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Università degli Studi di Torino and INFN, Sezione di Torino

2nd LatticeNET workshop on challenges in Lattice field theory

Benasque, 30th March - 5th April 2025

Alessandro Nada (UniTo) Flow-based approaches for lattice gauge theory 4/4/2025 1/33



Critical slowing down

(Thermalized) Markov Chain: elegant and scalable numerical solution to generate U according to p(U)

U(0) Pp→ U(1) Pp→ . . .
Pp→︸ ︷︷ ︸

thermalization

U(t) Pp→ U(t+1) Pp→ · · · → U(t+n)︸ ︷︷ ︸
equilibrium

Configurations sampled sequentially are autocorrelated

· · · → U(t) → U(t+1) → · · · → U(t+n)

Autocorrelation measured by τint(O) → effective independent configurations = n/2τint(O)

Critical slowing down

When a critical point is approached τint diverges

E.g. in the continuum limit a → 0
τint(O) ∼ a−z

where z depends on the algorithm and on the observable under study
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Re-framing lattice simulations: flowing from one distribution to the other

What if every new configuration is sampled independently from the previous one by construction?

Flow-based approach

find an exact mapping between some well-behaving distribution q0 and the target p

→ promising approach to fight critical slowing down?

It works if (a bit roughly):

▶ the map can be constructed with reasonable computational effort

▶ the map itself is not too expensive to sample from
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Trivializing flows

Original approach [Lüscher; 0907.5491]: take standard path integral

⟨O⟩ =
1

Z

∫
Dϕ O(ϕ) e−S(ϕ)

and perform an invertible field transformation ϕ̃ = F−1(ϕ)

⟨O⟩ =
1

Z

∫
Dϕ̃ O(F(ϕ̃)) e−S(F(ϕ̃))+log det J(F(ϕ̃))

F is a true trivializing map if
S(F(ϕ̃))− log det J(F(ϕ̃)) = const

▶ trivializing map can be constructed with a flow equation

▶ approximate maps built expressing the action in the flow equation as a power series in the flow time and truncated

▶ however: no big improvement in the scaling of the computational cost [Engel and Schaefer; 1102.1852]
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Normalizing flows: the basics

A normalizing flow is an invertible mapping fθ constructed as

ϕ = fθ(z) = (fN ◦ · · · ◦ f1)(z) z ∼ q0

and the transformed variable follows the distribution

q(ϕ) = q0(f
−1
θ (ϕ)) |det Jθ|−1

Note that in the notation of trivializing maps F−1 = fθ

Inserting it in the path integral [Albergo, Kanwar, Shanahan; 1904.12072] we get

reweighting-like formula

⟨O⟩ =
1

Z

∫
Dϕ q(ϕ)︸︷︷︸

sample

w̃︷ ︸︸ ︷
e−S(ϕ)

q(ϕ)
O(ϕ)︸ ︷︷ ︸

measure

=
⟨O(ϕ)w̃(ϕ)⟩ϕ∼q

⟨w̃(ϕ)⟩ϕ∼q

independent Metropolis-Hastings

⟨O⟩ =
1

Z

∫
Dϕ q(ϕ)

e−S(ϕ)

q(ϕ)︸ ︷︷ ︸
sample+MH

O(ϕ)︸ ︷︷ ︸
measure

The partition function is directly accessible! [Nicoli et al.; 2007.07115]

Z = ⟨w̃(ϕ)⟩ϕ∼q

or the ratio Z/Z0 if you don’t know q0
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Normalizing flows: structure and training

Coupling layers

NFs organized as combination of discrete transformations with suitable masking → invertibility and triangular Jacobian

fn :

{
ϕn+1
frozen = ϕn

frozen

ϕn+1
active = e−s(ϕn

frozen)ϕn
active + t(ϕn

frozen)

s and t are the output of neural networks

Training

Parameters ”trained” with a minimization procedure of a ”loss”, usually taken to be the Kullback-Leibler divergence

