Flow-based approaches for lattice gauge theory: scaling properties of a non-equilibrium approach

Alessandro Nada

Università degli Studi di Torino and INFN, Sezione di Torino

2nd LatticeNET workshop on challenges in Lattice field theory

Benasque, 30th March - 5th April 2025

Critical slowing down

(Thermalized) Markov Chain: elegant and scalable numerical solution to generate U according to p(U)

 $\underbrace{U^{(0)} \xrightarrow{P_{p}} U^{(1)} \xrightarrow{P_{p}} \dots \xrightarrow{P_{p}} \underbrace{U^{(t)} \xrightarrow{P_{p}} U^{(t+1)} \xrightarrow{P_{p}} \dots \rightarrow U^{(t+n)}}_{\text{thermalization}}$

Critical slowing down

(Thermalized) Markov Chain: elegant and scalable numerical solution to generate U according to p(U)

$$\underbrace{U^{(0)} \stackrel{P_p}{\rightarrow} U^{(1)} \stackrel{P_p}{\rightarrow} \dots \stackrel{P_p}{\rightarrow} \underbrace{U^{(t)} \stackrel{P_p}{\rightarrow} U^{(t+1)} \stackrel{P_p}{\rightarrow} \dots \rightarrow U^{(t+n)}}_{\text{thermalization}}$$

Configurations sampled sequentially are autocorrelated

$$\cdots \rightarrow U^{(t)} \rightarrow U^{(t+1)} \rightarrow \cdots \rightarrow U^{(t+n)}$$

Autocorrelation measured by $\tau_{int}(\mathcal{O})$

 \rightarrow effective independent configurations = $n/2\tau_{\rm int}(\mathcal{O})$

Critical slowing down

(Thermalized) Markov Chain: elegant and scalable numerical solution to generate U according to p(U)

$$\underbrace{\mathcal{U}^{(0)} \xrightarrow{\mathcal{P}_p} \mathcal{U}^{(1)} \xrightarrow{\mathcal{P}_p} \dots \xrightarrow{\mathcal{P}_p}}_{\text{thermalization}} \underbrace{\mathcal{U}^{(t)} \xrightarrow{\mathcal{P}_p} \mathcal{U}^{(t+1)} \xrightarrow{\mathcal{P}_p} \dots \rightarrow \mathcal{U}^{(t+n)}}_{\text{equilibrium}}$$

Configurations sampled sequentially are autocorrelated

$$\cdots
ightarrow U^{(t)}
ightarrow U^{(t+1)}
ightarrow \cdots
ightarrow U^{(t+n)}$$

Autocorrelation measured by $\tau_{int}(\mathcal{O})$

 \rightarrow effective independent configurations = $n/2\tau_{\rm int}(\mathcal{O})$

Critical slowing down

When a critical point is approached τ_{int} diverges

E.g. in the continuum limit $a \rightarrow 0$

$$au_{
m int}(\mathcal{O}) \sim a^{-z}$$

where z depends on the algorithm and on the observable under study

Alessandro Nada (UniTo)

What if every new configuration is sampled independently from the previous one by construction?

Flow-based approach

find an exact mapping between some well-behaving distribution q_0 and the target p

 \rightarrow promising approach to fight critical slowing down?

What if every new configuration is sampled independently from the previous one by construction?

Flow-based approach

find an exact mapping between some well-behaving distribution q_0 and the target p

 \rightarrow promising approach to fight critical slowing down?

It works if (a bit roughly):

- the map can be constructed with reasonable computational effort
- the map itself is not too expensive to sample from

Original approach [Lüscher; 0907.5491]: take standard path integral

$$\langle O
angle = rac{1}{Z} \int \mathcal{D}\phi \; \mathcal{O}(\phi) \; e^{-S(\phi)}$$

and perform an invertible field transformation $\tilde{\phi}=\mathcal{F}^{-1}(\phi)$

$$\langle {\cal O}
angle = rac{1}{Z} \int {\cal D} ilde{\phi} \; {\cal O}({\cal F}(ilde{\phi})) \; e^{-S({\cal F}(ilde{\phi})) + \log \det J({\cal F}(ilde{\phi}))}$$

 ${\mathcal F}$ is a true trivializing map if

$$\mathcal{S}(\mathcal{F}(ilde{\phi})) - \mathsf{log}\,\mathsf{det}\,J(\mathcal{F}(ilde{\phi})) = \mathsf{const}$$

