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Critical slowing down

(Thermalized) Markov Chain: elegant and scalable numerical solution to generate U according to p(U)
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Critical slowing down

(Thermalized) Markov Chain: elegant and scalable numerical solution to generate U according to p(U)
v Zym e Py By Be o een)

thermalization equilibrium

Configurations sampled sequentially are autocorrelated
RN U(t) — U(H’l) . U(t+")

Autocorrelation measured by 7 (O) — effective independent configurations = n/27i,,(O)
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Critical slowing down

(Thermalized) Markov Chain: elegant and scalable numerical solution to generate U according to p(U)
v Zym e Py By Be o een)

thermalization equilibrium

Configurations sampled sequentially are autocorrelated
RN U(t) — U(H’l) . U(H’")

Autocorrelation measured by 7 (O) — effective independent configurations = n/27i,,(O)

Critical slowing down

When a critical point is approached 7y, diverges

E.g. in the continuum limit a — 0
Tint(O) ~ a~*

where z depends on the algorithm and on the observable under study
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Re-framing lattice simulations: flowing from one distribution to the other

What if every new configuration is sampled independently from the previous one by construction?

Flow-based approach

find an exact mapping between some well-behaving distribution go and the target p

— promising approach to fight critical slowing down?
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Re-framing lattice simulations: flowing from one distribution to the other

What if every new configuration is sampled independently from the previous one by construction?

Flow-based approach

find an exact mapping between some well-behaving distribution go and the target p

— promising approach to fight critical slowing down?

It works if (a bit roughly):
» the map can be constructed with reasonable computational effort

» the map itself is not too expensive to sample from
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Trivializing flows

Original approach [Liischer; 0907.5491]: take standard path integral
(0)= 5 [ Do 0(@) e
and perform an invertible field transformation ¢ = F~1(¢)
(0) = % / DG O(F(3)) e~ SF(6))+iog det S(F(5)

F is a true trivializing map if . .
S(F(¢)) — logdet J(F($)) = const
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Trivializing flows

Original approach [Liischer; 0907.5491]: take standard path integral
(0)= 5 [ Do 0(@) e
and perform an invertible field transformation ¢ = F~1(¢)
(0) = %/Di O(F()) e~ S(F(9))Flogdet S(F (&)
F is a true trivializing map if

S(F(¢)) — logdet J(F(F)) = const

> trivializing map can be constructed with a flow equation
> approximate maps built expressing the action in the flow equation as a power series in the flow time and truncated

> however: no big improvement in the scaling of the computational cost [Engel and Schaefer; 1102.1852]
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Normalizing flows: the basics

A normalizing flow is an invertible mapping fy constructed as
¢ ="fo(z) = (fyo---0h)(z) z~qo

and the transformed variable follows the distribution

q(9) = qo(fy '(¢)) [det Jp| ~*

Note that in the notation of trivializing maps F 1 = f,
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Normalizing flows: the basics

A normalizing flow is an invertible mapping fy constructed as
¢ ="fo(z) = (fyo---0h)(z) z~qo
and the transformed variable follows the distribution

q(9) = qo(fy '(¢)) [det Jp| ~*

Note that in the notation of trivializing maps F 1 = f,

Inserting it in the path integral [Albergo, Kanwar, Shanahan; 1904.12072] we get

ighting-like f | . . .
reweighting-like formula independent Metropolis-Hastings

w

S()
e—5(%) {O(&) () pq /D¢ a(®) = 0(¢)
L a0 M 0o m;%)':ﬂ

measure
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Normalizing flows: the basics

A normalizing flow is an invertible mapping fy constructed as
¢ ="fo(z) = (fyo---0h)(z) z~qo
and the transformed variable follows the distribution

q(9) = qo(fy '(¢)) [det Jp| ~*

Note that in the notation of trivializing maps F 1 = f,

Inserting it in the path integral [Albergo, Kanwar, Shanahan; 1904.12072] we get

ighting-like f | . . .
reweighting-like formula independent Metropolis-Hastings

W

s()

TSI O@#Nong — [Psa@)® = 0)

/ d)q() 0@ @ = ) o _ﬂmes’m
\—v—/ sample+MH

The partition function is directly accessible! [Nicoli et al.; 2007.07115]

Z = (W(#))p~q

or the ratio Z/Z, if you don’t know qo
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Normalizing flows: structure and training

Coupling layers

NFs organized as combination of discrete transformations with suitable masking — invertibility and triangular Jacobian

n+1 _ ¢n
o frozen — Yfrozen
¢

n+1 _ o —s(o? n n
active — € (Prozen) active + t(d)frozen)
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Normalizing flows: structure and training

Coupling layers

NFs organized as combination of discrete transformations with suitable masking — invertibility and triangular Jacobian

n+l  _ —s(of o) A0 in
¢active =e frozen ¢active + t(c)ﬁ'()zen)

n+1 _ ¢n
o frozen — Yfrozen

s and t are the output of neural networks
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Normalizing flows: structure and training

Coupling layers

NFs organized as combination of discrete transformations with suitable masking — invertibility and triangular Jacobian

n+1 _ ¢n
o frozen fro(zel{l )
N — ao—S(de. n
actlve =e frozen ¢)active + t( fm/en)

s and t are the output of neural networks

Training

Parameters "trained” with a minimization procedure of a "loss”, usually taken to be the Kullback-Leibler divergence

a(¢) _

o(3) ~ —(log W) pq + log Z

L(qllp) = /D¢q(¢)| og ——

It is a self-learning procedure, no data from target required
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The path until now - 1