D̃KL(q∥p) =
∫

Dϕ q(ϕ) log
q(ϕ)

p(ϕ)
= −⟨log w̃⟩ϕ∼q + logZ

It is a self-learning procedure, no data from target required
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The path until now - 1

Natural toy model: ϕ4 scalar field theory in 2 dimensions

[Albergo, Kanwar, Shanahan; 1904.12072]

[Nicoli et al.; 2007.07115]

but also [Del Debbio et al.; 2105.12481] [Caselle, Cellini, AN; 2201.08862] [Gerdes et al.; 2207.00283] [Albandea et al.; 2302.08408]

+ . . .
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Normalizing flows for lattice gauge theory

Incorporating the symmetries in the flow crucial for an efficient training

Construct equivariant flows:
fθ(t · ϕ) = t · fθ(ϕ)

What about gauge theories?

Gauge-equivariant flows

Some architectures developed in the last few years:

▶ loop-level flow: coupling layers act on (eigenvalues of) untraced
loops [Kanwar et al.; 2003.06413] [Boyda et al.; 2008.05456]

P′
µν(x) = h(Pµν(x)|I (x)) U′

µ(x) = P′
µν(x)P

†
µν(x)Uµ(x)

▶ link-level flow (more on that later in the talk)

▶ also Continuous NFs (next slide)
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The path until now - 2

U(1) gauge theory in 2d [Kanwar et al.; 2003.06413]

SU(N) in 2 dimensions [Boyda et al.; 2008.05456] [Bacchio et al.; 2212.08469] [Gerdes et al.; 2410.13161]

but also fermionic theories [Albergo et al.; 2106.05934]

Schwinger model [Finkenrath et al.; 2201.02216] [Albergo et al.; 2202.11712]

SU(N) with fermions in 2 dimensions [Abbott et al.; 2207.08945] [Abbott et al.; 2211.07541]
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Alternative flow-based approaches

Wilson flow approach [Bacchio et al.; 2212.08469]

no discrete NF, learn the ODE instead

U̇t = Zt(Ut)Ut

with Zt given by the force of

S̃(Ut , t) =
∑

ci (t)Wi (Ut)

Machine-learn the ci coefficients!

Very few parameters, efficient in 2d SU(3) gauge theory

related work: Continuous NFs [Gerdes et al.; 2207.00283], [Caselle et al.; 2307.01107], [Gerdes et al.; 2410.13161]
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Alternative flow-based approaches

FlowHMC [Albandea et al.; 2302.08408]

very close to the original algorithm by Lüscher

⟨O⟩ =
1

Z

∫
Dϕ̃ O(f −1

θ (ϕ̃)) e−S(f−1
θ

(ϕ̃))+log det J(f−1
θ

(ϕ̃))︸ ︷︷ ︸
sample

→ first run an HMC using S(f −1
θ (ϕ̃))− log det J(f −1

θ (ϕ̃))

→ then flow back to the target distribution using fθ

No MH step is needed + decorrelation obtained (in scalar field theory) even with little overlap with target distribution

However sampling is expensive with deep networks
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The path until now - 3

ϕ4 scalar field theory in 2 dimensions: [Albergo, Kanwar, Shanahan; 1904.12072] [Nicoli et al.; 2007.07115] [Del Debbio et al.;

2105.12481] [Caselle, Cellini, AN; 2201.08862] [Gerdes et al.; 2207.00283] [Albandea et al.; 2302.08408]

U(1) in 2 dimensions: [Kanwar et al.; 2003.06413] [Singha et al.; 2306.00581]

SU(N) in 2 dimensions [Boyda et al.; 2008.05456] [Bacchio et al.; 2212.08469] [Gerdes et al.; 2410.13161]

fermionic theories [Albergo et al.; 2106.05934]

Schwinger model [Finkenrath et al.; 2201.02216] [Albergo et al.; 2202.11712] and SU(N) gauge theories with fermions in 2
dimensions [Abbott et al.; 2207.08945]

first attempts in 4d [Abbott et al.; 2305.02402] with interesting applications [Abbott et al.; 2401.10874]

Very efficient samplers in lower-dimensional theories!
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Scaling of flow-based samplers?

