Evolution of structure functions at NLO without PDFs

Speaker: Mirja Tevio

In collaboration with: Tuomas Lappi Heikki Mäntysaari Hannu Paukkunen

University of Jyväskylä

Helsinki Institute of Physics

Center of Excellence in Quark Matter

High energy QCD 2025 @ Benasque

Background

• Deep Inelastic Scattering (DIS):

Background

• Deep Inelastic Scattering (DIS):

- Measured cross sections expressed in terms of structure functions
- Structure functions expressed in terms of parton distribution functions (PDFs) $F_i(x,Q^2) = \sum_j C_{ij}(Q^2,\mu^2) \otimes f_j(\mu^2) \quad j=q,\bar{q},g \quad \mu=\text{factorization scale}$

Background

• Deep Inelastic Scattering (DIS):

- Measured cross sections expressed in terms of structure functions
- Structure functions expressed in terms of parton distribution functions (PDFs) $F_i(x,Q^2) = \sum_j C_{ij}(Q^2,\mu^2) \otimes f_j(\mu^2) \quad j=q,\bar{q},g \quad \mu=\text{factorization scale}$
- The conventional procedure in collinear factorization:
 - ▶ PDFs are fitted to DIS data (to structure functions)
 - Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) evolution: PDFs to higher Q^2

• Structure functions will be measured at Electron-Ion Collider (EIC)

- Structure functions will be measured at Electron-Ion Collider (EIC)
- Problems with PDFs
 - Parametrize non-observable quantities
 - ► Factorization scheme dependence
 - ▶ Need to define the relation between factorization scale and a physical scale

- Structure functions will be measured at Electron-Ion Collider (EIC)
- Problems with PDFs
 - Parametrize non-observable quantities
 - ► Factorization scheme dependence
 - ▶ Need to define the relation between factorization scale and a physical scale
- ullet Physical basis \equiv set of linearly independent DIS observables

- Structure functions will be measured at Electron-Ion Collider (EIC)
- Problems with PDFs
 - Parametrize non-observable quantities
 - ► Factorization scheme dependence
 - ▶ Need to define the relation between factorization scale and a physical scale
- ullet Physical basis \equiv set of linearly independent DIS observables
- DGLAP evolution of observables in a physical basis
 - Avoiding the problems with PDFs
 - More straightforward to compare to experimental data

- Structure functions will be measured at Electron-Ion Collider (EIC)
- Problems with PDFs
 - Parametrize non-observable quantities
 - ► Factorization scheme dependence
 - ▶ Need to define the relation between factorization scale and a physical scale
- ullet Physical basis \equiv set of linearly independent DIS observables
- DGLAP evolution of observables in a physical basis
 - Avoiding the problems with PDFs
 - More straightforward to compare to experimental data
- Previously discussed e.g. in Harland-Lang and Thorne 1811.08434, Hentschinski and Stratmann 1311.2825, W.L. van Neerven and A. Vogt hep-ph/9907472

- Structure functions will be measured at Electron-Ion Collider (EIC)
- Problems with PDFs
 - ► Parametrize non-observable quantities
 - ► Factorization scheme dependence
 - ▶ Need to define the relation between factorization scale and a physical scale
- ullet Physical basis \equiv set of linearly independent DIS observables
- DGLAP evolution of observables in a physical basis
 - Avoiding the problems with PDFs
 - More straightforward to compare to experimental data
- Previously discussed e.g. in Harland-Lang and Thorne 1811.08434, Hentschinski and Stratmann 1311.2825, W.L. van Neerven and A. Vogt hep-ph/9907472
- The novelty of our work:
 - Momentum space
 - Full three-flavor basis at NLO
- NLO physical basis 2412.09589 continuation for LO work 2304.06998