Natural toy model: ¢* scalar field theory in 2 dimensions

[Albergo, Kanwar, Shanahan; 1904.12072]
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[Nicoli et al.; 2007.07115]
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but also [Del Debbio et al.; 2105.12481] [Caselle, Cellini, AN; 2201.08862] [Gerdes et al.; 2207.00283] [Albandea et al.; 2302.08408]

+ ...
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Normalizing flows for lattice gauge theory

Incorporating the symmetries in the flow crucial for an efficient training

Construct equivariant flows:

fo(t-¢) =t fo(9)
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Normalizing flows for lattice gauge theory

Incorporating the symmetries in the flow crucial for an efficient training

Construct equivariant flows:

fo(t-¢) =t fo(9)

What about gauge theories?
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Normalizing flows for lattice gauge theory

Incorporating the symmetries in the flow crucial for an efficient training

Construct equivariant flows:

fo(t-¢) =t fo(¢)

What about gauge theories?

Gauge-equivariant flows

Some architectures developed in the last few years:

> loop-level flow: coupling layers act on (eigenvalues of) untraced
loops [Kanwar et al.; 2003.06413] [Boyda et al.; 2008.05456]

Pl (x) = h(Ppuw (x)[1(x)) U (x) = Pl ()Pl (x) Un(x) T “

R
o (2) = h(P, m@

P, i Ii(x) ! I(x) N
pdate | frozen | frozen i
e :

> also Continuous NFs (next slide) Pl (@) =Pu @)U, @)Ul (&) Ul(@)=F,,(x) P}, (2)Uu(x)

> link-level flow (more on that later in the talk)

Ty )
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The path until now - 2

U(1) gauge theory in 2d [Kanwar et al.; 2003.06413]
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The path until now - 2

U(1) gauge theory in 2d [Kanwar et al.; 2003.06413]

10000 3 4 HMC *
{4 mB e
] + P o -
int 3 L
100 5 - -.
E ..._-v‘ ) ""
10 E I e _‘_‘...- I
R — B e
1 ; Jraasio ¥ e s
i T r . : , I
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SU(N) in 2 dimensions [Boyda et al.; 2008.05456] [Bacchio et al.; 2212.08469] [Gerdes et al.; 2410.13161]
but also fermionic theories [Albergo et al.; 2106.05934]
Schwinger model [Finkenrath et al.; 2201.02216] [Albergo et al.; 2202.11712]

SU(N) with fermions in 2 dimensions [Abbott et al.; 2207.08945] [Abbott et al.; 2211.07541]
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Alternative flow-based approaches

Wilson flow approach [Bacchio et al.; 2212.08469]

no discrete NF, learn the ODE instead
U = Ze(Ur) Ur

with Z; given by the force of

S(Us, t) = > ci(t)Wi(Ue)
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Alternative flow-based approaches

Wilson flow approach [Bacchio et al.; 2212.08469]

no discrete NF, learn the ODE instead

Ue = Z:(Uy) Ut

with Z; given by the force of
S(Us, t) = > ci(t)Wi(Ue)
Machine-learn the ¢; coefficients!

Very few parameters, efficient in 2d SU(3) gauge theory

related work: Continuous NFs [Gerdes et al.; 2207.00283], [Caselle et al.; 2307.01107], [Gerdes et al.; 2410.13161]
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Alternative flow-based approaches

FlowHMC [Albandea et al.; 2302.08408]

very close to the original algorithm by Liischer

(0) = % / DG O 1(d)) =i (G osde i ()

sample
— first run an HMC using S(f(;l(q’;)) — IogdetJ(fefl(qB))

— then flow back to the target distribution using fy

No MH step is needed + decorrelation obtained (in scalar field theory) even with little overlap with target distribution

However sampling is expensive with deep networks
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The path until now - 3

¢* scalar field theory in 2 dimensions: [Albergo, Kanwar, Shanahan; 1904.12072] [Nicoli et al.; 2007.07115] [Del Debbio et al.;
2105.12481] [Caselle, Cellini, AN; 2201.08862] [Gerdes et al.; 2207.00283] [Albandea et al.; 2302.08408]

U(1) in 2 dimensions: [Kanwar et al.; 2003.06413] [Singha et al.; 2306.00581]
SU(N) in 2 dimensions [Boyda et al.; 2008.05456] [Bacchio et al.; 2212.08469] [Gerdes et al.; 2410.13161]
fermionic theories [Albergo et al.; 2106.05934]

Schwinger model [Finkenrath et al.; 2201.02216] [Albergo et al.; 2202.11712] and SU(N) gauge theories with fermions in 2
dimensions [Abbott et al.; 2207.08945]

first attempts in 4d [Abbott et al.; 2305.02402] with interesting applications [Abbott et al.; 2401.10874]
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The path until now - 3

¢* scalar field theory in 2 dimensions: [Albergo, Kanwar, Shanahan; 1904.12072] [Nicoli et al.; 2007.07115] [Del Debbio et al.;
2105.12481] [Caselle, Cellini, AN; 2201.08862] [Gerdes et al.; 2207.00283] [Albandea et al.; 2302.08408]

U(1) in 2 dimensions: [Kanwar et al.; 2003.06413] [Singha et al.; 2306.00581]
SU(N) in 2 dimensions [Boyda et al.; 2008.05456] [Bacchio et al.; 2212.08469] [Gerdes et al.; 2410.13161]
fermionic theories [Albergo et al.; 2106.05934]

Schwinger model [Finkenrath et al.; 2201.02216] [Albergo et al.; 2202.11712] and SU(N) gauge theories with fermions in 2
dimensions [Abbott et al.; 2207.08945]

first attempts in 4d [Abbott et al.; 2305.02402] with interesting applications [Abbott et al.; 2401.10874]

Very efficient samplers in lower-dimensional theories!
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Scaling of flow-based samplers?

