projectile and target
degrees of freedom, so that the wave function before scattering

|Ψin⟩ = |ΨP⟩ ⊗ |ΨT ⟩

The projectile wave function contains modes with frequencies below those
of the target:

E Ee∆

Projectile

Target

Slow Fast
k−

Ψ
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The setup III

Here we assume dilute limit, i.e. projectile fields are small.

The BO paradigm: need to find the LCWF of the fast modes in the slow
background.

1. Identify the interaction Hamiltonian that couples slow and fast modes
H I
SF .

2. Find the QCD time evolution operator that evolves the vacuum of the fast
modes due to this coupling.

U(0, τ) = T exp{i
∫ τ

0
dx+H I

SF (x
+)}

3. According to Low’s theorem, the operator that diagonalizes the fast mode
sector (with appropriate regulator) is

Ω = lim
τ→∞

U(0, τ)

The LCWF of the projectile is then

|ΨP⟩ = Ω |0⟩F ⊗ |ψ0⟩S

We follow this procedure through perturbatively to leading order for fast
modes on a small interval E < p− < E +∆E , and then iterate as E changes
.
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The interaction Hamiltonian I

This is straightforward - just staring at the QCD Hamiltonian and separating out the
highest frequency mode p− > k−, (p − k)−:

HI (p) = −ig

∫
max(k−,(k−p)−)<p−

Aa
i (k

+, k)f abc ×

×
{[
δkiδjl

(
2k+

p+
− 1

)
+ ϵkiϵjl

]
Pbd
j A†d

l (p+,p)A†c
k (k+ − p+, k − p)+

+

[
δkiδjl

(
2k+

k+ − p+
− 1

)
+ ϵkiϵjl

]
(K − P)bdj A†d

l (k+ − p+, k − p)A†c
k (p+,p)

}
+ h.c

Here

Pab
i ≡ piδ

ab + igf abc
∫
k+≪p+;k−≪p−

[
α†c
i (k+, k) + αc

i (k
+,−k)

]
αi - are very slow and soft fields with all components of momentum small - ”soft
fields” in the SCET language. This interaction is outside of either BFKL or DGLAP
framework. In a dense projectile the soft field background may be large and will have
to be taken into account. In the dilute limit at LO α’s are unimportant and we
neglect them.
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The interaction Hamiltonian II

The no-soft - fields Hamiltonian is

HI (p) = −ig

∫
max(k−,(k−p)−)<p−

Aa
i (k

+, k)f abc ×

×
{[
δkiδjl

(
2k+

p+
− 1

)
+ ϵkiϵjl

]
pjA

†b
l (p+,p)A†c

k (k+ − p+, k − p)

−
[
δkiδjl

(
2k+

k+ − p+
− 1

)
+ ϵkiϵjl

]
pjA

†b
l (k+ − p+, k − p)A†c

k (p+,p)
}
+ h.c .

To find the LO wave function we need the energy denominator. For
k− < p−, (k − p)− (holds in BFKL and DGLAP limits) it is

D−1 ≡ k− − p− − (k − p)− =
k2

2k+
− p2

2p+
− (k − p)2

2(k+ − p+)
≈ − p2k+

2p+(k+ − p+)
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The LCWF for a fast mode p

We then find the perturbative LCWF

Ωp = 1 + iG (p+,p) ≈ e iG(p+,p);

where

G (p+,p) = A†
i (p

+,p)Ci (p
+,p) + Ai (p

+,p)C †
i (p

+,p)

C a
i (p

+,p) = g

∫
k−<p−; (k−p)−<p−

F i
lk(k, p)A

†
l (k

+ − p+, k − p)T aAk(k
+, k)

F i
lk(k, p) =

4p+(k+ − p+)

k+

{
δklδji

k+

p+
+ δkiδjl

k+

k+ − p+
− δkjδil

}
pj

p2

No matter the details: Ci is the ”classical field” produced by the slow background
(Ω is a coherent operator) (in the eikonal limit reduces to the usual pi

p2 ρ
a(p)).