Original approach [Lüscher; 0907.5491]: take standard path integral

$$\langle O
angle = rac{1}{Z} \int \mathcal{D} \phi \; \mathcal{O}(\phi) \; e^{-S(\phi)}$$

and perform an invertible field transformation $\widetilde{\phi} = \mathcal{F}^{-1}(\phi)$

$$\langle {\cal O}
angle = rac{1}{Z} \int {\cal D} ilde{\phi} \; {\cal O}({\cal F}(ilde{\phi})) \; {
m e}^{-S({\cal F}(ilde{\phi})) + \log \det J({\cal F}(ilde{\phi}))}$$

 ${\mathcal F}$ is a true trivializing map if

$$S(\mathcal{F}(ilde{\phi})) - \mathsf{log}\,\mathsf{det}\,J(\mathcal{F}(ilde{\phi})) = \mathsf{const}$$

- trivializing map can be constructed with a flow equation
- > approximate maps built expressing the action in the flow equation as a power series in the flow time and truncated
- however: no big improvement in the scaling of the computational cost [Engel and Schaefer; 1102.1852]

Normalizing flows: the basics

A normalizing flow is an invertible mapping f_{θ} constructed as

$$\phi = f_{\theta}(z) = (f_N \circ \cdots \circ f_1)(z) \qquad z \sim q_0$$

and the transformed variable follows the distribution

$$q(\phi)=q_0(f_ heta^{-1}(\phi))\left|\det J_ heta
ight|^{-1}$$

Note that in the notation of trivializing maps $\mathcal{F}^{-1} = f_{ heta}$

Normalizing flows: the basics

A normalizing flow is an invertible mapping f_{θ} constructed as

$$\phi = f_{\theta}(z) = (f_N \circ \cdots \circ f_1)(z) \qquad z \sim q_0$$

and the transformed variable follows the distribution

$$q(\phi)=q_0(f_{ heta}^{-1}(\phi))\left|\det J_{ heta}
ight|^{-1}$$

Note that in the notation of trivializing maps $\mathcal{F}^{-1} = f_{ heta}$

Inserting it in the path integral [Albergo, Kanwar, Shanahan; 1904.12072] we get

reweighting-like formula

$$\langle \mathcal{O} \rangle = \frac{1}{Z} \int \mathcal{D}\phi \underbrace{q(\phi)}_{\text{sample}} \underbrace{\frac{\tilde{w}}{e^{-S(\phi)}}}_{\text{measure}} \mathcal{O}(\phi) = \frac{\langle \mathcal{O}(\phi)\tilde{w}(\phi) \rangle_{\phi \sim q}}{\langle \tilde{w}(\phi) \rangle_{\phi \sim q}}$$

independent Metropolis-Hastings

$$\langle \mathcal{O} \rangle = \frac{1}{Z} \int \mathcal{D}\phi \underbrace{q(\phi)}_{\text{sample}+\text{MH}} \underbrace{\frac{e^{-S(\phi)}}{q(\phi)}}_{\text{measure}} \underbrace{\mathcal{O}(\phi)}_{\text{measure}}$$

Normalizing flows: the basics

A normalizing flow is an invertible mapping f_{θ} constructed as

$$\phi = f_{\theta}(z) = (f_N \circ \cdots \circ f_1)(z) \qquad z \sim q_0$$

and the transformed variable follows the distribution

$$q(\phi)=q_0(f_{ heta}^{-1}(\phi))\left|\det J_{ heta}
ight|^{-1}$$

Note that in the notation of trivializing maps $\mathcal{F}^{-1} = f_{ heta}$

Inserting it in the path integral [Albergo, Kanwar, Shanahan; 1904.12072] we get

reweighting-like formula

$$\langle \mathcal{O} \rangle = \frac{1}{Z} \int \mathcal{D}\phi \underbrace{q(\phi)}_{\text{sample}} \underbrace{\underbrace{\frac{\tilde{w}}{e^{-S(\phi)}}}_{\text{measure}} \mathcal{O}(\phi)}_{\text{measure}} = \frac{\langle \mathcal{O}(\phi)\tilde{w}(\phi) \rangle_{\phi \sim q}}{\langle \tilde{w}(\phi) \rangle_{\phi \sim q}}$$