How do flow-based samplers scale when the d.o.f. of the system are increased? (i.e., in the continuum limit)
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Scaling of flow-based samplers?

How do flow-based samplers scale when the d.o.f. of the system are increased? (i.e., in the continuum limit)

We require two features:

> improved scaling of the sampling with
respect to MCMC

> good scaling of the training phase
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Scaling of flow-based samplers?

How do flow-based samplers scale when the d.o.f. of the system are increased? (i.e., in the continuum limit)

We require two features: 5.00
> improved scaling of the sampling with 950
respect to MCMC ’
> good scaling of the training phase 1.50
&

1.00
0.75
. — — 0.50

6 8 10 12 16 20

L

Early work: worrying scaling of training cost for fixed models
image from [Del Debbio et al.; 2105.12481]
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Scaling of flow-based samplers?

How do flow-based samplers scale when the d.o.f. of the system are increased? (i.e., in the continuum limit)

We require two features: 109 4 5.00
> improved scaling of the sampling with 950
respect to MCMC 108 4 ’
> good scaling of the training phase 1.50
£107; =
é—v =
- 1.00
106 4
0.75
Difficult to determine generally! scaling has to be 1004 ©
assessed experimentally [Abbott et al.; 2211.07541] . . . . . 0.50
6 8 10 12 16 20 '
L

see also multiscale NFs [Abbott et al.; 2404.10819]  Early work: worrying scaling of training cost for fixed models
image from [Del Debbio et al.; 2105.12481]
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The rest of this talk: same framework, different approach

As training can be very expensive, can we use a flow-based sampler that requires none + has a clear scaling?
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The rest of this talk: same framework, different approach

As training can be very expensive, can we use a flow-based sampler that requires none + has a clear scaling?

Non-equilibrium MCMC

Works like a flow, but purely stochastic

> No training required

» Clear scaling with d.o.f.
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The rest of this talk: same framework, different approach

As training can be very expensive, can we use a flow-based sampler that requires none + has a clear scaling?

Non-equilibrium MCMC Stochastic Normalizing Flow

Works like a flow, but purely stochastic Systematic improvement of NE-MCMC with ML
> No training required > Some training required
» Clear scaling with d.o.f. > Same scaling with d.o.f.
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Non-equilibrium Monte Carlo



Out-of-equilibrium evolutions

sampling each consecutive step from a sequence of distributions

Go~ e %O — 7% — ... 5 p~ e Sclnstep)
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Out-of-equilibrium evolutions
sampling each consecutive step from a sequence of distributions

Go~ e %O — 7% — ... 5 p~ e Sclnstep)

start at equilibrium from the prior distribution go = e~ ><) /Z, p O
‘e
*
*
B
K
*

*

*

*

do O

Flow-based approaches for lattice gauge theory
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Out-of-equilibrium evolutions
sampling each consecutive step from a sequence of distributions

Go~ e %O — 7% — ... 5 p~ e Sclnstep)

start at equilibrium from the prior distribution qp = e_sc(ﬂ)/Zo p O
at each step: + 2 2
> change protocol parameter c(n — 1) — c(n) 2
> MC update with transition probability Pc(n)(Un — Up+1)
> repeat ngeep times until the target p = e=°/Z 8 .
| e

L 4

2

L 4

4

do O

Flow-based approaches for lattice gauge theory
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Out-of-equilibrium evolutions
sampling each consecutive step from a sequence of distributions

Go~ e %O — 7% — ... 5 p~ e Sclnstep)

start at equilibrium from the prior distribution qp = e_SC(U)/Zo

at each step:
> change protocol parameter c(n — 1) — c(n)
> MC update with transition probability Pc(n)(Un — Up+1)

> repeat ngtep times until the target p = e‘S/Z

"forward” transition probability

Nstep

Pt[Uo, ..., U] = H Pe(ny(Un—1 — Un)

n=1

LS

Qeeee0000e0

nstep

s
S

4/4/2025

14/33
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Crooks’ theorem

Look at the ratio of the forward evolution and its reverse

a0 (Uo)Pe[Uo, - - -, Unep]  q0(U0) TTo25” Pe(ny(Un—1 = Un)

P( U)Pr[Unstepy sy UO] P( Unstep) HHStep Pc(n)(Un — Unfl)
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Crooks’ theorem

Look at the ratio of the forward evolution and its reverse

a0 (Uo)Pe[Uo, - - -, Unep]  q0(U0) TTo25” Pe(ny(Un—1 = Un)

P( U)Pr[Unstepy sy UO] P( Unstep) HHStep Pc(n)(Un — Unfl)

— Crooks’ theorem for MCMC [Crooks; 1999]: if the update algorithm satisfies detailed balance

qo(Uo)'Pf[Um R U"step]