How do flow-based samplers scale when the d.o.f. of the system are increased? (i.e., in the continuum limit)

We require two features:

▶ improved scaling of the sampling with
respect to MCMC

▶ good scaling of the training phase

Difficult to determine generally! scaling has to be
assessed experimentally [Abbott et al.; 2211.07541]

see also multiscale NFs [Abbott et al.; 2404.10819] Early work: worrying scaling of training cost for fixed models

image from [Del Debbio et al.; 2105.12481]
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The rest of this talk: same framework, different approach

As training can be very expensive, can we use a flow-based sampler that requires none + has a clear scaling?

Non-equilibrium MCMC

Works like a flow, but purely stochastic

▶ No training required

▶ Clear scaling with d.o.f.

Stochastic Normalizing Flow

Systematic improvement of NE-MCMC with ML

▶ Some training required

▶ Same scaling with d.o.f.
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Non-equilibrium Monte Carlo



Out-of-equilibrium evolutions

sampling each consecutive step from a sequence of distributions

q0 ≃ e−Sc(0) → e−Sc(1) → · · · → p ≃ e
−Sc(nstep)

start at equilibrium from the prior distribution q0 = e−Sc(0)/Z0

at each step:

▶ change protocol parameter c(n − 1) → c(n)

▶ MC update with transition probability Pc(n)(Un → Un+1)

▶ repeat nstep times until the target p = e−S/Z

”forward” transition probability

Pf [U0, . . . ,U] =

nstep∏
n=1

Pc(n)(Un−1 → Un)

n
st

ep

q0

p
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Out-of-equilibrium evolutions
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Crooks’ theorem

Look at the ratio of the forward evolution and its reverse

q0(U0)Pf [U0, . . . ,Unstep ]

p(U)Pr[Unstep , . . . ,U0]
=

q0(U0)
∏nstep

n=1 Pc(n)(Un−1 → Un)

p(Unstep )
∏nstep

n=1 Pc(n)(Un → Un−1)

→ Crooks’ theorem for MCMC [Crooks; 1999]: if the update algorithm satisfies detailed balance

q0(U0)Pf [U0, . . . ,Unstep ]

p(U)Pr[Unstep , . . . ,U0]
= exp(W −∆F )

with the generalized work

W =

nstep−1∑
n=0

{
Sc(n+1) [Un]− Sc(n) [Un]

}
and the free energy difference

exp(−∆F ) =
Zc(nstep)

Zc(0)
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Jarzynski’s equality for MCMC

Integrating over all paths gives∫
[DU0 . . .DUnstep ]q0(U0)Pf [U0, . . . ,Unstep ] exp(−(W −∆F )) = 1 → ⟨exp (−Wd )⟩f = 1

with the dissipated work Wd = W −∆F

Formal derivation of Jarzynski’s equality [Jarzynski; 1997] for MCMC

⟨exp (−W )⟩f = exp(−∆F ) =
Z

Z0

Using Jensen’s inequality ⟨exp x⟩ ≥ exp⟨x⟩

exp(−∆F ) = ⟨exp(−W )⟩f ≥ exp (−⟨W ⟩f)

we get the Second Law of Thermodynamics
⟨W ⟩f ≥ ∆F
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From the properties of transition probabilities

⟨O⟩ =
∫

DU O(U) p(U)

=

∫
[DU0 . . .DU]O(U) p(U)Pr[U, . . . ,U0]

Then insert q0Pf

⟨O⟩ =
∫

[DU0 . . .DU] q0(U0)Pf [U0, . . . ,U] O(U)
p(U)Pr[U, . . . ,U0]

q0(U0)Pf [U0, . . . ,U]

=

∫
[DU0 . . .DU] q0(U0)Pf [U0, . . . ,U] O(U) exp(−(W −∆F ))

NE-MCMC

This goes beyond computing free energy differences! Reweighting-like estimator to compute v.e.v.