Straightforward example with only two observables $F_i(x,Q^2) = \sum_{\cdot} C_{F_i f_j}(Q^2,\mu^2) \otimes f_j(\mu^2),$

where $F_i = F_2, F_{\rm L}/\frac{\alpha_{\rm s}}{2\pi}$, and $f_i = \Sigma, g$

$$r_2, r_{\rm L}/\frac{1}{2\pi}$$
, and $r_j = 2$, g

 $\Sigma(x,\mu^2) = \sum_{q}^{n_{\rm f}} \left[q(x,\mu^2) + \overline{q}(x,\mu^2) \right], n_{\rm f} = 3$ Gluon PDF: $g(x, \mu^2)$

First step: invert the linear mapping (difficult because $f \otimes g = \int_{z}^{1} \frac{dz}{z} f(z) g\left(\frac{x}{z}\right)$) $f_i(\mu^2) = \sum_i C_{F_if_i}^{-1}(Q^2, \mu^2) \otimes F_i(Q^2) + \mathcal{O}(\alpha_s^2)$

DGLAP evolution in physical basis

 $\frac{\mathrm{d}F_i(x,Q^2)}{\mathrm{d}\log(Q^2)} = \sum_i \frac{\mathrm{d}C_{F_if_j}(Q^2,\mu^2)}{\mathrm{d}\log(Q^2)} \otimes f_j(\mu^2)$ $=\sum_{i}rac{\mathrm{d}\mathcal{C}_{F_{i}f_{j}}(Q^{2},\mu^{2})}{\mathrm{d}\log(Q^{2})}\otimes\sum_{i}\mathcal{C}_{F_{k}f_{j}}^{-1}(Q^{2},\mu^{2})\otimes\mathcal{F}_{k}(Q^{2})+\mathcal{O}(lpha_{\mathrm{s}}^{3})$

Scheme and scale dependence at NLO

DGLAP evolution in physical basis:

$$egin{aligned} rac{\mathrm{d} F_i(\mathsf{x},Q^2)}{\mathrm{d} \log(Q^2)} &= \sum_j rac{\mathrm{d} C_{F_i f_j}(Q^2,\mu^2)}{\mathrm{d} \log(Q^2)} \otimes \sum_k C_{F_k f_j}^{-1}(Q^2,\mu^2) \otimes F_k(Q^2) + \mathcal{O}(lpha_\mathrm{s}^3) \ &= \sum_k \mathcal{P}_{ik} \otimes F_k(Q^2) + \mathcal{O}(lpha_\mathrm{s}^3) \end{aligned}$$

Kernels \mathcal{P}_{ik} are independent of the factorization scheme and scale

Scheme and scale dependence at NLO

DGLAP evolution in physical basis:

$$\frac{\mathrm{d}F_{i}(x,Q^{2})}{\mathrm{d}\log(Q^{2})} = \sum_{j} \frac{\mathrm{d}C_{F_{i}f_{j}}(Q^{2},\mu^{2})}{\mathrm{d}\log(Q^{2})} \otimes \sum_{k} C_{F_{k}f_{j}}^{-1}(Q^{2},\mu^{2}) \otimes F_{k}(Q^{2}) + \mathcal{O}(\alpha_{\mathrm{s}}^{3})$$

$$= \sum_{k} \mathcal{P}_{ik} \otimes F_{k}(Q^{2}) + \mathcal{O}(\alpha_{\mathrm{s}}^{3})$$

Kernels \mathcal{P}_{ik} are independent of the factorization scheme and scale

\mathcal{P}_{ij} 's determined by:

- Splitting functions
- Coefficient functions
 - → The scheme and scale dependence exactly cancels between these two

Invert
$$g(x)$$
 from $\widetilde{F}_{L} = C_{F_{L}g}^{(1)} \otimes g + \frac{\alpha_s}{2\pi} C_{F_{L}g}^{(2)} \otimes g$ where $\widetilde{F}_{L}(x,Q^2) \equiv \frac{2\pi}{\alpha_s} \frac{F_{L}(x,Q^2)}{x}$