=exp(W — AF
p(U)Pr[U"step7 ey Uo] ( )

with the generalized work
Nstep—1

W = Z {sc(n+1) [Un] - Sc(n) [U”]}
n=0

and the free energy difference

z
exp(~AF) = 7;”5(:“
Cl
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Jarzynski's equality for MCMC

Integrating over all paths gives
/[DUO DU Jao(Un)PeUs. - Un Jexp(—(W = AF)) =1 = (exp(~Wa)): = 1

with the dissipated work Wy = W — AF
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Jarzynski's equality for MCMC

Integrating over all paths gives
/[DUO DU Jao(Un)PeUs. - Un Jexp(—(W = AF)) =1 = (exp(~Wa)): = 1

with the dissipated work Wy = W — AF

Formal derivation of Jarzynski’s equality [Jarzynski; 1997] for MCMC

(exp (—=W))¢ = exp(—AF) = Zéo

Alessandro Nada (UniTo) Flow-based approaches for lattice gauge theory



Jarzynski's equality for MCMC

Integrating over all paths gives
[ 10U DU Ja0(U)PilUs - U Jexp(—(W = AF) =1 = (exp(~Wa): = 1
with the dissipated work Wy = W — AF

Formal derivation of Jarzynski’s equality [Jarzynski; 1997] for MCMC

(exp (—W))¢ = exp(—AF) = Zéo

Using Jensen’s inequality (exp x) > exp(x)
exp(—AF) = (exp(—W)); > exp (—(W)¢)

we get the Second Law of Thermodynamics
(W)e > AF
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From the properties of transition probabilities
(©) = [ PUOW) p(V)
:/[DUO...DU] O(U) p(U)PL[U, ..., U]

Then insert qoPr

p(U)Pr[Ua it UO]
qo(UO)Pf[U07 s U]

:/[DUO ... DU] qo(Up) Pi[Uo, - . ., U] O(U) exp(—(W — AF))

(0) :/[DUO...DU] q0(Uo) P¢[Uo, . .., U] O(U)

NE-MCMC
This goes beyond computing free energy differences! Reweighting-like estimator to compute v.e.v.
(O exp(=W))¢
(0) = F— = = (0 exp(—Wy))¢
(exp(=W))¢
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A non-equilibrium paradigm to perform MCMC

S
*
*
*
*
*
*
*
.4

nstcp
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Applications of Jarzynski’'s equality in Lattice Field Theory

Computation of free energies and/or sampling problematic distributions

> Calculation of the interface free-energy in the Z, gauge theory [Caselle et al.; 1604.05544]

> SU(3) pure gauge equation of state in 4d from the pressure [Caselle et al.; 1801.03110]

> Renormalized coupling for SU(N) YM theories [Francesconi et al.; 2003.13734]

> Connection with Stochastic Normalizing Flows: first test for ¢* scalar field theory [Caselle et al.; 2201.08862]
> Entanglement entropy [Bulgarelli and Panero; 2304.03311], also with (S)NFs [Bulgarelli et al.; 2410.14466]

> Topological unfreezing for CP(V=1) model [Bonanno et al.; 2402.06561]

» Numerical simulations of Effective String Theory [Caselle et al.; 2409.15937]
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Applications of Jarzynski's equality in Lattice Field Theory

Computation of free energies and/or sampling problematic distributions

> Calculation of the interface free-energy in the Z, gauge theory [Caselle et al.; 1604.05544]

> SU(3) pure gauge equation of state in 4d from the pressure [Caselle et al.; 1801.03110]

> Renormalized coupling for SU(N) YM theories [Francesconi et al.; 2003.13734]

> Connection with Stochastic Normalizing Flows: first test for ¢* scalar field theory [Caselle et al.; 2201.08862]
> Entanglement entropy [Bulgarelli and Panero; 2304.03311], also with (S)NFs [Bulgarelli et al.; 2410.14466]

> Topological unfreezing for CP(N=1) model [Bonanno et al.; 2402.06561]

» Numerical simulations of Effective String Theory [Caselle et al.; 2409.15937]
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How far are we from equilibrium?

Intuitively we want to be as close to equilibrium as possible!

We can measure the similarity of forward and reverse processes

qo(Uo)Pf[Uo, RPN U]
p(U)Pr[U7 Unstepflv EERE) UO]

Dk1.(qoPt||pPr) = /[DUO ... DU] qo(Uo)Pt[ U, . . ., U] log
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How far are we from equilibrium?

Intuitively we want to be as close to equilibrium as possible!

We can measure the similarity of forward and reverse processes

qo(Uo)Pf[Uo, RPN U]
p(U)Pr[U7 Unstepflv EERE) UO]

Dk1.(qoPt||pPr) = /[DUO ... DU] qo(Uo)Pt[ U, . . ., U] log

Clear "thermodynamic” interpretation

" 7 L=
By (qoPs|pP:) = (W)t + log = = (W) — AF >0 For NFS we minimize Dk1.(q|p)-
Zy N —— But interestingly

Second Law of thermodynamics!
. . Dxr(qllp) < DxL(qoP|lpP,
— measure of how reversible the process is! (allp) < ( 1PP)
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The effective sample size

Effective Sample Size: defined in general as the ratio between the "theoretical” variance and the actual variance of the NE

observable
Var(O)ne _ Var(O),

n nESS

but difficult to compute

We use the (customary) approximate estimator

(exp(=W))? _ 1

95 = e (2W)): ~ (exp(—2Wa))r

Easy to understand in terms of the variance of exp(—W):
Var(exp(—W)) ( ! 1) (—2AF) > 0
ar(exp(— =\ —==7 — exp(—
P E&S P Z

which leads to R
0<ESS<1
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Non-equilibrium Monte Carlo in 8 in SU(3)