⟨O⟩ =
⟨O exp(−W )⟩f
⟨exp(−W )⟩f

= ⟨O exp(−Wd )⟩f
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A non-equilibrium paradigm to perform MCMC

n
st

ep

nbetween

n
st

ep

nbetween
n

st
ep

nbetween

n
st

ep

nbetween

eq MC

non-eq MC
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Applications of Jarzynski’s equality in Lattice Field Theory

Computation of free energies and/or sampling problematic distributions

▶ Calculation of the interface free-energy in the Z2 gauge theory [Caselle et al.; 1604.05544]

▶ SU(3) pure gauge equation of state in 4d from the pressure [Caselle et al.; 1801.03110]

▶ Renormalized coupling for SU(N) YM theories [Francesconi et al.; 2003.13734]

▶ Connection with Stochastic Normalizing Flows: first test for ϕ4 scalar field theory [Caselle et al.; 2201.08862]

▶ Entanglement entropy [Bulgarelli and Panero; 2304.03311], also with (S)NFs [Bulgarelli et al.; 2410.14466]

▶ Topological unfreezing for CP(N−1) model [Bonanno et al.; 2402.06561]

▶ Numerical simulations of Effective String Theory [Caselle et al.; 2409.15937]
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How far are we from equilibrium?

Intuitively we want to be as close to equilibrium as possible!

We can measure the similarity of forward and reverse processes

D̃KL(q0Pf∥pPr) =

∫
[DU0 . . .DU] q0(U0)Pf [U0, . . . ,U] log

q0(U0)Pf [U0, . . . ,U]

p(U)Pr[U,Unstep−1, . . . ,U0]

Clear ”thermodynamic” interpretation

D̃KL(q0Pf∥pPr) = ⟨W ⟩f + log
Z

Z0
= ⟨W ⟩f −∆F ≥ 0︸ ︷︷ ︸

Second Law of thermodynamics!

→ measure of how reversible the process is!

For NFs we minimize D̃KL(q∥p).
But interestingly

D̃KL(q∥p) ≤ D̃KL(q0Pf∥pPr)
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The effective sample size

Effective Sample Size: defined in general as the ratio between the ”theoretical” variance and the actual variance of the NE
observable

Var(O)NE

n
=

Var(O)p

nESS

but difficult to compute

We use the (customary) approximate estimator

ˆESS =
⟨exp(−W )⟩2f
⟨exp(−2W )⟩f

=
1

⟨exp(−2Wd )⟩f

Easy to understand in terms of the variance of exp(−W ):

Var(exp(−W )) =

(
1

ˆESS
− 1

)
exp(−2∆F ) ≥ 0

which leads to
0 < ˆESS ≤ 1
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Non-equilibrium Monte Carlo in β in SU(3)

Most natural example: changing β in SU(3) pure gauge [Bulgarelli, Cellini, AN; 2412.00200]

Prior: thermalized Markov Chain at β0 < βtarget

Protocol: linearly increase β (compress the
volume)

d.o.f. involved ∼ (L/a)4

Sampling possible at any intermediate β
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Prior: thermalized Markov Chain at β0 < βtarget

Protocol: linearly increase β (compress the
volume)

d.o.f. involved ∼ (L/a)4

Sampling possible at any intermediate β 7780.0 7782.5 7785.0 7787.5 7790.0 7792.5
W
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D̃KL = ⟨W ⟩f −∆F decreases with increasing nstep
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Most natural example: changing β in SU(3) pure gauge [Bulgarelli, Cellini, AN; 2412.00200]

Prior: thermalized Markov Chain at β0 < βtarget

Protocol: linearly increase β (compress the
volume)

d.o.f. involved ∼ (L/a)4

Sampling possible at any intermediate β 10−4 10−3 10−2 10−1 100 101 102

e−(W−∆F )

