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The Einstein-Podolsky-Rosen Paradox (1935)

The EPR Paper [Phys. Rev. 47, 777 (1935)]
Can Quantum-Mechanical Description of Physical
Reality be Considered Complete?
Challenge to Copenhagen orthodox interpretation

Key Arguments:
Reality criterion: If we can predict with certainty,
there must be an element of reality
Locality: No instantaneous action at a distance
Completeness: QM might be incomplete; Suggested
hidden variable theories

Einstein’s famous phrase: "God does not play dice"
To which Bohr replied: "Einstein, stop telling God
what to do"

Einstein, Podolsky, and Rosen

"The EPR paradox revealed the profound nature of quantum entanglement"
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Quantum Entanglement

Quantum Entanglement
The quintessential phenomenon of QM introduced by
Schrödinger in response to the EPR paper.
Non-local correlations between particles
Violates local realism assumptions

Mathematical Description
Nonseparability: Entangled states cannot be written
as product states
Example: Spin singlet |Ψ−〉 = 1√

2
(| ↑↓〉 − | ↓↑〉)

Key Properties
Measurement of one particle instantly affects the
outcome of the other
Cannot be explained by classical physics
Foundation of quantum information theory

Erwin Schrödinger

"Spooky action
at a distance"
- Albert Einstein
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ER=EPR Conjecture: Entanglement as Wormhole Geometry

The ER=EPR Conjecture
[Maldacena & Susskind, 2013]

Einstein-Rosen Bridge =
Einstein-Podolsky-Rosen Pair

Entanglement⇔Wormhole

EPR correlations create geometric
connections

Wormhole Geometry is holographic
manifestation of entanglement

Non-traversable wormhole - no
superluminal signaling

Bridge between QM and GR: unifying
general relativity and quantum
mechanics into string theory.

Supporting Evidence: Holographic
Realization: [Jensen & Karch, 2013]

EPR pair in AdS5 space [Xiao, 2008]

The holographic dual of the EPR pair
has two horizons and a string
(wormhole) connecting them.

BH BH

Entanglement

Alice Bob
Wormhole

"Entanglement weaves the fabric of
spacetime"
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Separable vs Entangled States: Two-Qubit Systems

Separable States
Can be written as: |ψ〉 = |φ〉A ⊗ |χ〉B
No quantum correlations

Examples:

|00〉 = |0〉A ⊗ |0〉B, |01〉 = |0〉A ⊗ |1〉B

|ψsep〉 =
1√
2

(|0〉+ |1〉)A ⊗ |0〉B

=
1√
2

(|00〉+ |10〉)

|φ〉A |χ〉B
Independent

Entangled States
Cannot be written as product

Genuine quantum correlations
Bell States (Maximally Entangled):

|Φ+〉 =
1√
2

(|00〉+ |11〉)

|Φ−〉 =
1√
2

(|00〉 − |11〉)

|Ψ+〉 =
1√
2

(|01〉+ |10〉)

|Ψ−〉 =
1√
2

(|01〉 − |10〉)

A B
Entangled
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Bell’s Theorem

Quantum Indetermincy
Realism: Quantum indeterminacy reflects our ignorance of
hidden variables; outcomes are determined but unknown.
Copenhagen: Indeterminacy is fundamental; outcomes are
truly probabilistic until measured.
Agnosticism: The reality behind quantum events is
unknowable; only predictive power of the theory matters.

Bell Nonlocality [Bell, 1964]
Bell inequality: It makes an observable difference for
Realism vs Copenhagen, and eliminates Agnostic view.
Decisive evidence supporting QM (Copenhagen).