Most natural example: changing 3 in SU(3) pure gauge

Prior: thermalized Markov Chain at By < Brarget

Protocol: linearly increase 3 (compress the
volume)

d.o.f. involved ~ (L/a)*

Sampling possible at any intermediate 3

[Bulgarelli, Cellini, AN; 2412.00200]
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Non-equilibrium Monte Carlo in 8 in SU(3)

Most natural example: changing 3 in SU(3) pure gauge [Bulgarelli, Cellini, AN; 2412.00200]

Prior: thermalized Markov Chain at By < Brarget

Protocol: linearly increase 3 (compress the
volume)

d.o.f. involved ~ (L/a)*

Sampling possible at any intermediate 3

Lja=12,8=6.02 — 6.178
0.30
T e = 256

0.25 1 T nggep = 512
| T fgiep = 2048

I
o
S

I

frequency
=)
—
ot

0.10+ J

0.05 1 ]

I L

7780.0 7782.5 7785.0 TT87.5 T7790.0 7792.5
w

Dk1, = (W); — AF decreases with increasing nstep
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Non-equilibrium Monte Carlo in 8 in SU(3)

Most natural example: changing 3 in SU(3) pure gauge

Prior: thermalized Markov Chain at By < Brarget

Protocol: linearly increase 3 (compress the
volume)

d.o.f. involved ~ (L/a)*

Sampling possible at any intermediate 3

Alessandro Nada (UniTo)

[Bulgarelli, Cellini, AN; 2412.00200]

L/a=12,8=06.02 — 6.178

100 4
C e = 256
C0 ey = 512
10-14 [ ngrep = 2048
g
102
g 10774
fi=}
1073 4

104 103 102

10 100 100 10?2
o~ (W-AF)

Var(exp(—Wy)) = E#SS — 1 decreases with increasing nstep
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Evolutions in 8: volume scaling

(1.8fm)* — (1.4fm)* for L/a = 20

8 =6.02 — 6.178

2.5
+ ¢ NEMC, L/a =12
¢ NEMC, L/a=16

2.0
o
215 +
% 4
=10
IQM ’
] .
0.5 . +
¢
0.0 . . . . . .
500 1000 1500 2000 2500 3000

nstep
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Evolutions in 8: volume scaling

(1.8fm)* — (1.4fm)* for L/a = 20 clear scaling with ngep ~ (L/a)*

B =6.02 — 6.178

2.5
* ¢ NEMC, L/a=10
i “\‘ -4 NEMC, L/a =12
— 2.0 | 4 NEMC, L/a=16
Ql | 4 NEMC, L/a =20
%* 1.5 |
A
S
= 1.0
' ‘ .
0.5 1 %
v
*
0.0 - . . .
0.00 0.05 0.10 0.15 0.20
nep/ (L /)’
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Evolutions in 8: volume scaling

(1.8fm)* — (1.4fm)* for L/a = 20 clear scaling with ngep ~ (L/a)*

8 =6.02 — 6.178

1.0
0.8 *
. 0.6 A
< ’, -
23 )
0.4 o *
* * 4 NEMC, L/a=10
-4 NEMC, L/a =12
0.2 1 ¢‘ ¢ NEMC, L/a =16
NV 4 NEMC, L/a =20
0.0 4% : ; : .
0.00 0.05 0.10 0.15 0.20
Nstep/(L/a)*
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Stochastic Normalizing Flows




SNFs as systematic improvement of non-equilibrium evolutions

What if you introduce the same transformations used in NFs between the non-equilibrium Monte Carlo updates?

@ @ @ O & romeanc
A. A. A. A.
L 4 L 4 L 4 L 4
2 2 2 2
5 ® 5 ® 5 ® 5 ®
K K K K
L 4 L 4 L 4 L 4
2 2 2 2
4 4 4 4
* * * *
AEIOLELIOLLLIGLLE.
Thetween Thetween Thetween Thetween
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SNFs as systematic improvement of non-equilibrium evolutions

What if you introduce the same transformations used in NFs between the non-equilibrium Monte Carlo updates?

Stochastic Normalizing Flows (introduced in [Wu et al.; 2002.06707])

Pe(2 Pe(ngiep)
Uo 5 g1(Uo) Lo “omun) P Ungtep
O B eqMC
A ) ) ) € noneq MC
: @  GE layer

»»»»»»»’O

Qeecocococece
|
|

»»»»»»»’O

»»»»»»»’O

IOIIIOIIIOIII

Mhetween Mhetween Mhetween Nhetween
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SNFs as systematic improvement of non-equilibrium evolutions

What if you introduce the same transformations used in NFs between the non-equilibrium Monte Carlo updates?

