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The Topological Susceptibility Slope χ′

This talk is about the calculation of the next-to-leading-order coefficient of the
momentum expansion of the topological charge density 2-point correlator.

C̃(p2) =

∫
d4x eip·x C(x) =

∞∑

n= 0

(−1)nχ(n)p2n = χ− χ′p2 +O(p4)

Q =
1

16π2

∫
d4xTr

[
Gµν(x)G̃µν(x)

]
=

∫
d4x q(x) ∈ Z [Topological Charge]

C(x) = 〈q(x)q(0)〉 [Top. Charge Density Correlator]

• χ = C̃(0) =

∫
d4xC(x) = lim

V→∞

〈Q2〉
V

O(p0): Top. Susceptibility

• χ′ = −dC̃(p2)

dp2

∣∣∣∣∣
p2 = 0

=
1

8

∫
d4x |x|2C(x) O(p2): Top. Susc. Slope
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Motivations
• Theory [Witten NPB 156 289 (1979) — Veneziano NPB 159 213 (1979)]

Witten–Veneziano equation:

χ
YM

=
m2

η′F 2
π

2Nf

' (180 MeV)
4 (Large-N limit)

Consistency condition for this relation to hold:
[Veneziano NPB 159 213 (1979) — Narison PLB 255 (1991) 101]

C̃(p2 = m2
η′) ' C̃(0) =⇒ |χ′

YM
|m2

η′ � χYM (Large-N limit)

since C̃(p2 = m2
η′) ' χ− χ′m2

η′ C̃(0) = χ

• Phenomenology [Shore, Veneziano PLB 244 (1990) 75-82]

The flavour-singlet nucleon axial charge can be measured in experiments
(e.g., EMC experiment). Shore–Veneziano related it to χ′ in QCD (chiral limit):

2mNg
(0)

A = lim
∆p→ 0

〈N(p)| ∂µJµ5 |N(p+ ∆p)〉 =
√
|χ′

QCD
| gη0NN
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Status
• Non-lattice

1 QCD Sum Rule [Narison (2006) hep-ph/0601066 — Narison NPA 1020 (2022) 122393]

χ′
YM

(N = 3) ≈ [7(3) MeV]2 χ′
QCD

(m = 0) ≈ −[24.3(3.4) MeV]2

QCD Sum Rule however underestimates SU(3) pure-gauge top. susceptibility:
χYM(N = 3) ≈ [114 MeV]4 (QCD Sum Rule)
χ

YM
(N = 3) ≈ [200 MeV]4 (Lattice)

2 Chiral Pertubation Theory [Leutwyler (2000) hep-ph/0008124]

χ′
QCD

= −F
2
π

2

(
1

m2
u

+
1

m2
d

+
1

m2
s

)(
1

mu

+
1

md

+
1

ms

)−2

χ′
QCD

(m = 0) = − 1
6F

2
0 = −[32.8(2.4) MeV]2 (mu = md = ms ≡ m→ 0)

3 NJL model gives χ′ ≈ −(20 MeV)2 [Fukushima et al. PLB 514 (2001) 200-203]

• Lattice (so far)
Only few preliminary attempts in the 90s for SU(2) and SU(3),

but no reliable calculation nor conclusive result yet.
[Di Giacomo NPB Proc. Suppl 23 (1991) 191 – Briganti, Di Giacomo, Panagopoulos PLB 253 (1991) 427]
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New developments from the lattice

My goal is to pursue a systematic research program targeted at the
non-perturbative lattice investigation of χ′.

I proposed a novel strategy to compute this quantity on the lattice.
Other ingredient: Parallel Tempering on Boundary Conditions.

2023: Lattice calculation of χ′ in 2d CPN−1 models at large N .
[CB PRD 107 (2023) 1, 014514 — arXiv:2212.02330]

Lattice reproduces analytic predictions up to NLO in 1/N
[Campostrini, Rossi PLB 272 (1991) 305]

2024: Lattice calculation of χ′ in 4d SU(3) Yang–Mills theory.
[CB JHEP 01 (2024) 116 — arXiv:2311.06646]

2025 (this talk): work in progress about the investigation of χ′ in
large-N SU(N) Yang–Mills theories.
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Parallel Tempering on Boundary Conditions

Topological freezing: autocorrelation of Q diverges severely with 1/a and N
[Allés et al. PLB 389 (1996) 107-111 — Del Debbio et al. PLB 594 (2004) 315-323]

−→ at large-N Q is frozen even on coarse lattices
Algorithm adopted here: Parallel Tempering on Boundary Conditions