CHSH Inequality [Clauser et al., 1969]
Generalized Bell inequality
Foundation for quantum information theory

A B

Entangled State
|Ψ−〉 = 1√

2
(| ↑↓〉 − | ↓↑〉)

John Stewart Bell

6 / 22



EPRB Experiment: Testing Bell Nonlocality

Einstein-Podolsky-Rosen-Bohm Experiment

π0Alice Bob
e− e+

~a ~b

Spin-singlet: |Ψ−〉 = 1√
2
(| ↑↓〉 − | ↓↑〉)

Correlation: E(~a,~b) = 〈A(~a) · B(~b)〉
Bell CHSH Inequality:

BHT = |E(a, b)− E(a, b′) + E(a′, b) + E(a′, b′)| ≤ 2

BQM = | cos θab−cos θab′ +cos θa′b+cos θa′b′ | ≤ 2
√

2

Local Hidden Variable Theory

Pre-existing density P(λ) for λ

A(~a, λ) = ±1 predetermined

E(~a,~b) =
∫

P(λ)A(~a, λ)B(~b, λ)dλ

Local realism: BHT ≤ 2

Quantum Mechanics

No predetermined values

E(~a,~b) = −~a ·~b = − cos θab

Nonlocality: 2 < BQM ≤ 2
√

2
Elementary proof with:
α cos θ + β sin θ ≤

√
α2 + β2

QM violates Bell inequality⇒ Nature is nonlocal!
7 / 22



Concurrence: Measuring the Degree of Entanglement (Pure States)

Time Reversal Operation flips spins:
|ψ〉 = α|00〉+ β|01〉+ γ|10〉+ δ|11〉
C(|ψ〉) ≡ |〈ψ̃|ψ〉|, |ψ̃〉 = −σy ⊗ σy|ψ∗〉
[Wootters, 98] flip spins with
T̂ = −iσyK̂ (Anti-Unitary)

|ψ̃〉 = δ∗|00〉−γ∗|01〉−β∗|10〉+α∗|11〉,
the spin-flipped complex conjugate.

C(|ψ〉) = 2|αδ − βγ| measures overlap
with time-reversed state.

C = 0: Separable (no entanglement)

0 < C < 1: Partially entangled

C = 1: Maximally entangled

C = invariance under time reversal

Separable State

|ψ1〉 = |00〉 and α = 1, β = γ = δ = 0
C = 2|1 · 0− 0 · 0| = 0

Bell State (Maximally Entangled)

|Φ+〉 = 1√
2
(|00〉+ |11〉)

C = 2|12 − 0| = 1

Partially Entangled

|ψ2〉 = 1√
3
|00〉+

√
2
3 |11〉

C = 2| 1√
3
·
√

2
3 | = 2

√
2

3 ≈ 0.94
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Spin Density Matrix for Spin-1/2 Particles
Density Matrix Formalism
For a spin-1/2 particle, the density matrix is:

ρ =
12 +~n · ~σ

2
Bloch Vector: ni = 〈σi〉 = Tr(ρσi)

|~n| = 1: Pure state

|~n| < 1: Mixed state

~n = 0: Maximally mixed state

For a heavy quark:
Production mechanism: QCD processes
determine initial Bloch vectors

Experimental access: Weak decay
measures spin projections 〈~n · ~σ〉

Bloch Sphere Representation

x

z

y

~n
|0〉

|1〉

|+〉|−〉 φ
θ

Geometry encodes quantum information

~B = (0, 0, 1): ρ = |0〉〈0|
~B = (1, 0, 0): ρ = |+〉〈+|
~B = (0, 0, 0): ρ = 1

212 (classical)
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Density Matrix and Concurrence for Two-Qubit Systems

Extending to mixed states

Density Matrix Representation:
Pure state: ρ = |ψ〉〈ψ|
Mixed state: ρ =

∑
i pi|ψi〉〈ψi|

General form in computational basis:

ρ =


ρ00,00 ρ00,01 ρ00,10 ρ00,11
ρ01,00 ρ01,01 ρ01,10 ρ01,11
ρ10,00 ρ10,01 ρ10,10 ρ10,11
ρ11,00 ρ11,01 ρ11,10 ρ11,11


Properties:

Hermitian: ρ† = ρ

Trace Tr(ρ) = 1; Non-negative.