Alex Kovner (University of Connecticut ) Born-Oppenheimer RG for high energy evolution August, 2025 11 / 27



The evolved LCWF

Now that we have diagonalized the Hamiltonian for a single fast mode, we
write the wave function evolved over a finite range of frequency

|ΨP⟩E = P exp

{
i

∫ E

E0

dp−G(p−)
}
|ΨP⟩E0

where

G(p−) ≡
∫
p
δ(p− − p2

2p+
)G (p+,p2);

G (p+,p) = A†
i (p

+,p)Ci (p
+,p) + Ai (p

+,p)C †
i (p

+,p)

Given the wave function we can discuss evolution!
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What do we evolve?

So what do we want to evolve?

In BFKL we are interested in gluonic observables that depend on the
softest gluons that are allowed in the wave function.

For example ⟨ρ(x)ρ(y)⟩ is most important to the eikonal total cross
section, and is dominated by the softest gluons, ∝ G (xmin).

But these are not the only interesting observables. E.g. gluon TMD at a
higher value of x - we heard about it many times last week. In JIMWLK -
H.Duan, A.K. and M. Lublinsky 2407.15960 (PRD, 2025) considered
evolution when the LCWF is evolved to values lower than x . This is the
CSS regime.

As it turns out it is easier to evolve the ”CSS type” operators (that depend
on values of x ≫ xmin) than the ”BFKL type” operators (that live at
x ∼ xmin).
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On to the evolution

For any operator Ô in the projectile Hilbert space

⟨Ô⟩E = ⟨ΨP |Ô|ΨP⟩E

The evolution equation follows from

d

η
⟨Ô⟩ = lim

∆→0

1

∆

[
⟨Ô⟩Ee∆ − ⟨Ô⟩E

]
; η ≡ lnE/E0

Quite generally for an arbitrary Ô there are two types of contributions to
the evolution: virtual (or Lindblad) - due to gluonic degrees of freedom in
Ô that live below E , and real - due to those that live between E and Ee∆.

E Ee∆

Virtual Real

Slow/ Valence Fast
k−

For TMD T (p+,p): p2

2p+ < E only the Lindblad term contributes (CSS) -
easier.
For ⟨ρ(x)ρ(y)⟩ - both contributions are present (BFKL) - more difficult.
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Evolution of gluon TMD

Consider
T̂ (k) ≡ a†ai (k)aai (k); T (k) ≡ ⟨ΨP |T̂ (k)|ΨP⟩E ; k− < E

Note - the LCWF is evolved well past the frequency of the gluon, and we are interested
in its evolution to even higher frequencies.
Direct calculation is easy - the operator does not depend on the gluonic degrees of
freedom in the evolution interval E < p− < Ee∆:

δT (k) = δT L(k) + δT NL(k)

with

δT L(k) =
g2Nc

2

∫
E<p−<Ee∆

∫
d3p

(2π)3
1

2p+[ 1

4k+(k+ + p+)
F l
st(k + p, p)F l

st(k + p, p)T (k + p) gain

− 1

4k+(k+ − p+)
F l
st(k , p)F

l
st(k , p)T (k)

]
loss

The physics of the linear term is very simple. The loss term is due to decay of gluons
with momentum k into soft gluons in the phase space open by the evolution. The gain
term is due to decay of gluons with k + p into k and additional soft gluon. Note that
for p < k there is practically complete cancellation between the loss and gain terms. For
p > k we are in the DGLAP regime, and the loss (virtual) term dominates.
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Evolution of gluon TMD II

The nonlinear term is

δT NL(k) =
g2

2

∫
d3p

(2π)3

∫
d3l

(2π)3
1

2p+
×[

F i
lk(l , p)F

i
nm(k + p, p)×

⟨: A†
l (l

+ − p+, l − p)T aAk(l
+, l )A†

m(k
+ + p+, k + p)T aAn(k

+, k) :⟩
−F i

lk(l , p)F
i
nm(k , p)×

⟨: A†
l (l

+ − p+, l − p)T aAk(l
+, l )A†

m(k
+, k)T aAn(k

+ − p+, k − p) :⟩

]
+ h.c .