First proposed by M. Hasenbusch [PRD 96 (2017) 054504] in 2d CPN−1 models.
I have implemented and extensively used it in 4d gauge theories:

• θ-dep. of vacuum energy up to NLO in θ and 1/N
CB, Bonati, D’Elia JHEP 03 (2021) 111 [2012.14000]

• Impact of topological freezing on glueball mass computations
CB, D’Elia, Lucini, Vadacchino PLB 833 (2022) 137281 [2205.06190]

• θ-dep. of deconfinement temperature up to NLO in θ and 1/N
CB, D’Elia, Verzichelli JHEP 02 (2024) 156 [2312.12202]

• θ-dep. of mass gap and string tension up to NLO in θ and 1/N
CB, Bonati, Papace, Vadacchino JHEP 05 (2024) 163 [2402.03096]

• Impact of topological freezing on renormalized strong coupling via gradient flow + step scaling
CB, Dasilva Golán, D’Elia, García Pérez, Giorgieri EPJC 84 (2024) 9, 916 [2403.13607]

• Topological susceptibility in full QCD with dynamical quarks at physical point
CB, Clemente, D’Elia, Maio, Parente JHEP 08 (2024) 236 [2404.14151]
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The algorithm

Consider a collection of Nr lattice replicas

Replicas differ for boundary conditions on small sub-region: the defect

Each replica is updated with standard methods

After the updates, propose conf swaps among replicas via Metropolis test

The Defect

• Links crossing the defect: β → β · c(r).

• Periodic: c = 1. Open: c = 0.
Interpolating replicas: 0 < c(r) < 1.

• Tempering parameters c(r) tuned through short test
runs to have uniform swap acceptances.

• Configuration random walks through the replicas =⇒
small autocorrelations of Q in open replica [Lüscher, Schaefer

JHEP 1107 (2011) 036] transferred to periodic one.

• Observables are computed on periodic replica =⇒
Q well-defined, no boundary effects on correlators.
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Simulation details

• N = 3, 4, 5, 6

• Wilson plaquette action

• Same range of lattice spacings across all N values

• Scale setting with string tension [Athenodorou, Teper JHEP 12 (2021) 082]

0.21 . a
√
σ . 0.13 −→ 0.09 fm . a . 0.05 fm

• `4 lattices with `
√
σ ≈ 3.6 −→ ` ≈ 1.5 fm

• For all N -values: 2 finer lattice spacings with respect to previous study of χ
at large N with Open Boundaries [Cè, García Vera, Giusti, Schaefer PLB 762 (2016) 232-236]
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Lattice observables
Gluonic top. charge on the lattice → discretization of GG̃ + smoothing.

E.g., cooling, gradient flow, stout smearing.

Smoothing: kills short-scale fluctuations below
Rs

a
∝ √amount of smoothing

χL(Rs) =
1

V
〈Q2

L
(Rs)〉 QL(Rs) =

∑

x

qL(x,Rs)

χ′
L
(Rs) =

1

8

〈∑

x

d2(x, 0)q
L
(x,Rs)qL(0, Rs)

〉

• d(x, y) = shortest distance between lattice sites x and y in a periodic box

• qL(x,Rs) = clover discr. of GG̃ after smoothing at smooth. rad. Rs

• Rs

a
=

√
8t

a
=

√
8

3
ncool [Bonati, D’Elia PRD 89 (2014) 10, 105005]

I will use cooling for its cheapness: χ′ required ∼ O(10M) trajectories.
• Minimum smoothing radius: Rs & 2a.
• Maximum smoothing radius: Rs . 1

2`.
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Strategy
Smoothing alters short-distance behavior of the top. charge density correlator.

In the continuum: C(x,Rs) = C(x) +O(R2
s )

[Cè et al. PRD 92 (2015) 7, 074502; PLB 762 (2016) 232-236 — Altenkort et al. PRD 103 (2021) 114513]

• χ =

∫
d4xC(x) =

〈Q2〉
V

χ depends on global top. charge =⇒ should be insensitive to UV scale Rs

1. Continuum limit a→ 0 of χL at fixed Rs should be Rs-independent
2. Witten–Veneziano requires a finite large-N limit of χ

YM

• χ′ =
1

8

∫
d4x |x|2 C(x)

This quantity will receive O(R2
s ) corrections in the continuum

1. Continuum limit a→ 0 of χ′
L
at fixed Rs

2. Zero-smoothing limit Rs → 0 of continuum results with O(R2
s ) corrections

3. What is expected N -scaling of χ′
YM

?
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A large-N argument to estimate χ′
YM

In [CB JHEP 01 (2024) 116] I have discussed a simple large-N argument to estimate χ′
YM

.