Invert
$$g(x)$$
 from $\widetilde{F}_{L} = C_{F_{L}g}^{(1)} \otimes g + \frac{\alpha_s}{2\pi} C_{F_{L}g}^{(2)} \otimes g$ where $\widetilde{F}_{L}(x, Q^2) \equiv \frac{2\pi}{\alpha_s} \frac{F_{L}(x, Q^2)}{x}$

Define inverse of
$$C_{F_{L}g}^{(1)}$$
 as: $g(x) = \hat{P}(x) \left[\frac{C_{F_{L}g}^{(1)} \otimes g}{C_{F_{L}g}^{(1)} \otimes g} \right]$ with $\hat{P}(x) \equiv \frac{1}{8T_{\mathrm{R}}n_{\mathrm{f}}\tilde{e}_{q}^{2}} \left[x^{2} \frac{\mathrm{d}^{2}}{\mathrm{d}x^{2}} - 2x \frac{\mathrm{d}}{\mathrm{d}x} + 2 \right]$

Invert
$$g(x)$$
 from $\widetilde{F}_{L} = C_{F_{L}g}^{(1)} \otimes g + \frac{\alpha_s}{2\pi} C_{F_{L}g}^{(2)} \otimes g$ where $\widetilde{F}_{L}(x, Q^2) \equiv \frac{2\pi}{\alpha_s} \frac{F_{L}(x, Q^2)}{x}$

Define inverse of
$$C_{F_{L}g}^{(1)}$$
 as: $g(x) = \hat{P}(x) \left[\frac{C_{F_{L}g}^{(1)} \otimes g}{C_{F_{L}g}^{(1)} \otimes g} \right]$ with $\hat{P}(x) \equiv \frac{1}{8T_{\mathrm{R}}n_{\mathrm{f}}\tilde{e}_{q}^{2}} \left[x^{2} \frac{\mathrm{d}^{2}}{\mathrm{d}x^{2}} - 2x \frac{\mathrm{d}}{\mathrm{d}x} + 2 \right]$

Get
$$C_{F_{\mathrm{L},g}}^{(1)} \otimes g$$
 from $\widetilde{F}_{\mathrm{L}}$: $C_{F_{\mathrm{L},g}}^{(1)} \otimes g = \widetilde{F}_{\mathrm{L}} - \frac{\alpha_{\mathrm{g}}}{2\pi} C_{F_{\mathrm{L},g}}^{(2)} \otimes g$

Invert
$$g(x)$$
 from $\widetilde{F}_{L} = C_{F_{L}g}^{(1)} \otimes g + \frac{\alpha_s}{2\pi} C_{F_{L}g}^{(2)} \otimes g$ where $\widetilde{F}_{L}(x, Q^2) \equiv \frac{2\pi}{\alpha_s} \frac{F_{L}(x, Q^2)}{x}$

Define inverse of
$$C_{F_{L}g}^{(1)}$$
 as: $g(x) = \hat{P}(x) \left[\frac{C_{F_{L}g}^{(1)} \otimes g}{C_{F_{L}g}^{(1)}} \otimes g \right]$ with $\hat{P}(x) \equiv \frac{1}{8T_{\mathrm{R}}n_{\mathrm{f}}\tilde{e}_{q}^{2}} \left[x^{2} \frac{\mathrm{d}^{2}}{\mathrm{d}x^{2}} - 2x \frac{\mathrm{d}}{\mathrm{d}x} + 2 \right]$

Get
$$C_{F_{\mathrm{L}}g}^{(1)} \otimes g$$
 from $\widetilde{F}_{\mathrm{L}}$: $C_{F_{\mathrm{L}}g}^{(1)} \otimes g = \widetilde{F}_{\mathrm{L}} - \frac{\alpha_{\mathrm{s}}}{2\pi} C_{F_{\mathrm{L}}g}^{(2)} \otimes g$

$$g(x) = \hat{P}(x) \left[\widetilde{F}_{L}(x) - \frac{\alpha_{s}}{2\pi} C_{F_{L}g}^{(2)} \otimes g \right]$$