Stochastic Normalizing Flows (introduced in [Wu et al.; 2002.06707])

PC("step
—

Pe1 Pe2 )
Up i>g1(Uo) —(2 Uy &gz(Ul) *(; Us LN Ungiep

The (generalized) work now is [Caselle, Cellini, AN, Panero; 2201.08862]

Nstep —1
W= 3" Scni1)(8n(Un)) = Sc(n)(gn(Un)) = log |det Jn(Uy)|
—_——
n=0 deterministic

stochastic

> use gauge-equivariant layers to effectively decrease nstep
> how to do training? advantages from the architecture

> scaling with the volume?
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Gauge-equivariant layers

Implementation of the coupling layers introduced in [Nagai and Tomiya; 2103.11965] and the link-level flow used in [Abbott et
al.; 2305.02402]
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Gauge-equivariant layers

Implementation of the coupling layers introduced in [Nagai and Tomiya; 2103.11965] and the link-level flow used in [Abbott et
al.; 2305.02402]

Essentially a stout-smearing transformation [Morningstar and Peardon; 2003]

UL(x) = 1(Uu() = exp (@ (x)) Un(x)
with the algebra-valued
APy =2t () = G (UL
1 ti
rozen active

Invertibility + easy computation of log J guaranteed by 2 x D = 8 masks
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Gauge-equivariant layers

Implementation of the coupling layers introduced in [Nagai and Tomiya; 2103.11965] and the link-level flow used in [Abbott et
al.; 2305.02402]

Essentially a stout-smearing transformation [Morningstar and Peardon; 2003]

U, (x) = 1(Uu(x)) = exp (Q{j)(x)) Up(x)

with the algebra-valued

Q) =2[2f (x)] 2 () = G () Ul ()
N A —

TA
frozen active

Invertibility + easy computation of log J guaranteed by 2 x D = 8 masks

Sum of frozen staples
I I
0 =3 Pl ()Su()

v# train staple

in this work: pm,(x) — p), meaning 1 parameter per mask/8 parameters per layer
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[Bulgarelli, Cellini, AN; 2412.00200]

Architecture: (1 gauge-equivariant CL + 1 full MC update) X nstep

Training: minimizing Dk, (qoPt||pPr) = (W)¢ + const
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[Bulgarelli, Cellini, AN; 2412.00200]

Architecture: (1 gauge-equivariant CL + 1 full MC update) X nstep

Training: minimizing Dk, (qoPt||pPr) = (W)¢ + const

To avoid memory issues for large nstep and large volumes we train each layer separately during the non-equilibrium evolution

It's a feature of SNFs

Pe 2 Pe - PC Nste
Uy i> g1(Uo) ig U; g% g2(U1) i; U, ﬁ) . (_c);;) Unstep
Look at the loss W = S(Ung,.,,) — So(Uo) — Q — log J
Nstep —1
Q+logd= > Scni1)(Uni1) = Sc(ns1)(8n(Un)) + log det J,(Uy)
n=0

the terms in the sum can be trained separately!

— each layer connects two
neighbouring intermediate
distributions

— reminiscent of CRAFT [Matthews
at al.; 2201.13117]

— memory usage independent of

nstep!

— bias in the gradient (no visible
effect)
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Transferring p

Short trainings: 200-1000 epochs enough to saturate [Bulgarelli, Cellini, AN; 2412.00200]

Training only with small nstep: clear pattern emerges

Lj/a=12,8=6.0— 62

L) ® g, =16
0.0003{ o ey s

A nge, =064

L]
~ 0.0002

= ,"""'""'v"*w 243

0.0001 1 b
A‘&“m u ‘A‘ Ammﬁwmhﬁa

0 10 20 30 40 50 60
n
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Transferring p

Short trainings: 200-1000 epochs enough to saturate [Bulgarelli, Cellini, AN; 2412.00200]

Training only with small nstep: clear pattern emerges

Lja=12,8=6.0— 6.2

A A
0.0064 A a4
A
‘VA‘““'V~vA va‘z > global interpolation of p from trainings at
5 0.005 1 _
3 e % S R EWYW X““X&“ ¢ nstep = 16,32, 64
X A A A A “ A N A / ..
= 0.0041 a A > p() extrapolated to large nstep — no retraining!
A
O .
v . .
0.003 - ® =16 > Heavy use of transfer learning for each 8y — 3 evolution
YV Dgep = 32
0.0024 a A g =64 > Transfer learning also possible between different volumes
0.0 0.2 0.4 0.6 0.8 1.0

n/nstep
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SNF volume scaling

[Bulgarelli, Cellini, AN; 2412.00200]

B =6.02 — 6.178

[N}
ot
]

¢ NEMC, L/a=10 ® SNF, L/a=10
50 | -4 NEMC, L/a=12 - SNF, L/a =12
. 0 | ¢ NEMC, L/a =16 ® SNF, L/a=16
o + i ¢ NEMC,L/a=20 & SNF, Lja=20
=151,
A
s
= 1.0 %
&1 4o
05{ 1. M
¢ ¢~ j S
_____ ““"-—a
0.0 : : : & |
0.00 0.05 0.10 0.15 0.20
Nstep/ (L/a)*
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SNF volume scaling

. [Bulgarelli, Cellini, AN; 2412.00200]
nstep ~ V for fixed Dkp, or ESS

g =6.02—6.178

1.0
[ J
4 L 4
0.8 . o
-
0.6 * - »
041 o be 2,
¢, 2 * ¢ NEMC, L/a=10 ® OSNF, L/a=10
e -4 NEMC, L/a=12  --@-- SNF, L/a =12
0.2 ,“‘ ® NEMC, L/a =16 ® OSNF, L/a=16
¢ NEMC, L/a =20 ® SNF, L/a=20
0.0 -!é‘ . . . ;
0.00 0.05 0.10 0.15 0.20
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A strategy to mitigate topological freezing




Topological freezing in lattice gauge theory

On the lattice: topological sectors characterized by integer Q emerge for a — 0

Transition between these sectors is strongly suppressed using standard MCMC
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Topological freezing in lattice gauge theory

