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Introduction

Dijets production in deep inelastic scattering (DIS) is powerful tool to probe QCD and
study internal structure of hadrons, specially at small-x.

clean process to study upcoming measurements from Electron-ion Collider (EIC).
Next-to-eikonal (NEik) corrections generally enhance cross section. NEik corrections to
inclusive DIS dijets were computed by T. Altinoluk et al.(2212.10484) , P.Agostini et al.
(2403.04603) (dilute limit).

Next-to-leading Order (NLO) corrections bring suppression to cross section due to
sudakov logarithms. NLO corrections in back to back limit were studied by P. Caucal et al.
(2304.03304).

Furthermore, DIS dijets in back to back limit allows connecting to TMDs (7. Altinoluk
(2410.00612)).

Hence, there is need to compare NLO and NEik corrections to address their relative
importance.

This Work: Next-to-eikonal corrections in the dense limit : New target averages of
Wilson Lines



Approximations in CGC

Generally in saturation physics in Color Glass Condensate (CGC) framework 2
approximations:

e Semi-classical approximation:

Dense target given by Strong semi-classical gluon field Ap(x)~1lg>>1
e Eikonal approximation :

o Limit of infinite boost of A (x)
o Only gluons contributes to small-x medium ZCL’P

e Taking into account only leading power in terms
of high energy : (here, leading order component
w.rt.y,) >

e Good enough approximation to describe physics at
very high energy accelerators.




Eikonal Order: For A (x)
Due to large boost of the target

Eikonal Order along x,
In light-cone coordinate, w.r.t.

1. Shockwave approx.: target is localised in Lorentz boost factor of target (1)

the longitudinal direction x* = 0 (zero

width). A" =0(y) >> A =0(1) >> AT = O(1/)
2. Only leading - component of target

considered, subleading components are CULA

neglected (suppressed by y,) A

3. Time dilation and static approximation: x°
dependence of target neglected

MV model, Gaussian approximation : Gluon Distribution is given as <A'A>



w.r.t. Lorentz boost factor of target (y,)

A™=0(y) >> A = 0(1) >> A* = 0(1/7)

Going Beyond Eikonal Order: For A (x)

Eikonal Order

1. Shockwave approx.: target is
localised in the longitudinal
direction x* = 0 (zero width).

2. Only leading - component of
target considered, subleading
components are neglected
(suppressed by y,)

3. Time dilation and static
approximation: x dependence
of target neglected
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Next-to-eikonal Order

Instead of infinite thin shockwave as
a target, we consider finite width of
a target (considered in jet quenching
long ago).

Include transverse component of

background field(target), similar to
spin physics (7. Altinoluk et al.)

Consider background field is x°
dependent: dynamics of the

target are considered (attempts to
consider it now in jet quenching by A.
Sadofyev et al.).

Computations in : T. Altinoluk et al. (2212.10484), P. Agostini et al. (2403.04603) etc.



DIS Dijets Production: Eikonal Order

e Virtual photon splits into quark-antiquark pair:
o Depends upon the polarization of photon (A):
m Longitudinal
m [ransverse
o Interacts with medium eikonally

e The cross section at eikonal order is given as: P.Agostini et al. (2403.04603 [hep-ph])
T+A 7+ X
do"atA99+ _ / eikl-(v’—v)+ik2-(w’—w)c)‘(w/ N ——
Fkidkodmdia | Jevww | Qw',v',v,w) and d(w’,v')are
" [?(W,’V,’v’ w)]_[d(w,,vl)]_ d(v,w) + 1], quadrupole and dipoles of
S Wilson lines
CL(ry,ra) =Y —— =17 5 233K, K, , 1
e d(v.w) = 5 (T (W)
2Ncaome§“ 2 2 2 ]-
Cr(ri,r2) = Z W‘SZZIZZ [mf + (21 + 22)391‘0%] Ko(eg|r1])Ko(eg|rz]). Q(W’, v', v, w) = — <’I‘r[b{(w')Z/{T (v’)Z,{(v)Z,{Jr (w)]>

C
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DIS Dijets Production: Next-to-Eikonal Order

e Two kinds of contributions: T. Altinoluk et al.(2212.10484 [hep-ph]),
o When photon splits before the medium P.Agostini et al. (2403.04603 [hep-ph]).

o  When photon splits inside the medium
e Next-to-eikonal contribution coming due to x dependence is not considered