This looks pretty long but makes perfect sense - see below.
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TMD and CSS

The linear term first:

F i
ln(k , p)F

i
ln(k, p) = 32(k+)2ζ(1− ζ)

[
ζ

1− ζ
+

1− ζ

ζ
+ ζ(1− ζ)

]
1

p2
; ζ ≡ p+

k+

The ”loss term””

δT L
loss(k) = −g2Nc

2

∫
d3p

(2π)3
1

2p+
1

4k+(k+ − p+)
F l
st(k , p)F

l
st(k , p)T (k , x) =

− ∆

2π2
g2Nc

2

∫ 1/2

0
dζ

[
ζ

1− ζ
+

1− ζ

ζ
+ ζ(1− ζ)

]
T (k , x)

The same simplification for the ”gain term” : it regulates the loss below ζ ≈ k−/E
So that

∂

∂η
T (k , x) = −g2Nc

4π2

∫ 1/2

k−
E

dζ

[
ζ

1− ζ
+

1− ζ

ζ
+ ζ(1− ζ)

]
T (k , x) +NL

Looks a lot like CSS equation, but only a single equation, and the evolution
parameter is ln k−.
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BO and CSS I

The physics of the TMD evolution is very similar

One can define TMD in many ways via a cascade that allows splittings into a
part of phase space limited by a ”transverse” and a ”longitudinal” resolution
scales: ”parton branching TMD” (Hautmann et, al. 2017-2024)

For example let us limit the allowed phase space by a transverse momentum
p2 < µ2 and longitudinal momentum fraction p+/k+ < ξ/k+ (call it DGLAP
cascade). At the initial point of the evolution a gluon with momentum k , k+

is not allowed to split into any constituents. At this point clearly the
transverse resolution scale is µ20 = k2, and the longitudinal resolution scale is
ξ0/k

+ = 1. We can then allow DGLAP parton branchings into gluons with
transverse momenta up to µ2 and longitudinal resolution down to ξ/k+.
An initial gluon with momentum k , k+ thus splits into all possible pairs in the
allowed phase space. The evolution of such TMD is given by a pair of
equations

∂T (k+, k2;µ2; ξ)

∂ lnµ2
=− αs

2π
Nc

∫ 1−ξ/k+

ξ/k+

dζ
[1− ζ

ζ
+

ζ

1− ζ
+ ζ(1− ζ)

]
T
(
k+, k2;µ2; ξ

)
∂T (k+, k2;µ2; ξ)

∂ ln 1
ξ

=− αs

2π
2Nc

∫ µ2

k2

dp2

p2
T
(
k+, k2;µ2; ξ

)
Note that the DGLAP kinematics is not imposed here artificially, rather the
”loss” and ”gain” terms compensate each other for emission of gluons with
p < k .
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BO and CSS II

The phase space occupied by this DGLAP cascade :

ln µ2

k2

ln k+

ξ

ln p2

k2

ln k+

p+

Figure: The phase space of the DGLAP cascade with resolution scales µ2 and ξ. Only
gluons with momenta (p+,p2) inside the blue rectangle are allowed in the
cascade/wave function.
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BO and CSS III

The BO evolution has a single evolution parameter, since we limit the cascade
only by the frequency of allowed gluons. This gave us

∂

∂η
T (k , x) = −g2Nc

4π2

∫ 1/2

k−
E

dζ

[
ζ

1− ζ
+

1− ζ

ζ
+ ζ(1− ζ)

]
T (k , x) +NL

ln E
k−

ln E
k−

ln p2

k2

ln k+

p+

Figure: The phase space of the BO cascade. Only gluons with p− < E , p+ < k+ and
p2 > k2 are present in the wave function.
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BO and CSS IV

Nevertheless the two cascades are exactly equivalent (as far as the
evolution of TMD is concerned) if we identify

TBO(k , k+;E ) = TDGLAP(k
+, k ;µ2(E ); ξ(E ))

ln
µ2(E )

k2
= ln

E

k−
; ln

k+

ξ(E )
− 11

12
=

1

2

[
ln

E

k−
− 11

12

]
The pair of the two evolution equations for the DGLAP cascade then
collapse onto the BO evolution.
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BO and CSS V

The CSS equation describes a cascade that is limited by the transverse
resolution and the angle of emission of gluons with the two cutoffs µ2 and
ζ ≡ θ2µ2

∂T (k+, k2;µ2; ζ)

∂ lnµ2
=− αs

2π
2Nc

∫ 1/2

µ/
√
ζ
dξ

[1− ξ

ξ
+ ξ(1− ξ)

]
T
(
k+, k2;µ2; ζ

)
∂T (k+, k2;µ2; ζ)