Large-N expansion of topological charge density correlator (chiral limit):

CQCD (p2) =

∫
d4x eip·x 〈q(x)q(0)〉

QCD
= CYM (p2)−

|Aη′ |2

p2 +m2
η′

+O
(

1

N

)

• N =∞: pure Yang–Mills contribution + η′ propagator

• |Aη′ |2 = | 〈0| q(0) |η′〉 |2 = 1
6
F 2

πm
4
η′ [Veneziano NPB 159 213 (1979)]

p2 = 0 −→ χQCD = χYM −
|Aη′ |2

m2
η′

= χYM −
1

6
m2

η′F
2
π = 0

Witten–Veneziano
follows since χQCD = 0

in the chiral limit

−
d

dp2

∣∣∣∣∣
p2 =0

−→ χ′
QCD

= χ′
YM
−

|Aη′ |2

(p2 +m2
η′ )2

∣∣∣∣∣
p2 =0

= χ′
YM
−

1

6
F 2

π

• χ′
QCD

∼ O(N) [Leutwyler (2000) hep-ph/0008124] and F 2
π ∼ O(N) =⇒ χ′

YM
∼ O(N)

• χ′
QCD

is non-zero in the chiral limit according to Chiral Pert. Theory
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Results for χ
N = 3 N = 4 N = 6

0 2 4 6
a2σ ×10−2

2.4

2.6

2.8

3.0

3.2

χ
L
/σ

2

×10−2

Rs

√
σ ' 0.861

Rs

√
σ ' 1.223

Rs

√
σ ' 1.505

0 2 4 6
a2σ ×10−2

2.1

2.2

2.3

2.4

2.5

2.6

χ
L
/σ

2

×10−2

Rs

√
σ ' 0.861

Rs

√
σ ' 1.223

Rs

√
σ ' 1.505

0 2 4 6
a2σ ×10−2

1.8

1.9

2.0

2.1

2.2

2.3

2.4

χ
L
/σ

2

×10−2

Rs

√
σ ' 0.861

Rs

√
σ ' 1.223

Rs

√
σ ' 1.505

0.00 0.01 0.02 0.03 0.04 0.05 0.06
a2σ

1.8

2.0

2.2

2.4

2.6

2.8

3.0

χ
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Cè et al.

Rs

√
σ ' 1.223 −→ Rs ' 0.5 fm

N = 5, 6 still running (lower statistics)

Fixed Rs: lattice artifacts ∼ N -independent
also observed in [Cè et al. PLB 762 (2016) 232]

Same combo fit of [Cè et al.]

χL

σ2
(a,N) =

χ∞

σ2
+
A1

N2
+
A2

N4
+ Ca2σ

gives reduced chi-squared of ∼ 0.64

χ

σ2
(N) = 0.02080(44) +

0.050(12)

N2
+

0.258(86)

N4

Results for all N -values agree with Open
Boundaries determinations [Cè et al.]
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Results for χ′
N = 3 N = 4 N = 6
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• χ′ (after continuum limit) shows non-trivial dep. on Rs compatible with O(R2
s ) corrections

• limN→∞ χ′(N)/N = [0.00180(23)]2 × [1 +O(1/N2)]
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Conclusive discussion — I
1. Topological Susceptibility

√
8t0σ

∣∣
N =∞ = 1.207(5) [combining Giusti and Teper results]

√
8t0 = 0.5 fm =⇒ √

σ
∣∣
N =∞ = 476 MeV

• χ(N = 3) = [197.29(39) MeV]4

• χ(N =∞) = [181.65(91) MeV]4

Agrees with Witten–Veneziano prediction χYM(N =∞) ' (180 MeV)4

2. Topological Susceptibility Slope

• χ′(N = 3) = [(16.4± 1.9) MeV]2

• lim
N→∞

χ′

N
= [(8.6± 1.1) MeV]2

QCD Sum Rule: χ′
YM

(N = 3) ' [7(3) MeV]2. Underestimated but same ballpark.

QCD Sum Rule equally underestimates top. susc. : χYM(N = 3) ≈ (114 MeV)4.

C. Bonanno (IFT Madrid) Top. susc. slope χ′ in large-N Yang–Mills theories 31/03/25 13/16



Conclusive discussion — II

3. Recent pheno estimate
A few months ago, new study of role of anomaly in (spin-polarised) Deep

Inelastic Scattering appeared (worldline effective action formalism).
[Tarasov, Venugopalan (2025) — arXiv:2501.10519]

The authors refined Shore–Veneziano phenomenological relation, obtaining
finite-quark-mass corrections at leading order in 1/N .