On the lattice: topological sectors characterized by integer Q emerge for a — 0

Transition between these sectors is strongly suppressed using standard MCMC

10*
> Strong freezing of topology at 8 > 6.5 (ro/a > 11)
108
e
> Ting(@?) > 10% with 1 heat-bath step + 4 —
over-relaxation steps (z ~ 5) SAG ®
=
@
»> Open Boundary Conditions [Liischer and Schaefer; 10! ®
1105.4749] remove the sectors and mitigate the issue. ®
But: complications due to boundary effects |
105 6 8 10 12

e . o e . To/a
> General strategy for mitigation of critical slowing down? o/

Image courtesy of C. Bonanno
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A non-equilibrium strategy for topological freezing in SU(3)

Goal: sample (frozen) topological observables at Biarget on a L* lattice
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A non-equilibrium strategy for topological freezing in SU(3)

Goal: sample (frozen) topological observables at Biarget on a L* lattice

NE-MCMC in the Boundary Conditions

Prior: thermalized Markov Chain at Starget with OBC on a LZ
defect

Protocol: switch defect BC (# d.o.f. ~ (Ly/a)?) linearly until PBC

Similar strategy used in Parallel Tempering —see Claudio’s talk on
Monday

Can be combined with coupling layers acting around the defect to
get a SNF
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A non-equilibrium strategy for topological freezing in SU(3)

Goal: sample (frozen) topological observables at Biarget on a L* lattice

NE-MCMOC in the Boundary Conditions ot
Prior: thermalized Markov Chain at Starget with OBC on a LZ : ' ' . ' ) :
defect . ':::K'_._)' .
Protocol: switch defect BC (# d.o.f. ~ (Ly/a)?) linearly until PBC . . Z}._i_’. .
Similar strategy used in Parallel Tempering —see Claudio’s talk on . °_’—._,>'—)' .
Monday :

Can be combined with coupling layers acting around the defect to . '—'_;-3' i .
get a SNF L S

Applied to CPY~! model in 2d [Bonanno, AN, Vadacchino; 2402.06561]

Promising results: Tint(Qz) ~ 10° tamed to effectively a few thousands + length of non-equilibrium evolutions scales with
defect size
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Switching BC in SU(3): scaling with the defect size

=6.4
1.2 f=6
¢ Ld/a:3
1.0 1 ® Lya=4
* Ld/a:5
0.8 1 * Ld/a,:6
z
£ 06
0.4 1
L]
0.2 1
0.0 T T .
4 5 7
Nstep/(La/a)?

Alessandro Nada (UniTo)

Flow-based approaches for lattice gauge theory

preliminary results

4/4/2025



Switching BC in SU(3): scaling with the defect size

preliminary results

Lo B =64
¢ Ld/a =3
i ‘ Ld/a = 4
0.8 A Lyecs
* Ld/a =6
" 0.6 1
& ;
0.4 1 %
0.2 1 ’
00 T T T T T T
2 3 4 5 6 7
nstep/(Ld/a)3
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Metric for scaling

eff 2Tint
nc(ev ) X (nstep + "between) = Nev ESS X (nstep + nbetween)
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Metric for scaling

eff 2Tint
n¢(3v ) X (nstep + ”between) = Nev EQS X (nstep + nbetween)

W eqMC ~
Q Q Q Q @ noneq MC Rescale nstep and nNpetween to keep ESS and iy fixed for
e e e e a—0
* * * * La\3
5 : 5 : 5 : 5 : Nstep ~ (?) ~a? Npetween ™~ a2
* * * *
* * * * fixed
* * * * CYA 5
L 4 L 4 L 4 L 4 n % (n, + ny ~a
OLLLIGLLLIOLL IOl LY. “ ESS (Pstep etween)

Tbetween Tbetween Tbetween Tbetween
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Metric for scaling

eff 2Tint
név ) X (nstep + ”between) = Nev ESS X (nstep + nbetween)

W eqMC ~
Q Q Q Q @ noneq MC Rescale nstep and nNpetween to keep ESS and iyt fixed for
e e e e a—0
* * * * Ly 3
5 : 5 : 5 : 5 : Nstep ~~ (j) ~ 373 NMpetween ™~ 372
* * * *
* * * * fixed
. . . . CYa ,
L 4 L 4 L 4 L 4 n % (n, + ny ~a
OLLLIGLLLIOLL IOl LY. “ ESS (Pstep etween)

Tbetween Tbetween Tbetween Tbetween

Goal of SNF: systematically improve the coefficients

— ongoing work on defect coupling layers

in collaboration with C. Bonanno, A. Bulgarelli, E. Cellini, D. Panfalone, D. Vadacchino, L. Verzichelli
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Conclusions

General strategy
> Start from NE-MCMC — clear scaling with the degrees of freedom (no training)
Nstep ~ #d.o.f. = constant DKL or ESS

> Implement lightweight SNF on top of NEEMCMC — improve coefficients of scaling (moderate training)

» Implement more complicated architectures — systematic improvement program (harder training?)
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Conclusions

General strategy
> Start from NE-MCMC — clear scaling with the degrees of freedom (no training)
Nstep ~ #d.o.f. = constant DKL or ESS

> Implement lightweight SNF on top of NEEMCMC — improve coefficients of scaling (moderate training)

» Implement more complicated architectures — systematic improvement program (harder training?)