Simple example without quarks

Invert
$$g(x)$$
 from $\widetilde{F}_{L} = C_{F_{L},g}^{(1)} \otimes g + \frac{\alpha_{s}}{2\pi} C_{F_{L},g}^{(2)} \otimes g$ where $\widetilde{F}_{L}(x,Q^{2}) \equiv \frac{2\pi}{\alpha_{s}} \frac{F_{L}(x,Q^{2})}{x}$

Define inverse of
$$C_{F_{L}g}^{(1)}$$
 as: $g(x) = \hat{P}(x) \left[\frac{C_{F_{L}g}^{(1)} \otimes g}{C_{F_{L}g}^{(1)} \otimes g} \right]$ with $\hat{P}(x) \equiv \frac{1}{8T_{\mathrm{R}}n_{\mathrm{f}}\tilde{e}_{q}^{2}} \left[x^{2} \frac{\mathrm{d}^{2}}{\mathrm{d}x^{2}} - 2x \frac{\mathrm{d}}{\mathrm{d}x} + 2 \right]$

Get
$$C_{F_{L}g}^{(1)} \otimes g$$
 from \widetilde{F}_{L} : $C_{F_{L}g}^{(1)} \otimes g = \widetilde{F}_{L} - \frac{\alpha_{s}}{2\pi} C_{F_{L}g}^{(2)} \otimes g$

$$g(x) = \hat{P}(x) \left[\widetilde{F}_{L}(x) - \frac{\alpha_{s}}{2\pi} C_{F_{L}g}^{(2)} \otimes g \right]$$

Plug in $g(x) = \hat{P}(x)\tilde{F}_L(x) + \mathcal{O}(\alpha_s)$ to the right hand side

$$g(x) = \hat{P}(x)\widetilde{F}_{L}(x) - \frac{\alpha_{s}(Q^{2})}{2\pi}\hat{P}(x)\Big[C_{F_{L}g}^{(2)} \otimes \hat{P}\widetilde{F}_{L}\Big] + \mathcal{O}\left(\alpha_{s}^{2}\right)$$

Six observable basis

- Full three-flavor basis: $u, \bar{u}, d, \bar{d}, s = \bar{s}$, and g
 - → Need six linearly independent DIS structure functions

Six observable basis

- Full three-flavor basis: $u, \bar{u}, d, \bar{d}, s = \bar{s}$, and $g \longrightarrow \text{Need six linearly independent DIS structure functions}$
- We choose the NLO structure functions:

Neutral current γ^* , Z

- ullet γ^* exhange o $\emph{F}_{ t 2}$ and $\emph{F}_{ t L}$
- Z boson exhange $\rightarrow F_3$

Charged current W^{\pm}

- W^- exhange $\to F_3^{W^-}$ and $F_{2c}^{W^-}$
- $\bullet \Delta F_2^W = F_2^{W^-} F_2^{W^+}$

Comparison with conventional DGLAP evolution

Comparison with conventional DGLAP evolution

- Similar Q^2 evolution
- Differences in values from:
 - uncertainty in PDFs from scheme and scale (error band not shown)
 - perturbative truncation

Example of Higgs production by gluon fusion

where m_H is the Higgs mass, $g(x_1,\mu)$ and $g(x_2,\mu)$ are the gluon PDFs

Example of Higgs production by gluon fusion

$$X_1$$
 sellenge X X_2 sellenge X

$$\sigma(p+p\longrightarrow H+X)=\int dx_1dx_2g(x_1,\mu)g(x_2,\mu)\hat{\sigma}_{gg\to H+X}(x_1,x_2,\frac{m_H^2}{\mu^2}),$$

where m_H is the Higgs mass, $g(x_1, \mu)$ and $g(x_2, \mu)$ are the gluon PDFs

Plug in the gluon PDF in physical basis:
$$g(x, \mu^2) = \sum_i C_{ig}^{-1}(Q^2, \mu^2) \otimes F_i(Q^2)$$

where
$$\mathit{F_{j}} = \mathit{F_{2}}, \mathit{F_{\mathrm{L}}}/rac{lpha_{\mathrm{s}}}{2\pi}, \mathit{F_{3}}, \Delta \mathit{F_{2}^{\mathrm{W}}}, \mathit{F_{3}^{\mathrm{W}}}^{-}, \mathit{F_{2c}^{\mathrm{W}}}^{-}$$