DIS Dijets Product

ion: Next-to-Eikonal Order

° CrOSS'SeCtLQQA'fg'Ve” alsz T. Altinoluk et al.(2212.10484 [hep-ph]),
Plolindn| = ™ [ et g o —vw—v)  PAgostini et al. (2403.04603 [hep-ph).
X {% [ké ;kjl %8“,1-] [Q;l)(w',v’,v*,w) - dg.l)(v*,w)] - zil [Q(z)(w',v’,v*,w) - d(z)(v*,w)]
- i [# — %8‘”} [Qg}l)(v',w',w*,v)]L - dgl)(w*,v)f] — Z% [Q(Q)(v',w',w*,v)Jr —d® (w*,v)f] }
+ JATdU;r;In&
Where, 1 1
A (v, w) = E@ [uj.”(v)uf (w)] > QW (W, v, i, w) = E@_« [U(w')uf (v')uf)(v)uf(w)] >
B v W) = i<1&_~ U@t @] ), QW v, v.,w) = i<Tr [t U@t w) )
k9 NC b ? b * 9 NC 7
T
and, UM (z) = /T U v (2)Dg (U, (),
. e = B i Decorated Wilson lines
Tt
U@ = [ oty @D DD 0t ).
—2 —
Di(z") = 0, —igAl(z+,2),

Di(z+) = 0, + igAi(z+, 2)
— O, — 2igAi(z*,2)



Going to numbers : Dilute Limit, Eikonal

e The case when k,, k, >> Qs
e Physics is perturbative and Wilson lines are approximated as

+

() =11y [ a4~ (o) =gt [ ast [T astaner A tn) + 0,
e Only two gluon exchanges P.Agostini et al. (2403.04603 [hep-ph])
e Dipole can be expressed as ax,y)=1- _/ / dot

X Tr[(4™ ey (e, 0) + (A7 G YA Y) - A4 0AE L)

e Homogeneous target, correlators are given as: —<Tr Ak (%) A (y)]>—2wQ2MGW(x y)
e Dipoleisgivenas: d(x,y)=1-2rQ?[G ~(0)— G~ (x—y)], where, & (r) =/Peip'r%
e At Eik order,

doitA=aTt X 8NeaemeFQ5S1 5,58 Q% (k? —12)°
d?ky dn d?kodn (2)3 Y72 (kg + ko)A (K2 + €2)2(k2 + €2)2

Similar results for Longitudinal photon



Going to numbers : Dilute Limit, Next-to-Eikonal

e Single covariant insertion is

+

ALl
UPw)= [ av* {—z’g /

L+

ot

" dzt (8yiA™ (2], v) — O0ys A= (v, v)) — 2igAd (v, v)

L
2

v Z:
g [ dt [, a0 (470 A ) - A7 VA6 V)
2
o

— 2g2[£ dzf (Aj('vJ",v)A*(zfr,v) +A”(v+,v)Aj(sz,v)):| +0(gg).
e Next-to-eikonal correction arises from:

QY (W', v, va,w) = d) (va, w) = 47 Q3 [GT (v —v) = G (W' — V)]

i— 1 z'P-rPi
e Where, G (r) = 2pr /P ¢ 51 Energy suppressed

e Double covariant contribution doesn’t contribute.
e At next-to-eikonal order,

P.Agostini et al. (2403.04603 [hep-ph])

# G 22
dO',YL+A_>qQ+X . 8Ncaem€stSJ_

_ (52 323
X, dn 2kad (273 “%2
Q* (ki — k3)* o (BdE B
(kl + k2)4(k% + 6;)2(1(% + 6?)2 W2 zZ1 z29

Similar results for Longitudinal photon
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Numerical Results: Dilute Limit

Momentum imbalance: A = k1 + k2

- Z, k2

P.Agostini et al. (2403.04603 [hep-ph])

Cross section can be expressed as harmonic expansion w.r.t ¢ between A and P

°
e Relative momentum: P = 22k1
°
dav*A—HztiX o0
/\dl'[ = Do (PL,AL) 1+2;Un,A(PL,AJ_)COS¢ ;