Concurrence in general:
[Hill, Wootters, 97; Wootters, 98]

Define: ρ̃ = (σy ⊗ σy)ρ
∗(σy ⊗ σy)

Compute: R =
√√

ρρ̃
√
ρ

Eigenvalues ofR: {λ1, λ2, λ3, λ4}
(descending order)

C(ρ) = max{0, λ1 − λ2 − λ3 − λ4}
Example - Werner State:

ρW = p|Ψ−〉〈Ψ−|+ 1− p
4
14

p = 1: Pure Bell state

C(ρW) = max{0, 3p−1
2 }

Entangled when p > 1/3
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Separable vs Entangled States and Classical Communication

1. Separable (Unentangled) States:

ρ =
∑

i,j

P(ai, bj)ρ
i
a ⊗ ρj

b

P(ai, bj) ≥ 0 are probabilities and∑
i,j P(ai, bj) = 1

ρi
a, ρj

b are local density matrices

Peres Horodecki criterion (PPT):

ρTb =
∑

i,j P(ai, bj)ρ
i
a ⊗

(
ρj

b

)T

2. Entangled States:

Cannot be written in separable form
ρ 6= ∑i,j P(ai, bj)ρ

i
a ⊗ ρj

b

Classical Correlations:
Preparable by LOCC
"Alice prepares ρi

a, tells Bob classically
to prepare ρj

b"

No violation of Bell inequalities

Correlation 6= Entanglement

Quantum Correlations:
Require entangled resource states

Can violate Bell inequalities

ρent = |Ψ−〉〈Ψ−|

Special Quantum correlation.
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Spin Density Matrix: Physical Interpretation

The most general two-qubit density matrix:

ρ =
1
4

(
14 + B+

i σ
i ⊗ 12 + B−j 12 ⊗ σj + Cijσ

i ⊗ σj
)

Physical Quantities:
B+

i = Tr ρ(σi ⊗ 12)

B−j = Tr ρ(12 ⊗ σj)

Cij = Tr ρ(σi ⊗ σj)
Spin correlation /NB: Not [C]

Special Case:
For Bell states: B+

i = B−j = 0
(No individual spin polarization)

Bell States & Correlation Matrices:
State Correlation Matrix

|Ψ−〉 = 1√
2
(| ↑↓〉 − | ↓↑〉) Cij = diag(−1,−1,−1)

|Ψ+〉 = 1√
2
(| ↑↓〉+ | ↓↑〉) Cij = diag(1, 1,−1)

|Φ+〉 = 1√
2
(| ↑↑〉+ | ↓↓〉) Cij = diag(1,−1, 1)

|Φ−〉 = 1√
2
(| ↑↑〉 − | ↓↓〉) Cij = diag(−1, 1, 1)

For singlet state:
Cij = −δij means spins are always anti-parallel.

Correlation matrix Cij fully characterizes entanglement structure for Bell states
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Entanglement and Bell Nonlocality Conditions

Starting from the spin density matrix: ραα′,ββ′ = 1
4

(
1αα′,ββ′ + Ciiσ

i
αβ ⊗ σi

α′β′

)
Anti-correlated spins: Cxx,Cyy,Czz < 0

Def: D = (Cxx + Cyy + Czz)/3 = trC/3

D = −1: Perfect anti-correlation
Four eigen values ofR = ρ (since ρ̃ = ρ)

λ1 =
1
4

(1− Cxx − Cyy − Czz),

λ2 =
1
4

(1 + Cxx + Cyy − Czz),

λ3 =
1
4

(1 + Cxx − Cyy + Czz),

λ4 =
1
4

(1− Cxx + Cyy + Czz).