10−3

10−2

10−1

100

fr
eq

u
en

cy

L/a = 12, β = 6.02→ 6.178

nstep = 256

nstep = 512

nstep = 2048

Var(exp(−Wd )) =
1
ˆESS

− 1 decreases with increasing nstep
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Evolutions in β: volume scaling

(1.8fm)4 → (1.4fm)4 for L/a = 20

clear scaling with nstep ∼ (L/a)4

500 1000 1500 2000 2500 3000
nstep

0.0

0.5

1.0

1.5

2.0

2.5

D̃
K

L
(q

0
P f
‖p
P r

)

β = 6.02→ 6.178

NEMC, L/a = 12

NEMC, L/a = 16
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Stochastic Normalizing Flows



SNFs as systematic improvement of non-equilibrium evolutions

What if you introduce the same transformations used in NFs between the non-equilibrium Monte Carlo updates?

n
st

ep

nbetween

n
st

ep

nbetween

n
st

ep

nbetween

n
st

ep

nbetween

eq MC

non-eq MC
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SNFs as systematic improvement of non-equilibrium evolutions

What if you introduce the same transformations used in NFs between the non-equilibrium Monte Carlo updates?

Stochastic Normalizing Flows (introduced in [Wu et al.; 2002.06707])

U0
g1−→ g1(U0)

Pc(1)−→ U1
g2−→ g2(U1)

Pc(2)−→ U2
g3−→ . . .

Pc(nstep)
−→ Unstep

n
st

ep

nbetween

n
st

ep

nbetween

n
st

ep

nbetween

n
st

ep

nbetween

eq MC

non-eq MC

GE layer
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SNFs as systematic improvement of non-equilibrium evolutions

What if you introduce the same transformations used in NFs between the non-equilibrium Monte Carlo updates?

Stochastic Normalizing Flows (introduced in [Wu et al.; 2002.06707])

U0
g1−→ g1(U0)

Pc(1)−→ U1
g2−→ g2(U1)

Pc(2)−→ U2
g3−→ . . .

Pc(nstep)
−→ Unstep

The (generalized) work now is [Caselle, Cellini, AN, Panero; 2201.08862]

W =

nstep−1∑
n=0

Sc(n+1)(gn(Un))− Sc(n)(gn(Un))︸ ︷︷ ︸
stochastic

− log |det Jn(Un)|︸ ︷︷ ︸
deterministic

▶ use gauge-equivariant layers to effectively decrease nstep

▶ how to do training? advantages from the architecture

▶ scaling with the volume?
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Gauge-equivariant layers

Implementation of the coupling layers introduced in [Nagai and Tomiya; 2103.11965] and the link-level flow used in [Abbott et

al.; 2305.02402]

Essentially a stout-smearing transformation [Morningstar and Peardon; 2003]

U′
µ(x) = gl (Uµ(x)) = exp

(
Q

(l)
µ (x)

)
Uµ(x)

with the algebra-valued

Q
(l)
µ (x) = 2

[
Ω

(l)
µ (x)

]
TA

Ω
(l)
µ (x) = C

(l)
µ (x)︸ ︷︷ ︸
frozen

U†
µ(x)︸ ︷︷ ︸

active

Invertibility + easy computation of log J guaranteed by 2× D = 8 masks

Sum of frozen staples

C
(l)
µ (x) =

∑
ν ̸=µ

ρ
(l)
µν(x)︸ ︷︷ ︸
train

Sµν(x)︸ ︷︷ ︸
staple

in this work: ρ
(l)
µν(x) −→ ρ(l), meaning 1 parameter per mask/8 parameters per layer
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Learning ρ

[Bulgarelli, Cellini, AN; 2412.00200]

Architecture: (1 gauge-equivariant CL + 1 full MC update) ×nstep

Training: minimizing D̃KL(q0Pf∥pPr) = ⟨W ⟩f + const

To avoid memory issues for large nstep and large volumes we train each layer separately during the non-equilibrium evolution

It’s a feature of SNFs

U0
g1−→ g1(U0)

Pc(1)−→ U1
g2−→ g2(U1)

Pc(2)−→ U2
g3−→ . . .

