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Sharpening numerical tools for precision calculations with CGC

CGC: Color Glass Condensate is an effective description of processes in
pp and pA collisions at high energies ⇐⇒ small x

access to unintegrated parton distribution functions
nonperturbative initial condition - model
perturbative evolution equation
predictions of cross-sections at high-energies/small-x
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Goal of the exercise
Test the universality of the CGC approach:

so far, the fits were performed one observable at a time
fitted parameters were used to calculate another observable and
compared with experimental data
Single inclusive particle production at high energy from HERA data to proton-nucleus
collisions, T. Lappi, H. Mäntysaari, Phys.Rev.D 88 (2013) 114020
Global Bayesian Analysis of J/ψ Photoproduction on Proton and Lead Targets, H.
Mäntysaari, H. Roch, F. Salazar, B. Schenke, C. Shen, 2507.14087

we plan to investigate if a simultaneous fit to a set of observables is
possible
on the way, we will develop numerical tools that, unexpectedly, can
have more applications and open new opportunities
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Virtual photon-proton cross section for transverse (T) and longitudinal
(L) polarization of the virtual photon

E. Iancu, QCD in heavy ions collisions
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Comparison with experimental data for the reduced cross sections in
different Q2 bins

Q2
s0 = 0.164 GeV2 at x0 = 0.01, σ0 = 32.324, γ = 1.123, C = 2.48 and

ml = 0.0182

J. L. Albacete, N. Armesto, J.G. Milhano, P. Quiroga Arias, C.A. Salgado, AAMQS: A
non-linear QCD analysis of new HERA data at small-x including heavy quarks, Eur.
Phys. J. C 71, 1705 (2011)
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Negatively charged hadron and π0 yields in proton-proton collisions at√
SNN = 200 GeV
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J. Albacete, C. Marquet, Single inclusive hadron production at RHIC and the LHC
from the Color Glass Condensate, Phys.Lett.B687:174-179,2010
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Negatively charged hadron and π0 yields in proton-proton collisions at√
SNN = 200 GeV

Q2
s0 = 0.4 GeV2 at x0 = 0.02 was the only fitted parameter

J. Albacete, C. Marquet, Single inclusive hadron production at RHIC and the LHC
from the Color Glass Condensate, Phys.Lett.B687:174-179,2010
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Framework: requirements

evolution equation
initial condition
access to gluon dipole amplitude in position and momentum spaces
minimization algorithm ⇒ levmar library
access to fragmentation functions and PDFs ⇒ LHAPDF library

Framework: features
BK evolution equation with kinematical constraint
Balitsky/daughter/mother dipole prescription for the running
coupling
Euler/Runge integration scheme
uncertainty estimation
parallelization ⇒ shorter running time
. . .
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Balitsky-Kovchegov evolution equation

The LO BK equation reads

∂Sx̄⊥ȳ⊥(η)

∂η
=

ᾱs

2π

∫
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]
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2
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Rewritten in radial variables
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Balitsky-Kovchegov evolution equation

Account for several additional physical effects, such as the running of the
coupling constant with the energy scale, resummation of subleading
corrections

∂S(r ,η)

∂η
=
∫

dφ drz rz ×

×
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2πr2
z
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√

r2+ r2
z −2rrz cosφ . The shifts in η in the dipole

amplitudes are given by δrz ;r =max
{

0,2 log r
rz

}
and similarly

δrzy ;r =max
{

0,2 log r
rzy

}
.

B. Ducloué, E. Iancu, G. Soyez, D.N. Triantafyllopoulos, HERA data and
collinearly-improved BK dynamics, Phys.Lett.B 803 (2020) 135305
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Automatic Differentiation in a nutshell
Allows to evaluate ’analytic’ derivatives of a computer program with
respect to external parameters.

numbers are promoted to vectors

x →



x
∂A

∂B

∂ 2
A

∂A∂B
...


all arithmetic operators are overloaded
functions with derivatives have to be provided
works for most algorithms
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Automatic Differentiation for the Balitsky-Kovchegov evolution equation
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S(r ,η)

∂Q0S(r ,η)
∂rS(r ,η)

∂ 2
Q0

S(r ,η)

∂ 2
r S(r ,η)


Then

∂S(r ,η)

∂η
=
∫

dφ drz rz ×

×
[
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,

gives S(r ,η) together with the evolved derivatives.

F. Cougoulic, P. Korcyl, T. Stebel, Improving the solver for the Balitsky-Kovchegov
evolution equation with Automatic Differentiation, Comput.Phys.Commun. 313
(2025) 109616
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Automatic Differentiation for the Balitsky-Kovchegov evolution equation

Benefits:
faster convergence of the fit

fewer iterations
less computer time
can test more parameters in the initial condition

access to the Hessian matrix allows easy estimation of uncertainties
more reliable estimation of some TMD functions with long tails
can tell how the initial condition is sensitive to the given
experimental data

Costs:
slower code, but less than naively expected
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Timings

Timings on a two-socket 16-core procesor running with 64 openMP
threads.
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Advantage 1: Sensitivity of the observable to the parameters of the initial
condition
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Advantage 2: Immediate access to the exact Hessian matrix at the
minimum
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Advantage 2: Immediate access to the exact Hessian matrix at the
minimum