The partition function is directly accessible! [Nicoli et al.; 2007.07115]

$$Z = \langle \tilde{w}(\phi) \rangle_{\phi \sim q}$$

independent Metropolis-Hastings

$$\langle \mathcal{O} \rangle = \frac{1}{Z} \int \mathcal{D}\phi \underbrace{q(\phi)}_{\text{sample+MH}} \underbrace{\frac{e^{-S(\phi)}}{q(\phi)}}_{\text{measure}} \underbrace{\mathcal{O}(\phi)}_{\text{measure}}$$

or the ratio Z/Z_0 if you don't know q_0

/4/2025 5/33

Coupling layers

NFs organized as combination of discrete transformations with suitable masking \rightarrow invertibility and triangular Jacobian

$$f_{n}: \begin{cases} \phi_{\text{frozen}}^{n+1} = \phi_{\text{frozen}}^{n} \\ \phi_{\text{active}}^{n+1} = e^{-s(\phi_{\text{frozen}}^{n})} \phi_{\text{active}}^{n} + t(\phi_{\text{frozen}}^{n}) \end{cases}$$

Coupling layers

NFs organized as combination of discrete transformations with suitable masking \rightarrow invertibility and triangular Jacobian

$$f_n: \begin{cases} \phi_{\text{frozen}}^{n+1} = \phi_{\text{frozen}}^n \\ \phi_{\text{active}}^{n+1} = e^{-s(\phi_{\text{frozen}}^n)} \phi_{\text{active}}^n + t(\phi_{\text{frozen}}^n) \end{cases}$$

s and t are the output of neural networks

Coupling layers

NFs organized as combination of discrete transformations with suitable masking \rightarrow invertibility and triangular Jacobian

$$f_n: \begin{cases} \phi_{\text{frozen}}^{n+1} = \phi_{\text{frozen}}^n \\ \phi_{\text{active}}^{n+1} = e^{-s(\phi_{\text{frozen}}^n)} \phi_{\text{active}}^n + t(\phi_{\text{frozen}}^n) \end{cases}$$

s and t are the output of neural networks

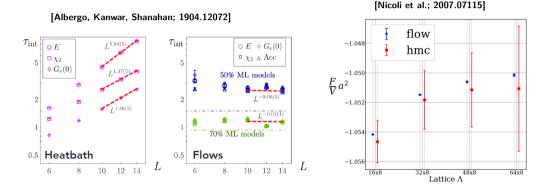
Training

Parameters "trained" with a minimization procedure of a "loss", usually taken to be the Kullback-Leibler divergence

$$ilde{D}_{ ext{KL}}(\pmb{q}\|\pmb{p}) = \int \mathcal{D}\phi \, \pmb{q}(\phi) \log rac{\pmb{q}(\phi)}{\pmb{p}(\phi)} = -\langle \log ilde{\pmb{v}}
angle_{\phi \sim \pmb{q}} + \log Z$$

It is a self-learning procedure, no data from target required

Natural toy model: ϕ^4 scalar field theory in 2 dimensions



but also [Del Debbio et al.; 2105.12481] [Caselle, Cellini, AN; 2201.08862] [Gerdes et al.; 2207.00283] [Albandea et al.; 2302.08408] $+ \dots$

Normalizing flows for lattice gauge theory

Incorporating the symmetries in the flow crucial for an efficient training

Construct equivariant flows:

$$f_{\theta}(t \cdot \phi) = t \cdot f_{\theta}(\phi)$$

Normalizing flows for lattice gauge theory

Incorporating the symmetries in the flow crucial for an efficient training

Construct equivariant flows:

$$f_{\theta}(t \cdot \phi) = t \cdot f_{\theta}(\phi)$$

What about gauge theories?

Normalizing flows for lattice gauge theory

Incorporating the symmetries in the flow crucial for an efficient training

Construct equivariant flows:

$$f_{ heta}(t \cdot \phi) = t \cdot f_{ heta}(\phi)$$

What about gauge theories?