Pc(nstep)
−→ Unstep

Look at the loss W = S(Unstep )− S0(U0)− Q − log J

Q + log J =

nstep−1∑
n=0

Sc(n+1)(Un+1)− Sc(n+1)(gn(Un)) + log det Jn(Un)

the terms in the sum can be trained separately!

→ each layer connects two
neighbouring intermediate
distributions

→ reminiscent of CRAFT [Matthews

at al.; 2201.13117]

→ memory usage independent of
nstep!

→ bias in the gradient (no visible
effect)
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Transferring ρ

Short trainings: 200-1000 epochs enough to saturate [Bulgarelli, Cellini, AN; 2412.00200]

Training only with small nstep: clear pattern emerges

0 10 20 30 40 50 60
n

0.0001

0.0002

0.0003

ρ
(n

)

L/a = 12, β = 6.0→ 6.2

nstep = 16

nstep = 32

nstep = 64
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Transferring ρ

Short trainings: 200-1000 epochs enough to saturate [Bulgarelli, Cellini, AN; 2412.00200]

Training only with small nstep: clear pattern emerges

0.0 0.2 0.4 0.6 0.8 1.0
n/nstep

0.002

0.003

0.004

0.005

0.006

ρ
(n

)
×
n

st
ep

L/a = 12, β = 6.0→ 6.2

nstep = 16

nstep = 32

nstep = 64

▶ global interpolation of ρ from trainings at
nstep = 16, 32, 64

▶ ρ(l) extrapolated to large nstep → no retraining!

▶ Heavy use of transfer learning for each β0 → β evolution

▶ Transfer learning also possible between different volumes
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SNF volume scaling

[Bulgarelli, Cellini, AN; 2412.00200]
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SNF volume scaling

[Bulgarelli, Cellini, AN; 2412.00200]

nstep ∼ V for fixed D̃KL or ESS
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A strategy to mitigate topological freezing



Topological freezing in lattice gauge theory

On the lattice: topological sectors characterized by integer Q emerge for a → 0

Transition between these sectors is strongly suppressed using standard MCMC

▶ Strong freezing of topology at β ≥ 6.5 (r0/a > 11)

▶ τint(Q
2) > 103 with 1 heat-bath step + 4

over-relaxation steps (z ∼ 5)

▶ Open Boundary Conditions [Lüscher and Schaefer;

1105.4749] remove the sectors and mitigate the issue.
But: complications due to boundary effects

▶ General strategy for mitigation of critical slowing down?
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Image courtesy of C. Bonanno
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A non-equilibrium strategy for topological freezing in SU(3)

Goal: sample (frozen) topological observables at βtarget on a L4 lattice

NE-MCMC in the Boundary Conditions

Prior: thermalized Markov Chain at βtarget with OBC on a L3d
defect

Protocol: switch defect BC (# d.o.f. ∼ (Ld/a)
3) linearly until PBC

Similar strategy used in Parallel Tempering →see Claudio’s talk on
Monday

Can be combined with coupling layers acting around the defect to
get a SNF

Applied to CPN−1 model in 2d [Bonanno, AN, Vadacchino; 2402.06561]

Promising results: τint(Q
2) ∼ 105 tamed to effectively a few thousands + length of non-equilibrium evolutions scales with

defect size
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Switching BC in SU(3): scaling with the defect size

preliminary results
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Metric for scaling

n
(eff)
ev × (nstep + nbetween) ≃ nev

2τint
ˆESS

× (nstep + nbetween)

n
st

ep

nbetween

n
st

ep

nbetween

n
st

ep

nbetween

n
st

ep

nbetween

eq MC

non-eq MC Rescale nstep and nbetween to keep ˆESS and τint fixed for
a → 0

nstep ∼
(
Ld

a

)3

∼ a−3 nbetween ∼ a−2

nev

fixed︷ ︸︸ ︷
2τint
ˆESS

×(nstep + nbetween) ∼ a−3

Goal of SNF: systematically improve the coefficients

→ ongoing work on defect coupling layers

in collaboration with C. Bonanno, A. Bulgarelli, E. Cellini, D. Panfalone, D. Vadacchino, L. Verzichelli
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Conclusions