Entanglement Condition
Concurrence C[ρ] = 1

2(−3D− 1) > 0:

D < −1
3

Bell Nonlocality Condition
For CHSH violation B > 2:
[Horodecki, et al, 95]

D < − 1√
2
≈ −0.707

Hierarchy: Bell Nonlocality ⊂ Entanglement ⊂ All Quantum States
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Top Quark Weak Decay and Spin Transfer
Top Quark Decay: Choose its rest frame

t→ W+b→ `+ν`b, t̄→ W−b̄→ `−ν̄`b̄
Decay Spin Density Matrix:

Γ± =
12 + κ±~σt · l̂±

2
Parity Violating Angular Distribution:

dΓ

d cos θ
∝ 1 + κ± cos θ

Weak decay (parity violation) provides
Spin-momentum correlation
κ± = ±1 (t̄t) spin analyzing power
σl+l− ∝ tr[Γ+ ⊗ Γ−ρ] NB tr[σiσj] = 2δij

Correlation between di-leptons

d2σ

σdΩ+dΩ−
=

1
(4π)2

[
1− l̂+ · C · l̂−

]
Entanglement Signature

〈cosϕ〉 = −1
3

D = −1
9

Tr(C)

Experimental Reach:
Extract D = Tr(C)/3 parameter directly

Quantum Tomography: all elements
of ρ can be measured. [Bernreuther,
Heisler, Si, 15; ATLAS, 1612.07004;
CMS, 1907.03729]
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First Observation of Quark Entanglement at the LHC

[ATLAS (Nature 2024):] First observation of
entanglement in quarks at the highest-energy.
Entanglement Marker:

D = tr[C]/3 = −3〈cosφ〉

where φ is the angle between charged leptons
in their parent top/antitop rest frames
Key Features:

Spin transferred to decay products

Measured near t̄t threshold

From atomic physics to high-energy
collisions: A new frontier!
CMS, STAR, BES-III more to come.

√
s = 13 TeV, 140 fb−1 data (2015-2018)

Measured: D < −1/3 (Entanglement criterion)
D = −0.547± 0.002 (stat.) ±0.021 (syst.)

Observed: > 5σ from no entanglement

Yet, Bell Nonlocality: D < −1/
√

2
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Theory vs Experiment: Top Quark Entanglement

Quantum State Tomography ραα′,ββ′ = Rαα′,ββ′/trR [Afik, de Nova, 2022]

Top quark pair production
q

q̄

t

t̄

g

g

t

t̄

g

g

t

t̄

Rαα′,ββ′ =
1
N

∑
M∗tα t̄α′Mtβ t̄β′

Measured D ≈ −0.54 near threshold

Gluon fusion dominance at LHC

Angular momentum conservation
determines spin correlations

Statistical mixture of qq̄ and gg

Near Threshold (β → 0):

qq̄: Separable state (C = 0), since t̄t
spin (±1) is equally mixed along beam.

gg: Maximally entangled singlet Ψ−

High Energy (β → 1) with θ = π/2:
Both channels: Maximally entangled
triplet Ψ+ along n̂ with nonzero OAM.

Mixed State at LHC

ρ = wqq̄ρqq̄ + wggρgg

"Observation of Entanglement but not Bell Nonlocality due to Quark channel mixture"
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First evidence of spin correlation in ΛΛ̄ hyperon pairs

STAR Collaboration [arXiv:2506.05499] with data from p + p collisions at
√

s = 200 GeV

Relative polarization (same as D): PΛΛ̄ = (18± 4)%

Parallel: 1/3; Antiparallel: −1; no spin correlation 0.

Short-range pairs show maximal entanglement

Long-range pairs: correlation vanishes (decoherence)

Evidence for quantum entanglement in QCD vacuum

Entanglement as a Tool

s s̄
Entangled

Λ Λ̄

QCD Confinement
Chiral Symmetry
Spin Dynamics
Decoherence
Bell Nonlocality
Nuclear Medium !?