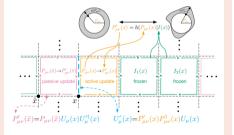
Gauge-equivariant flows

Some architectures developed in the last few years:

loop-level flow: coupling layers act on (eigenvalues of) untraced loops [Kanwar et al.; 2003.06413] [Boyda et al.; 2008.05456]

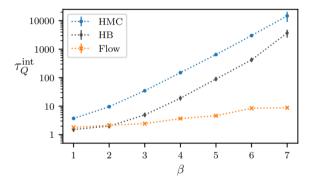
 $P'_{\mu\nu}(x) = h(P_{\mu\nu}(x)|I(x)) \qquad \qquad U'_{\mu}(x) = P'_{\mu\nu}(x)P^{\dagger}_{\mu\nu}(x)U_{\mu}(x)$

- link-level flow (more on that later in the talk)
- also Continuous NFs (next slide)



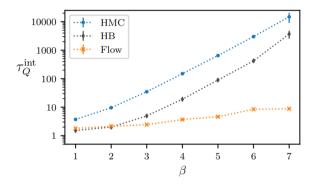
The path until now - 2

U(1) gauge theory in 2d [Kanwar et al.; 2003.06413]



The path until now - 2

U(1) gauge theory in 2d [Kanwar et al.; 2003.06413]



SU(N) in 2 dimensions [Boyda et al.; 2008.05456] [Bacchio et al.; 2212.08469] [Gerdes et al.; 2410.13161] but also fermionic theories [Albergo et al.; 2106.05934]

Schwinger model [Finkenrath et al.; 2201.02216] [Albergo et al.; 2202.11712]

SU(N) with fermions in 2 dimensions [Abbott et al.; 2207.08945] [Abbott et al.; 2211.07541]

Alessandro Nada (UniTo)

Wilson flow approach

[Bacchio et al.; 2212.08469]

no discrete NF, learn the ODE instead

 $\dot{U}_t = Z_t(U_t)U_t$

with Z_t given by the force of

 $ilde{S}(U_t,t) = \sum c_i(t) \mathcal{W}_i(U_t)$

Wilson flow approach

[Bacchio et al.; 2212.08469]

no discrete NF, learn the ODE instead

 $\dot{U}_t = Z_t(U_t)U_t$

with Z_t given by the force of

 $ilde{S}(U_t,t) = \sum c_i(t) \mathcal{W}_i(U_t)$

Machine-learn the c_i coefficients!

Very few parameters, efficient in 2d SU(3) gauge theory

related work: Continuous NFs [Gerdes et al.; 2207.00283], [Caselle et al.; 2307.01107], [Gerdes et al.; 2410.13161]

FlowHMC

[Albandea et al.; 2302.08408]

very close to the original algorithm by Lüscher

$$\langle O
angle = rac{1}{Z} \int \mathcal{D} ilde{\phi} \; \mathcal{O}(f_{ heta}^{-1}(ilde{\phi})) \; \underbrace{e^{-S(f_{ heta}^{-1}(ilde{\phi})) + \log \det J(f_{ heta}^{-1}(ilde{\phi}))}}_{ ext{sample}}$$

ightarrow first run an HMC using $S(f_{ heta}^{-1}(ilde{\phi})) - \log \det J(f_{ heta}^{-1}(ilde{\phi}))$

 \rightarrow then flow back to the target distribution using f_{θ}

No MH step is needed + decorrelation obtained (in scalar field theory) even with little overlap with target distribution

However sampling is expensive with deep networks

 ϕ^4 scalar field theory in 2 dimensions: [Albergo, Kanwar, Shanahan; 1904.12072] [Nicoli et al.; 2007.07115] [Del Debbio et al.; 2105.12481] [Caselle, Cellini, AN; 2201.08862] [Gerdes et al.; 2207.00283] [Albandea et al.; 2302.08408]

U(1) in 2 dimensions: [Kanwar et al.; 2003.06413] [Singha et al.; 2306.00581]

SU(N) in 2 dimensions [Boyda et al.; 2008.05456] [Bacchio et al.; 2212.08469] [Gerdes et al.; 2410.13161]

fermionic theories [Albergo et al.; 2106.05934]

Schwinger model [Finkenrath et al.; 2201.02216] [Albergo et al.; 2202.11712] and SU(N) gauge theories with fermions in 2 dimensions [Abbott et al.; 2207.08945]

first attempts in 4d [Abbott et al.; 2305.02402] with interesting applications [Abbott et al.; 2401.10874]

 ϕ^4 scalar field theory in 2 dimensions: [Albergo, Kanwar, Shanahan; 1904.12072] [Nicoli et al.; 2007.07115] [Del Debbio et al.; 2105.12481] [Caselle, Cellini, AN; 2201.08862] [Gerdes et al.; 2207.00283] [Albandea et al.; 2302.08408]

U(1) in 2 dimensions: [Kanwar et al.; 2003.06413] [Singha et al.; 2306.00581]

SU(N) in 2 dimensions [Boyda et al.; 2008.05456] [Bacchio et al.; 2212.08469] [Gerdes et al.; 2410.13161]

fermionic theories [Albergo et al.; 2106.05934]

Schwinger model [Finkenrath et al.; 2201.02216] [Albergo et al.; 2202.11712] and SU(N) gauge theories with fermions in 2 dimensions [Abbott et al.; 2207.08945]

first attempts in 4d [Abbott et al.; 2305.02402] with interesting applications [Abbott et al.; 2401.10874]

Very efficient samplers in lower-dimensional theories!