£=1

10 W=30 GeV
10710 -

1'e” +Au— q+g+XxX | | i

eikonal
=== subeikonal

Al=1 GeV

Q=10 GeV?2

Bl sl Pt 8 | )= /

dp ;s donA9IX D »
—e 4 v = o
o din e Dl

W= 30 GeV, Q, = 0.6 GeV
EIC energy (Vs = 90 GeV)
At relatively large P, 10%

corrections
Valid when P >A > Q,
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Going to numbers: Dense Limit, Eikonal order

e Compute the average of different number of Wilson lines : dipoles and quadrupoles
e Forthat we assume that:
o Target is composed of large number of nuclei A >> 1.
o Hence, distribution of color sources is Gaussian.
e Express average of gluon fields as two point correlator: in terms of kinetic term and
color structure

(A= (=%, x) A" (yt,y)) = g°0(at —yT )P ()G (x—y) /Sggééé

where, ¢ (=[5 MV model = y

e Sum over multiple correlator function to obtain average

@6@%@ @6@@% i} Following F. Dominguez et al.

(1101.0715)
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Going to numbers: Eikonal order

. 1
Dlpoles: d[x+7y+](xay) = E <T1“ u[m+,y+](x)ugx+,y+](Y)>

e Express dipoles in terms of Tadpole and non-tadpole contribution

d[x+,y+] (x,y) = TN

e Tadpole part factorizes, given as:
T = Ui 1) (%)) Uier ) (3)) = €276 O

e Interaction between two quark (antiquark) lines is given as:

1 — -
Nz [ H[g —~(x-y)|
€ = 7.
% * > Using Fierz identity it~ 1 5~ 1 [C 2/d2+ TN :|n e
o simplifies A Z:: |59 pe(z7) (x—y)

2
Hence dipole, similar to MV model : | djg+ ,+(x,¥) = eXp{ @

CTR——

x — y[Aqcp 13




Going to numbers: Next-to-eikonal order

Dipoles:  d\")(v.,w) = NL <T‘1“[U}1)(V)UT(W)]>

e Similar to eikonal, but extra connection from transverse gluon field (A7 A~)

vt

e Kinetic term factorizes, hence: write in terms of eikonal dipole
Y (ve, W) = 20°Crd s oo (v, W) (v — W)

where, G (r)= 2;_ [P eiP""% Energy suppressed
q

_ Q2 j 1 _ Q_ﬁ . S
dgl)(V*,W) N Pq_ (V W) 1n<|V—W|AQCD)Exp{ 4 (V W) 1n|V—W|AQCD

Similar treatment is done for d® decorated dipole

1 Q2 Auv Q2 1
v—w21n2< )—}— 3 In ]ex{——sv—WQIn— :
6 ( ) |v — w|Aqcep 4(Pg)2L*t Aqcp P 4 ( ) |v — w|Aqep




Going to numbers: eikonal Order

.
Quad ru pOIe: Q[I+,y+](x1:x2= X3, X4) = <TI‘[U[I+,y+](X1 )Z’{[er+,y+](x2)u[1+,y+](xii)ugx+1y+](X4)]>

c

e Shockwave between y* and x*is e By projecting Wilson lines
given as: we obtain quadrupole:
Q[z+,y+] = <u[z+,y+](xl)alagu[thr,er](XQ)ﬁ1ﬁ2u[z+,y+](X3)"/1’qu[1;+’y+](X4>;L1,LL2> Q[z+7y+](X1,X2,X3,X4) = <62’ Q[xﬂy*] ’61>
N 5 — x, S S In general,
3 1 < Xo < < ) Hizt y+1;; = (@il Loty l€5)
Y > > X3 ( > >

e Next, all possible combinations where we can have two-gluon exchanges ata

longitudinal point x* is defined as : =@* Z Wi

where, wi;=(-1)""¢G " (x; - z)) (MV model) o

Xi

Y

Ky

A Y } Y
\Q+OO

ALY
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Going to numbers: eikonal Order

.
Quadrupole: Qpu+y(x1,%2,xs,xe) = o= (Trlliar,yr (KOU, 4 1y (k20w ) (X)L 1 (50)])

c

e Similar dipole, we then write:

Q[x—k’y—k] = TN (
and tadpole factorizes as 7 = ¢=47Q:G™ " (0)

AY AY

e After simplifying color structure, we obtain quadruple

as. T, _ g F(W/,V,V',W)—}—ﬁ F(W',V',V,W) Ne
Q(w’v’v’w)_d(w’v)d(w’v)[( 27 A )e o
3 (F(W’,v,v’,w)—ﬁ_F(w’,v’,v,w)
2 Val