General strategy

▶ Start from NE-MCMC → clear scaling with the degrees of freedom (no training)

nstep ∼ #d.o.f. → constant D̃KL or ˆESS

▶ Implement lightweight SNF on top of NE-MCMC → improve coefficients of scaling (moderate training)

▶ Implement more complicated architectures → systematic improvement program (harder training?)

Open questions

What happens with less MC and more ML?

Optimal protocols: non-trivial problem, more efficient
solutions likely

Same approach, but in continuous time: NETS [Albergo;

2410.02711]

Characterize thermalization processes?

Completely different applications: signal-to-noise →
Guilherme’s talk on Wednesday
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Thank you for your attention!



Switching β in SU(3): scaling in β − β0

6.05 6.10 6.15 6.20
β

0.0

0.5

1.0

1.5

2.0

D̃
K

L

L/a = 12, β0 = 6.0

NEMC, δβ = 4× 10−4

NEMC, δβ = 2× 10−4

NEMC, δβ = 10−4

SNF, δβ = 4× 10−4

SNF, δβ = 2× 10−4

SNF, δβ = 10−4

Alessandro Nada (UniTo) Flow-based approaches for lattice gauge theory 4/4/2025 34/33



Switching β in SU(3): scaling in β − β0

0 2 4 6 8
(β − β0)/δβ ×10−5

0.0

0.5

1.0

1.5

2.0

2.5

D̃
K

L

L/a = 12, β0 = 6.0

NEMC, δβ = 4× 10−4

NEMC, δβ = 2× 10−4

NEMC, δβ = 10−4

SNF, δβ = 4× 10−4

SNF, δβ = 2× 10−4

SNF, δβ = 10−4

→ δβ ∼ β − β0 for fixed D̃KL (linear protocol)
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Switching BC in SU(3): topology
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Switching BC in SU(3): autocorrelations
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Improvements over purely stochastic approach
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The Second Law of Thermodynamics

Clausius inequality for an (isothermal) transformation from state A to state B

Q

T
≤ ∆S

If we use {
Q = ∆E − W (First Law)

F
def
= E − ST

the Second Law becomes
W ≥ ∆F

where the equality holds for reversible processes.

Moving from thermodynamics to statistical mechanics, we know that actually

⟨W ⟩f ≥ ∆F = FB − FA

for a given ”forward” process f from A to B
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The CPN−1 model with a defect

Improved action

S
(r)
L = −2NβL

∑
x,µ

{
k
(n)
µ (x)c1ℜ

[
Ūµ(x)z̄(x + µ̂)z(x)

]
+ k

(n)
µ (x + µ̂)k

(n)
µ (x)c2ℜ

[
Ūµ(x + µ̂)Ūµ(x)z̄(x + 2µ̂)z(x)

]}
with z(x) a vector of N complex numbers with z̄(x)z(x) = 1 and Uµ(x) ∈ U(1)

c1 = 4/3 and c2 = −1/12 are Symanzik-improvement coefficients

The k
(n)
µ (x) regulate the boundary conditions along a given defect D

k
(n)
µ (x) ≡

{
c(n) x ∈ D ∧ µ = 0 ;

1 otherwise.

at a given step n of the out-of-equilibrium evolution protocol c(n)
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Topological susceptibility for various protocols for N = 21, βL = 0.7, V = 1142 (roughly similar numerical effort)

Note that with OBC → τint(χ) ∼ 50
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Black band is from parallel tempering [Bonanno et al.; 2019] → with × ∼ 100 numerical cost
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