How do flow-based samplers scale when the d.o.f. of the system are increased? (i.e., in the continuum limit)

How do flow-based samplers scale when the d.o.f. of the system are increased? (i.e., in the continuum limit)

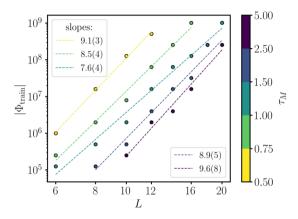
We require two features:

- improved scaling of the sampling with respect to MCMC
- good scaling of the training phase

How do flow-based samplers scale when the d.o.f. of the system are increased? (i.e., in the continuum limit)

We require two features:

- improved scaling of the sampling with respect to MCMC
- good scaling of the training phase

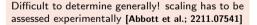


Early work: worrying scaling of training cost for fixed models image from [Del Debbio et al.; 2105.12481]

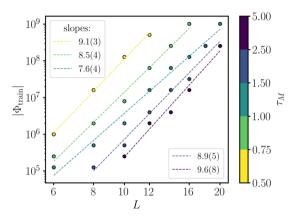
How do flow-based samplers scale when the d.o.f. of the system are increased? (i.e., in the continuum limit)

We require two features:

- improved scaling of the sampling with respect to MCMC
- good scaling of the training phase



see also multiscale NFs [Abbott et al.; 2404.10819]



Early work: worrying scaling of training cost for fixed models image from [Del Debbio et al.; 2105.12481]

The rest of this talk: same framework, different approach

As training can be very expensive, can we use a flow-based sampler that requires none + has a clear scaling?

The rest of this talk: same framework, different approach

As training can be very expensive, can we use a flow-based sampler that requires none + has a clear scaling?

Non-equilibrium MCMC

Works like a flow, but purely stochastic

- No training required
- Clear scaling with d.o.f.

The rest of this talk: same framework, different approach

As training can be very expensive, can we use a flow-based sampler that requires none + has a clear scaling?

Non-equilibrium MCMC

Works like a flow, but purely stochastic

- No training required
- Clear scaling with d.o.f.

Stochastic Normalizing Flow Systematic improvement of NE-MCMC with ML

- Some training required
- Same scaling with d.o.f.

Non-equilibrium Monte Carlo

Out-of-equilibrium evolutions

sampling each consecutive step from a sequence of distributions

$$q_0 \simeq e^{-S_{c(0)}} \rightarrow e^{-S_{c(1)}} \rightarrow \cdots \rightarrow p \simeq e^{-S_{c(n_{step})}}$$

Out-of-equilibrium evolutions

sampling each consecutive step from a sequence of distributions

$$q_0 \simeq e^{-S_{c(0)}} \rightarrow e^{-S_{c(1)}} \rightarrow \cdots \rightarrow p \simeq e^{-S_{c(n_{step})}}$$

start at equilibrium from the prior distribution $q_0 = e^{-S_{c(0)}}/Z_0$

Out-of-equilibrium evolutions

sampling each consecutive step from a sequence of distributions

$$q_0 \simeq e^{-S_{c(0)}}
ightarrow e^{-S_{c(1)}}
ightarrow \cdots
ightarrow p \simeq e^{-S_{c(n_{ ext{step}})}}$$

start at equilibrium from the prior distribution $q_0=e^{-S_{c(0)}}/Z_0$

at each step:

- change protocol parameter $c(n-1) \rightarrow c(n)$
- MC update with transition probability $P_{c(n)}(U_n \rightarrow U_{n+1})$
- repeat n_{step} times until the target $p = e^{-S}/Z$

Out-of-equilibrium evolutions

sampling each consecutive step from a sequence of distributions

$$q_0 \simeq e^{-S_{c(0)}} \rightarrow e^{-S_{c(1)}} \rightarrow \cdots \rightarrow p \simeq e^{-S_{c(n_{step})}}$$

start at equilibrium from the prior distribution $q_0=e^{-S_{c(0)}}/Z_0$

at each step:

- change protocol parameter $c(n-1) \rightarrow c(n)$
- MC update with transition probability $P_{c(n)}(U_n \rightarrow U_{n+1})$
- repeat n_{step} times until the target $p = e^{-S}/Z$

"forward" transition probability

$$\mathcal{P}_{\mathrm{f}}[U_0,\ldots,U] = \prod_{n=1}^{n_{\mathrm{step}}} P_{c(n)}(U_{n-1} \to U_n)$$

Look at the ratio of the forward evolution and its reverse

$$\frac{q_0(U_0)\mathcal{P}_{\rm f}[U_0,\ldots,U_{n_{\rm step}}]}{\rho(U)\mathcal{P}_{\rm r}[U_{n_{\rm step}},\ldots,U_0]} = \frac{q_0(U_0)\prod_{n=1}^{n_{\rm step}}P_{c(n)}(U_{n-1}\to U_n)}{\rho(U_{n_{\rm step}})\prod_{n=1}^{n_{\rm step}}P_{c(n)}(U_n\to U_{n-1})}$$

Crooks' theorem

Look at the ratio of the forward evolution and its reverse

$$\frac{q_0(U_0)\mathcal{P}_{\rm f}[U_0,\ldots,U_{n_{\rm step}}]}{\rho(U)\mathcal{P}_{\rm r}[U_{n_{\rm step}},\ldots,U_0]} = \frac{q_0(U_0)\prod_{n=1}^{n_{\rm step}}P_{c(n)}(U_{n-1}\to U_n)}{\rho(U_{n_{\rm step}})\prod_{n=1}^{n_{\rm step}}P_{c(n)}(U_n\to U_{n-1})}$$

ightarrow Crooks' theorem for MCMC [Crooks; 1999]: if the update algorithm satisfies detailed balance

$$\frac{q_0(U_0)\mathcal{P}_{\rm f}[U_0,\ldots,U_{n_{\rm step}}]}{p(U)\mathcal{P}_{\rm r}[U_{n_{\rm step}},\ldots,U_0]} = \exp(W - \Delta F)$$

with the generalized work

$$W = \sum_{n=0}^{n_{\text{step}}-1} \left\{ S_{c(n+1)} \left[U_n \right] - S_{c(n)} \left[U_n \right] \right\}$$

and the free energy difference

$$\exp(-\Delta F) = rac{Z_{c(n_{ ext{step}})}}{Z_{c(0)}}$$

_

Integrating over all paths gives

$$\int [\mathcal{D}U_0 \dots \mathcal{D}U_{n_{\text{step}}}] q_0(U_0) \mathcal{P}_{\text{f}}[U_0, \dots, U_{n_{\text{step}}}] \exp(-(W - \Delta F)) = 1 \quad \rightarrow \quad \langle \exp(-W_d) \rangle_{\text{f}} = 1$$

with the dissipated work $W_d = W - \Delta F$

Integrating over all paths gives

$$\int [\mathcal{D}U_0 \dots \mathcal{D}U_{n_{\mathrm{step}}}] q_0(U_0) \mathcal{P}_{\mathrm{f}}[U_0, \dots, U_{n_{\mathrm{step}}}] \exp(-(W - \Delta F)) = 1 \quad \rightarrow \quad \langle \exp(-W_d) \rangle_{\mathrm{f}} = 1$$

with the dissipated work $W_d = W - \Delta F$

Formal derivation of Jarzynski's equality [Jarzynski; 1997] for MCMC

$$\langle \exp(-W) \rangle_{\mathbf{f}} = \exp(-\Delta F) = \frac{Z}{Z_0}$$

Integrating over all paths gives

$$\int [\mathcal{D}U_0 \dots \mathcal{D}U_{n_{\text{step}}}] q_0(U_0) \mathcal{P}_{\text{f}}[U_0, \dots, U_{n_{\text{step}}}] \exp(-(W - \Delta F)) = 1 \quad \rightarrow \quad \langle \exp(-W_d) \rangle_{\text{f}} = 1$$

with the dissipated work $W_d = W - \Delta F$

Formal derivation of Jarzynski's equality [Jarzynski; 1997] for MCMC

$$\langle \exp(-W) \rangle_{\mathbf{f}} = \exp(-\Delta F) = \frac{Z}{Z_0}$$

Using Jensen's inequality $\langle \exp x \rangle \ge \exp \langle x \rangle$

$$\exp(-\Delta F) = \langle \exp(-W)
angle_{
m f} \geq \exp(-\langle W
angle_{
m f})$$