"Entanglement: A new paradigm for exploring QCD phenomena"
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EIC Status Update

Aiming to the start of operation in 2031, EIC has reached several milestones:
Five stages of project Critical Decision approvals:

1 CD-0 Approve Mission Need X
January 9, 2020: EIC CD-0 and site selection Link

2 CD-1 Approve Alternative Selection and Cost Range X
June 29, 2021: EIC CD1 and start of project execution Link

3 CD-2 Approve Performance Baseline
4 CD-3 Approve Start of Construction
5 CD-4 Approve Start of Operations or Project Completion

RHIC→ eRHIC; Energy: 20→ 141 GeV; Luminosity: 1034cm−2/s; Polarized
electron and hadron beams
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Quark Pair Production in Photon-Gluon Fusion: Longitudinal case
[Qi, Guo, Xiao] arXiv:2506.12889v1 [hep-ph]

Photon-Gluon Fusion Process
γ∗λ=±,0 + g→ q + q̄

ρL =
1
4
(
14 + Cijσ

i ⊗ σj)

γ∗
g

Ceter o
f Mass Fram

e q

q

k̂

r̂

n̂
p̂

l̂+

l̂−

q
R
es
t
Fr

am
e

q
R
es
t
Fr

am
e

γ∗L

g

q

q

|Φ+⟩

γ∗T

g

q

q

|Ψ−⟩

For qq̄ with β → 0 and θ = π
2

Longitudinal photons contribution:

Cij =

1 0 0
0 −χ1 −χ2
0 −χ2 χ1


with χ1 =

1− 2z2 + z2β2

1− z2β2 , χ2 =
√

1− χ2
1.

ρL is given by a pure state = |Ψ〉 〈Ψ|, with

|Ψ〉 =
1
2

(
√

1 + χ1, i
√

1− χ1, i
√

1− χ1,
√

1 + χ1).

Near Threshold (β → 0): |Φ+〉.
High Energy (β → 1): |Φ+〉.
qq̄ has spin 1 with nonzero OAM and C[ρL] ≡ 1!

Always Maximally Entangled! Very Special!
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Quark Pair Production in Photon-Gluon Fusion: Transverse case

[Qi, Guo, Xiao] arXiv:2506.12889v1 [hep-ph] Transverse photons: similar to gg→ qq̄ channel.
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C [ρT ] Density plots of the concurrence for
transverse photon at EIC as functions of β
and z = cos θ at given α ≡ Q2/ŝ.

Solid lines (boundaries for entanglement
(C[ρT ] = 0)) and dashed lines (boundaries
for for Bell nonlocality (N [ρT ] = 0).

Near Threshold (β → 0):
Maximally entangled singlet Ψ−

High Energy (β → 1) with θ = π/2:
Maximally entangled triplet Φ−.

Experimental Reach at EIC: Better to have LT separation!
Low background and Maximal signal at EIC (including ultra-peripheral collisions).
Possible measurements: bb̄ or cc̄ or hyperon ΛΛ̄.
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Summary and Outlook

γ∗
g

Ceter o
f Mass Fram

e q

q

k̂

r̂

n̂
p̂

l̂+

l̂−

q
R
es
t
Fr

am
e

q
R
es
t
Fr

am
e

Entanglement and Bell Nonlocality are measurable at high energy collisions.

EIC offers a unique and clean experimental environment for measuring entanglement
and Bell Nonlocality.

Using entanglement as a tool to probe nuclear environment and other QCD effects.

New opportunities to explore the interplay of quantum information phenomena and
high energy and hadronic physics in the years to come.
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Celebrating Ian Balitsky’s 70th Birthday

Celebrating Ian Balitsky’s 70th Birthday

and Ian’s Pioneering Contributions to High Energy QCD:
BFKL equation, LO and NLO

BK equation, LO and NLO
A toast to Quantum Chromodynamics and its pioneer!
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