)e—-%ﬁﬁ] P—%ﬂF(w',v,v',w)+~2—1t,—;F(w’,v',v,w)

i o _ 1 d(w = v)d(v' —w)
and, F(w,v'.v,w)= Cr n d(w' —w)d(v' —v)
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Quadrupole Computation: Next-to-eikonal Order
Quadrupole: @ (. v',v.,w) = 1 (T U (U ) (w)])

e Decorated quadruple with single insertion is

=

/ Qpot w1 =0 (0F) Qput )
vt

y* ot o . where, Zxex(v Z Wi = p?(0) lez) Vi (el
Wi2(1=N2)+Wisz+W oWy o ;
and 5 vel_ [~ 12 23\& 3+Wis Wiodt W }LW 3 Wz‘; = (i) L e [ 27 20t (xi — x;)” ln; Energy
Wis+Wia _W12+W13*W14(NC2*1) 2 P ‘XZ’ - xj|AQCD Suppressed
2 2N,

e Simplifying, we obtain quadrupole for single insertion: Qj = NIT

W|th NI = /+ MQ(U+)(Hm+yv+]~/H[u+’y+])21

e Similarly, we obtain quadrupole with double insertion:

Q= /+ N p?(v)p?(vg) (H[ﬁyvﬁf}(l)?—l ot VO H +) T
vy >v, 21

hECEy
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Numerical Results: Eikonal order

e Momentum imbalance: A = k1 + k2
Relative momentum: P = 22k1 -Z, k2
Cross section can be decomposed as

ANV HA—=e+X

= Ng +2 (P,A
AP dn, dns Ny + ZNn( ,A)cos(ng)

n=1

Where modes are given as:

1 /dqbpl d¢AJ_ 6in(¢PJ_ —éa,) doA+A—qq+X

A _—
Nn (P, A) N S_L 2 2ir d2Ad2Pd7’]1d772
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Numerical Results: Eikonal order

L o Dilute
——$— Dense
. 1075 5
e Momentum imbalance: A =k, +Kk,
e Relative momentum: P =zk, -z, Kk, § o
e W=30GeV,Q =0.6GeV 2
1077
e Compared with Dilute results from PAgostini et al. 2=042=06,
. il Q2=10.0Gev? T
(2403.04603 [hep-ph]), Valid when A |, P > Q_ -
0:0 0:5 1.‘0 125 2:0 2:5 3.‘0 3.‘5 4.‘0
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Next-to-eikonal plots in dense limit coming soon....



Summary

e \We are computing the DIS dijet cross section at NEik accuracy. This demands

computing new averages, dipoles and quadrupoles, never before considered in the
dense limit.

e \We have computed all field correlators at next-to-eikonal order using Gaussian
approximation.
o Next-to-eikonal quadrupoles and dipoles
o Two point correlation between neighbouring fields considered
e To analyze upcoming measurement, there is need to compare Next-to-eikonal

corrections with Next-to-leading order corrections to address their respective
importance.

e There is still room to improve model:
o By including correction coming from x” dependence
o By considering inhomogeneous medium

Thank Youl!
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Backup



Angular Momentum Decomposition

dip N
2 N — o / > /
= Re Q. N51 (Zl 22>/ et B =re, (r, 1)
r,r’ B’

NEik w2 2122
1 , (22— 21)A -1 ,]
X In d(—-r")| — +P-r
(!r’|AQCD> ( ){ 2

Cross section can decomposed as:

do.'yj{ +A—qq+X
dzAdzpdnl d’/]g

ANV +HA—+X &«
=N>2Y NMP.A
EAPPdmydn, 0 T Z ol E pit)ces(ng)
Using Bessel function identity : e« = 3~ (—i)"J,(A)e™™

. . i 2Q2N 21 == &9 1
Cross section is expressed as: NE|¥P — ReZ¥s'c / Cr(r.r')l d(—r'
p ¢ ’NElk ¢ W2 2172 r,r’' B’ L(r‘ ' ) ! |rI|AQCD ( g )

(21 — 22)
2

AL Jo(PL|r — 1)) J1 (A L|B'|)cos(ppr — ¢pr)

+ P | Jo(A LB/ )y (Polr — t[)cos(¢pp — (;Sr/)]
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