Their result involves χ′
YM

=⇒ experimental result for g(0)
A used to obtain

estimate for χ′
YM

(N = 3). Same ballpark as my lattice result.

• χ′
YM

(N = 3) ≈ (24 MeV)2
[Pheno]

[Tarasov, Venugopalan (2025) — arXiv:2501.10519]

• χ′
YM

(N = 3) = [(16.4± 1.9) MeV]2 [Lattice]

[CB JHEP 01 (2024) 116]
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Conclusive discussion — III
4. Comparison of lattice result with large-N argument
Large-N estimate from the argument previously presented:

χ′
YM

N
=
F 2

π

N
+
χ′

QCD

N
≈ [(12.0± 1.5) MeV]2

1√
N
Fπ → TEK [García Pérez et al. JHEP 04 (2021) 230]

1
N χ
′
QCD
≈ 1

3χ
′
ChPT

Good agreement with lattice result lim
N→∞

χ′
YM

N
= [(8.6± 1.1) MeV]2

5. Consistency condition at large-N

χ′m2
η′ � χ

• Nm2
η′ = O(N0) estimated from N = 3 experimental value

• χ = O(N0) and χ′/N = O(N0) from my lattice results

=⇒
(
χ′

N

)
(Nm2

η′)
1

χ
≈ 0.185
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Future outlooks

1. Publish these results

2. Lattice calculation of χ′ in full QCD? (hard)

3. Intermediate step towards full QCD: combining Wilson flow and
multi-level to improve signal-to-noise ratio of χ′ (especially at smaller Rs)

[García Vera, Schaefer PRD 93 (2016) 074502]

4. Extract large-N limit of the mass of lightest 0−+ glueball from
topological charge density correlator
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Back-up



Reflection positivity: 〈Θ[O(Θx)]O(x)〉 > 0 for any operator O
Θ = Euclidean time reflection + complex conjugation

• q(x) parity odd =⇒ C(x) < 0 for |x| = r > 0.

• C(x) ∼
r� 1

−A2/(r8 log2 r) (Vicari (1998) hep-lat/9901008)

• C(x) ∼
r� 1

−B2 exp{−mr} (Chowdhury et al. (2015) 1409.6459 – Fukaya et al. (2015) 1509.00944)

But
∫

d4xC(x) = χ = 1
V 〈Q2〉 ≥ 0. How to reconcile with reflection positivity?

C(x) has positive singular contact term in x = 0 with peculiar features:
• positive divergent part to cancel negative singularity at short distances
• positive finite part to overcome negative finite contribution to χ at large r

χ′ = 1
8

∫
d4xC(x)|x|2. The |x|2 promotes long-distances and depresses short ones:

1. χ′ can be either positive or negative
2. χ′ does not need to vanish in chiral limit (unlike χ)

3. If χ′
YM

> 0, plausible that χ′
QCD

< 0 due to suppression of χ for m→ 0
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√
8t0 [Cè, García Vera, Giusti, Schaefer PLB 762 (2016) 232-236]√

σ [Athenodorou, Teper JHEP 12 (2021) 082]

From these data we build
√

8t0σ. We perform continuum limits at fixed
N = 3, 4, 5, 6 and extrapolate the results towards N →∞.
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N2
(N ≥ 3)

C. Bonanno (IFT Madrid) Top. susc. slope χ′ in large-N Yang–Mills theories 31/03/25 18/16



5000 10000 15000
Monte Carlo time [# PTBC steps]

−7.5

−5.0

−2.5

0.0

2.5

5.0

7.5
Q

L
a
√
σ = 0.1815(5) Nr = 16

N = 4 β = 11.20

5000 10000 15000
Monte Carlo time [# PTBC steps]

−7.5

−5.0

−2.5

0.0

2.5

5.0

7.5

Q
L

a
√
σ = 0.1307(2) Nr = 24

N = 4 β = 11.60

5000 10000 15000
Monte Carlo time [# PTBC steps]

−7.5

−5.0

−2.5

0.0

2.5

5.0

7.5

Q
L

a
√
σ = 0.1311(3) Nr = 36

N = 6 β = 26.65
• `d → defect length

• Nr → number of replicas

• `d
√
σ ≈ 0.5 → `d ≈ 0.2 fm

• Nr = 12− 36 to get ∼ 20% swap acc

• Nr(a) ∼
a→ 0

(`d/a)1.5 (fixed N and `d)

• Nr(N) ∼
N→∞

N (fixed a and `d)
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