Example of Higgs production by gluon fusion

$$X_{1} \text{ willing } X$$

$$X_{2} \text{ willing } X$$

$$\sigma(p+p \longrightarrow H+X) = \int dx_{1}dx_{2}g(x_{1},\mu)g(x_{2},\mu)\hat{\sigma}_{gg\rightarrow H+X}(x_{1},x_{2},\frac{m_{H}^{2}}{\mu^{2}}),$$

where m_H is the Higgs mass, $g(x_1, \mu)$ and $g(x_2, \mu)$ are the gluon PDFs

Plug in the gluon PDF in physical basis:
$$g(x, \mu^2) = \sum_i C_{ig}^{-1}(Q^2, \mu^2) \otimes F_i(Q^2)$$

where
$$F_j=F_2,F_{\rm L}/rac{lpha_{
m s}}{2\pi},F_3,\Delta F_2^{
m W},F_3^{
m W^-},F_{2{
m c}}^{
m W^-}$$

$$\sigma(p+p\longrightarrow H+X) = \int \mathrm{d}x_1 \mathrm{d}x_2 \hat{\sigma}_{gg\to H+X}(x_1, x_2, \frac{m_H^2}{\mu^2}) \left[\sum_j C_{jg}^{-1}(Q^2, \mu^2) \otimes F_j(Q^2) \right]_{x_1} \left[\sum_k C_{kg}^{-1}(Q^2, \mu^2) \otimes F_k(Q^2) \right]_{x_2}$$

Example of Higgs production by gluon fusion

$$\begin{array}{ccc}
X_1 & \text{OULLINE} & X \\
X_2 & \text{OULLINE} & X
\end{array}$$

$$\sigma(p+p \longrightarrow H+X) = \int dx_1 dx_2 g(x_1, \mu) g(x_2, \mu) \hat{\sigma}_{gg \to H+X}(x_1, x_2, \frac{m_H^2}{\mu^2}),$$

where my is the Higgs mass g(x, y) and g(x, y) are the gluon PDEs

where m_H is the Higgs mass, $g(x_1, \mu)$ and $g(x_2, \mu)$ are the gluon PDFs

Plug in the gluon PDF in physical basis:
$$g(x, \mu^2) = \sum_j C_{jg}^{-1}(Q^2, \mu^2) \otimes F_j(Q^2)$$

where
$$F_i = F_2$$
, $F_{\rm L}/\frac{\alpha_{\rm S}}{2}$, F_3 , $\Delta F_2^{\rm W}$, $F_2^{\rm W}$, $F_2^{\rm W}$

$$\sigma(p+p\longrightarrow H+X) =$$

$$\int \mathrm{d}x_1 \mathrm{d}x_2 \hat{\sigma}_{gg\to H+X}(x_1, x_2, \frac{m_H^2}{\mu^2}) \left[\sum_j C_{jg}^{-1}(Q^2, \mu^2) \otimes F_j(Q^2) \right] \left[\sum_k C_{kg}^{-1}(Q^2, \mu^2) \otimes F_k(Q^2) \right]_{\mathrm{tot}}$$

explicit μ dependence vanishes and terms $\log (Q^2/m_H^2)$ are left behind

 \longrightarrow no need to choose relation between μ and Q or m_H

PDFs from BK-evolved structure functions

Now we have analytical form to calculate gluon PDF and quark singlet from F_2 and $F_{\rm L}$ in dipole picture

- Weaker x-evolution with BK-evolved $F_{2,L}$
- Bigger difference in gluon than in quark singlet

Comparison to BK-evolved $F_{2,L}$ (work in preparation)