∂ ln
√
ζ

=− αs

2π
2Nc

∫ µ2

k2

dp2

p2
T
(
k+, k2;µ2; ζ

)

ln µ2

k2

ln
√
ζ
k

ln
√
ζ
µ

ln p2

k2

ln k+

p+

Figure: The phase space of the CSS cascade. Only gluons with p2 < µ2 and
|p|/p+ <

√
ζ/µ are present in the cascade/wave function.
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BO and CSSVI

Again, we get the same evolution of TMD in the BO and CSS cascades if
we identify

TBO(k , k+;E ) = TCSS(k
+, k ;µ2(E ); ζ(E ))

ln
µ2(E )

k2
= ln

E

k−
; ln

ζ(E )

µ2(E )
− 11

12
=

1

2

[
ln

E

k−
− 11

12

]
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The Nonlinear terms - the stimulated emission I

Now a couple of words about the nonlinear terms.

Recall that we got nonlinear contributions to the evolution

δT NL(k) =
g2

2

∫
d3p

(2π)3

∫
d3l

(2π)3
1

2p+
×[

F i
lk(l , p)F

i
nm(k + p, p)⟨: A†

l (l
+ − p+, l − p)T aAk(l

+, l )A†
m(k

+ + p+, k + p)T aAn(k
+, k) :⟩

−F i
lk(l , p)F

i
nm(k , p)⟨: A

†
l (l

+ − p+, l − p)T aAk(l
+, l )A†

m(k
+, k)T aAn(k

+ − p+, k − p) :⟩

]
+ h.c .

To interpret these let us use the ”dilute approximation”.

We assume that spectators don’t matter, and that the two particles that scatter here
must be in the same final state as in the initial state in order to contribute to the
forward scattering amplitude. Then the average factorizes and we get a product of two
TMD’s on the RHS.
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The Stimulated emission II

The things then simplify, and when the dust settles

∂

∂η
[xT (k , x)] = −g2Nc

4π2

[ ∫ 1/2

k2/Q2

dζ

[
ζ

1− ζ
+

1− ζ

ζ
+ ζ(1− ζ)

]

+
1

4π(N2
c − 1)

1

Q2S⊥

∫ p2=Q2

p2=k2

d2p
(2π)2

[xT (p, x)]

]
[xT (k , x)]

Here we have introduced a natural transverse resolution Q2 = 2Ek+. This is the highest
transverse momentum allowed in the BO wave function for particles with longitudinal
momentum k+.
The nonlinear term is just a stimulated emission: the probability of splitting
(k) → (p) + (k − p) is enhanced if there is already a particle with momentum p in the
wave function!

It is a nonlinear (higher twist) effect that depletes the number of particles at k . It has
nothing to do with low x physics - indeed our ”dilute approximation” in the low x
regime is hardly justified.
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PDF and DGLAP

Where there is TMD, there is PDF.
For PDF we need to include the real corrections due to the gluons in the ”window”
between E and Ee∆. This does not present difficulties. We find that at moderate
x the DGLAP equation is reproduced where Q2 = 2Ek+.

∂

∂ lnQ2

[
xG (x ,Q2)

]L
=
αs

2π

∫ 1

x
dζPgg (ζ)

[
x

ζ
G

(
x

ζ
,
Q2

ζ

)]
(1)

At low x this deviates from the standard BFKL, as the resolution scale on the RHS
becomes different from Q2.

In addition the stimulated emission corrections also contribute, and are dominated
by their virtual terms.

∂

∂ lnQ2
[xG (Q2, x)]NL = −αsNc

4π

1

(2π)3
1

N2
c − 1

1

Q2S⊥
[xG (Q2, x)]2

A higher twist (obviously), but not the GLR-MQ term! No ln x , but leading in αs .
A completely different physical effect, but also leads to slowing down of the
evolution.
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Future ...

Our ultimate goal is of course to unify DGLAP with BFKL. We need to
consider the multiple soft scatterings, a.k.a. Wilson lines. That is still
some way off.

The next step is to look at soft scattering off a dilute target, meaning
consider the evolution of ⟨ρa(x)ρa(y)⟩. We thought we had it, but we
don’t - still working on it. It is not straightforward, but we are slowly
progressing, and we will do it.

Then there is the question of soft fields, which we have set aside for now.
Physically these describe rescattering of emitted gluons on the fields of the
projectile when the projectile is dense. Are they important? Probably.
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