Open questions

What happens with less MC and more ML?

Optimal protocols: non-trivial problem, more efficient
solutions likely

Same approach, but in continuous time: NETS [Albergo;
2410.02711]
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Conclusions

General strategy
> Start from NE-MCMC — clear scaling with the degrees of freedom (no training)
Nstep ~ #d.o.f. = constant 5KL or ESS

> Implement lightweight SNF on top of NEEMCMC — improve coefficients of scaling (moderate training)

» Implement more complicated architectures — systematic improvement program (harder training?)

Open questions

What happens with less MC and more ML?

. L. .. Characterize thermalization processes?
Optimal protocols: non-trivial problem, more efficient

solutions likel . .. . .
Y Completely different applications: signal-to-noise —

Guilherme’s talk on Wednesda
Same approach, but in continuous time: NETS [Albergo; Y

2410.02711]
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Thank you for your attention!



Switching 3 in SU(3): scaling in 5 — f3p

Lja=12,5 = 6.0

2.0
® NEMC, 3 =4x10"* +
¢ NEMC,d3=2x10"* +
1.54{ 4 NEMC,é3=10"* +
Q® SNF,03=4x10"*
B & SNF, 68=2x10"* +
<104 A SNF,é3=10""* ¢ i
zQ + $
v ! ¢ ¢ ¥
0.5 A . $ s & ¢ ?
: AP I S S
o8 % & % 4 . .
6.05 6.10 6.15 6.20
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Switching 3 in SU(3): scaling in 5 — f3p

Lja=12,5 = 6.0

2.5
® NEMC,d68=4x10"* ® SNF,d8=4x10"*
904 ¢ NEMC,d3=2x10"* & SNF, 68=2x10"*
’ A NEMC, 63 =10"* A SNF, 65 =10"* +
_ ¢
. 1.5 . +
'
1.0 o8 $ @ ?
0.5 4“5128080
AA
0.0 [atd : . . .
0 2 4 6 8
(B — o) /58 <107

— 88 ~ B — Bo for fixed Dy, (linear protocol)
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Switching BC in SU(3): topology

x10~6 b=64
I Standard MCMC

Lg/a = 3, Nbetween = 50
Lg/a = 3, Npetween = 100
Lg/a = 4, Nhetween = 50
Lg/a = 5, Npetween = 10
La/a = 5, Npetween = 50 ]
Lag/a = 6, Nhetween = 10

o060 <o

Q*/V
e
_._._
—

_T_

0.0 0.2 0.4 0.6 0.8 1.0
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Switching BC in SU(3): autocorrelations

3.5
3.0

2.5

7-int(Q2)

1.5 1
1.0 1

0.5

Nhetween = 10

Mpetween = 90

< o ¢

Netween = 100
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Improvements over purely stochastic approach

g =6.02— 6.178

2.5
+ ¢ NEMC, L/a =12
¢ NEMC, L/a =16
AQ'O' ® SNF, L/a=12
g ® SNF,L/a=16
S5 +
€ e
s
= 1.0
&
| e 3 ¢
0.5 * *
¢ )
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0.0
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Ngtep
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Improvements over purely stochastic approach

B =6.02 — 6.178

1.0
¢ NEMC, L/a =12
¢ NEMC, L/a =16
081 o sNF L/a=12 °
® SNF, L/a=16 'y
0.6 ¢ ¢ ®
<% ¢
[
0.4- . ¢ .
L ¢
0.2 *
e o .
L 2
0.0

500 1000 1500 2000 2500 3000
Nstep
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The Second Law of Thermodynamics

Clausius inequality for an (isothermal) transformation from state A to state B

Q<ns
TS

If we use

FE E_sT

{Q = AE— W (First Law)
the Second Law becomes

where the equality holds for reversible processes.

Moving from thermodynamics to statistical mechanics, we know that actually
(W)r > AF = Fg — Fa

for a given "forward” process f from A to B
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The CPN=1 model with a defect

Improved action

s = —2n > { KPR [Ou(x)20x + W)z(x)] + K (x + KT (x)eaR [T (x + 2) O ()2(x + 22)2(x)] }
X,

with z(x) a vector of N complex numbers with Z(x)z(x) = 1 and U,(x) € U(1)

c1 =4/3 and ¢ = —1/12 are Symanzik-improvement coefficients
I ‘ e The kﬁ")(x) regulate the boundary conditions along a given defect D
—
‘ DAp=0;
B = A k‘(‘n)(X) = {i(”) zt:erwis:
o e .:_>—’ . at a given step n of the out-of-equilibrium evolution protocol c(n)
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Topological susceptibility for various protocols for N = 21, 8; = 0.7, V = 1142 (roughly similar numerical effort)

Note that with OBC — 7int(x) ~ 50

x 104

3.5 1

3.0

N;<2_5+F4# —#—r—‘?# +

2.0 N=21, L; =6 Y N=21,L;,=24
¢ N=21, Ly =12 Y N=21, L;=60
1.5 N=21, Ly = 18 ¥ N=21, L;=114
0.0 0.2 04 06 0.8
ESS

Black band is from parallel tempering [Bonanno et al.; 2019] — with X ~ 100 numerical cost
Alessandro Nada (UniTo)

Flow-based approaches for lattice gauge theory

1.0

4/4/2025

40/33



	Flow-based samplers
	Non-equilibrium Monte Carlo
	Stochastic Normalizing Flows
	A strategy to mitigate topological freezing
	Backup