Goal

Set BK-evolved F_2 and F_L as initial condition for (2-observable) physical basis DGLAP evolution \longrightarrow compare BK vs. DGLAP dynamics

Comparison to BK-evolved $F_{2,L}$ (work in preparation)

Goal

Set BK-evolved F_2 and F_L as initial condition for (2-observable) physical basis DGLAP evolution \longrightarrow compare BK vs. DGLAP dynamics

- However..
 - ► LO DGLAP evolution (and NLO PDFs) in physical basis includes convolutions e.g.

$$P_{qq} \otimes F_2 = \int_x^1 \frac{\mathrm{d}z}{z} P_{qq}(z) F_2\left(\frac{x}{z}\right)$$
 $\longrightarrow \text{need } F_{2,\mathrm{L}} \text{ initial values up to } x = 1$

▶ Validity region for BK-evolved $F_{2, \rm L}$ only up to $x \sim 10^{-2}$

Comparison to BK-evolved $F_{2,L}$ (work in preparation)

Goal

Set BK-evolved F_2 and F_L as initial condition for (2-observable) physical basis DGLAP evolution \longrightarrow compare BK vs. DGLAP dynamics

- However..
 - ▶ LO DGLAP evolution (and NLO PDFs) in physical basis includes convolutions e.g.

$$P_{qq} \otimes F_2 = \int_x^1 \frac{\mathrm{d}z}{z} P_{qq}(z) F_2\left(\frac{x}{z}\right)$$
 $\longrightarrow \text{need } F_{2,\mathrm{L}} \text{ initial values up to } x = 1$

▶ Validity region for BK-evolved $F_{2, \rm L}$ only up to $x \sim 10^{-2}$

Quick fix: BK-improved initial condition

- Initial values for $F_{2,L}$:
 - at $x \le 10^{-2}$ from BK/dipole picture
 - ▶ at $x > 10^{-2}$ from DGLAP/collinear factorization
- ullet Scale collinear factorization $F_{2,\mathrm{L}}$ so that they match dipole picture values

- Motivation: future DIS measurements at the Electron-Ion Collider
- Goal: formulate DGLAP evolution directly for physical observables

- Motivation: future DIS measurements at the Electron-Ion Collider
- Goal: formulate DGLAP evolution directly for physical observables
- We have established physical basis at NLO in $\alpha_{\rm s}$ for six observables; F_2 , $F_{\rm L}$, F_3 , $\Delta F_2^{\rm W}$, $F_3^{\rm W}^-$, and $F_{2\rm c}^{\rm W}^-$

- Motivation: future DIS measurements at the Electron-Ion Collider
- Goal: formulate DGLAP evolution directly for physical observables
- We have established physical basis at NLO in $\alpha_{\rm s}$ for six observables; F_2 , $F_{\rm L}$, F_3 , $\Delta F_2^{\rm W}$, $F_3^{\rm W}^-$, and $F_{2{\rm c}}^{\rm W}^-$
- Scheme dependence of PDFs play a role at NLO in α_s \longrightarrow Scheme and scale dependence avoided in the physical basis

- Motivation: future DIS measurements at the Electron-Ion Collider
- Goal: formulate DGLAP evolution directly for physical observables
- We have established physical basis at NLO in $\alpha_{\rm s}$ for six observables; F_2 , $F_{\rm L}$, F_3 , $\Delta F_2^{\rm W}$, $F_3^{\rm W}^-$, and $F_{2{\rm c}}^{\rm W}^-$
- \bullet Scheme dependence of PDFs play a role at NLO in α_s
 - \longrightarrow Scheme and scale dependence avoided in the physical basis
- What next:
 - BK vs. DGLAP comparison
 - Express LHC cross sections, e.g. Drell-Yan, in physical basis
 - Include heavy quarks

Backup: Comparison to BK-evolved $F_{\rm L}$ (work in preparation)

Backup: Comparison to BK-evolved F_2 (work in preparation)