Assume that χ2
global is quadratic about the global minimum

∆χ
2
global ≡ χ

2
global −χ

2
min =
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i

)(
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min

We can diagonalize the covariance matrix C ≡ H−1,

n
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2
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Advantage 2: Immediate access to the exact Hessian matrix at the
minimum
Comparison of the uncertainties obtained from the Hessian and Monte
Carlo methods for the PDFs

G. Watt, R. Thorne, Study of Monte Carlo approach to experimental uncertainty
propagation with MSTW2008 PDFs, JHEP 1208:052, 2012
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Advantage 2: Immediate access to the exact Hessian matrix at the
minimum

Uncertainty of the DIS cross-section obtained with the Hessian method
Initial condition for the Balitsky-Kovchegov equation at next-to-leading order, C. Casuga, H.

Hänninen, H Mäntysaari, Phys.Rev.D 112 (2025) 3, 034003
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Advantage 3: Increased efficiency of the Levenberg-Marquard
optimization algorithm
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Logarithmic Fourier Transform

Popular in geophysics, cosmology, and signal processing.
It allows for the Fourier transform of data sampled on a logarithmic
scale rather than linear,
fits perfectly into our setup as we solve the BK equation on a
logarithmic grid,
more reliable than an ordinary 2D Fourier transform,
Bessel function is not needed,
order of magnitude more efficient in computer time.

Main idea:

f̃ (k) = C (k) FTτ→k
1D

[
B(τ) FTx→τ

1D

[
A(x) f (x)

] ]

where A(x), B(τ), and C (k) are known functions that can be
precomputed. FTx→k

1D is an ordinary, linear, one-dimensional FT.
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Logarithmic Fourier Transform
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Logarithmic Fourier Transform
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Time comparison: the logfft approach, numerical integration of the Bessel
functions, and a 2D Fourier transform evaluated using the FFTW3 library.
Efficient Fourier Transforms for Transverse Momentum Dependent Distributions, Z.-B. Kang,

A. Prokudin, N. Sato, John Terry, Comput.Phys.Commun. 258 (2021) 107611
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Preliminary results for combined fit

Back to DIS data: global fit with Balitsky running coupling prescription
and kinematical constraint yielded χ2/DOF ≈ 1.3
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Preliminary results for combined fit

Back to BRAMHS data: charged pions yields in proton-proton collisions
at

√
SNN = 200 GeV
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Going further: dijet production

C. Marquet, E. Petreska, C. Roiesnel, Transverse-momentum-dependent gluon
distributions from JIMWLK evolution, JHEP10 (2016) 065
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TMD approximated in terms of the dipole amplitude S

F
(1)
qg (k⊥,x) =

Nc

2π2

∫
r⊥dr⊥
2π

J0(k⊥r⊥)∇
2
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∇
2
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∂ 2

∂ r2
⊥
+

1
r⊥

∂

∂ r⊥

K (r⊥,x) =
∇2
⊥Γ(r⊥,x)

Γ(r⊥,x)
where Γ(r⊥,x) =− log [S(r⊥,x)]
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Back to Automatic Differentiation again
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Automatic Differentiation combined with LogFFT
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Automatic Differentiation combined with LogFFT
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Automatic Differentiation combined with LogFFT
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Next steps

uncertainty analysis and model selection: Bayesian analysis based on
the calculation of evidence; comparison of uncertainties from the
Hessian method, Markov Chain Monte Carlo, and Nested Sampling
algorithms

testing the stability: impact of different running coupling
prescriptions, different implementations of the kinematical constraint

inclusion of other data/cross-section

TMD functions from JIMWLK
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JIMWLK evolution equation

Basic facts
JIMWLK equation describes the non-linear small-x evolution
it uses Wilson lines as fundamental degrees of freedom
two-point correlation function ⟨U†(x)U(y)⟩ gives the dipole
amplitude
two-point correlation functions with derivatives provide a basis for
small-x TMD structure functions
initial condition corresponds to a configuration of Wilson lines
numerically useful reformulation as a Langevin equation

LO JIMWLK: Langevin formulation
(Rummukainen, Weigert 2004, Lappi, Mantysaari 2014)

U(x,s+δ s) = exp

(
−
√

δ s∑
y
U(y,s)(K(x−y) ·ξ (y))U†(y,s)

)
×

×U(x,s)× exp

(
√

δ s∑
y

K(x−y) ·ξ (y)

)
.
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Automatic Differentiation for JIMWLK

Gluon dipole amplitude obtained from JIMWLK, together with the first
and second derivatives with respect to Q0
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SU(N) JIMWLK at η = 0
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SU(N) JIMWLK at η = 0
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SU(N) JIMWLK with evolution
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SU(N) JIMWLK with evolution
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Summary

I have presented elements of the framework that allow for the
efficient fitting of several observables

I have discussed the benefits of using automatic differentiation

I have shown how to increase the performance by employing the
logarithmic Fourier transform

I have presented preliminary results of the fit to the DIS from HERA
and single inclusive hadron production from BRAHMS

I have highlighted future steps

Thank you very much for your attention!
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