we get the Second Law of Thermodynamics

$$\langle W
angle_{
m f} \geq \Delta F$$

From the properties of transition probabilities

$$\langle \mathcal{O} \rangle = \int \mathcal{D}U \mathcal{O}(U) p(U)$$

= $\int [\mathcal{D}U_0 \dots \mathcal{D}U] \mathcal{O}(U) p(U) \mathcal{P}_{\mathrm{r}}[U, \dots, U_0]$

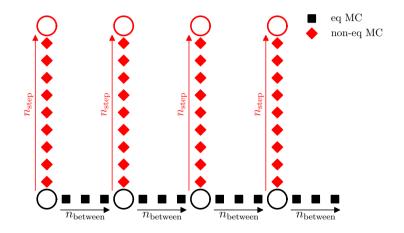
Then insert $q_0 \mathcal{P}_f$

$$\begin{split} \langle \mathcal{O} \rangle &= \int \left[\mathcal{D}U_0 \dots \mathcal{D}U \right] q_0(U_0) \, \mathcal{P}_{\mathrm{f}}[U_0, \dots, U] \, \mathcal{O}(U) \, \frac{p(U)\mathcal{P}_{\mathrm{r}}[U, \dots, U_0]}{q_0(U_0)\mathcal{P}_{\mathrm{f}}[U_0, \dots, U]} \\ &= \int \left[\mathcal{D}U_0 \dots \mathcal{D}U \right] q_0(U_0) \, \mathcal{P}_{\mathrm{f}}[U_0, \dots, U] \, \mathcal{O}(U) \, \exp(-(W - \Delta F)) \end{split}$$

NE-MCMC

This goes beyond computing free energy differences! Reweighting-like estimator to compute v.e.v.

$$\langle \mathcal{O}
angle = rac{\langle \mathcal{O} \; \exp(-W)
angle_{\mathrm{f}}}{\langle \exp(-W)
angle_{\mathrm{f}}} = \langle \mathcal{O} \; \exp(-W_d)
angle_{\mathrm{f}}$$



Computation of free energies and/or sampling problematic distributions

- ▶ Calculation of the interface free-energy in the Z_2 gauge theory [Caselle et al.; 1604.05544]
- ▶ SU(3) pure gauge equation of state in 4d from the pressure [Caselle et al.; 1801.03110]
- ▶ Renormalized coupling for SU(N) YM theories [Francesconi et al.; 2003.13734]
- ▶ Connection with Stochastic Normalizing Flows: first test for ϕ^4 scalar field theory [Caselle et al.; 2201.08862]
- Entanglement entropy [Bulgarelli and Panero; 2304.03311], also with (S)NFs [Bulgarelli et al.; 2410.14466]
- ► Topological unfreezing for CP^(N-1) model [Bonanno et al.; 2402.06561]
- Numerical simulations of Effective String Theory [Caselle et al.; 2409.15937]

Computation of free energies and/or sampling problematic distributions

- Calculation of the interface free-energy in the Z_2 gauge theory [Caselle et al.; 1604.05544]
- ▶ SU(3) pure gauge equation of state in 4d from the pressure [Caselle et al.; 1801.03110]
- Renormalized coupling for SU(N) YM theories [Francesconi et al.; 2003.13734]
- Connection with Stochastic Normalizing Flows: first test for ϕ^4 scalar field theory [Caselle et al.; 2201.08862]
- Entanglement entropy [Bulgarelli and Panero; 2304.03311], also with (S)NFs [Bulgarelli et al.; 2410.14466]
- Topological unfreezing for $CP^{(N-1)}$ model [Bonanno et al.; 2402.06561]
- Numerical simulations of Effective String Theory [Caselle et al.; 2409.15937]

Intuitively we want to be as close to equilibrium as possible!

We can measure the similarity of forward and reverse processes

$$ilde{\mathcal{D}}_{ ext{KL}}(q_0\mathcal{P}_{ ext{f}}\|p\mathcal{P}_{ ext{r}}) = \int \left[\mathcal{D}U_0\dots\mathcal{D}U
ight]q_0(U_0)\mathcal{P}_{ ext{f}}[U_0,\dots,U]\lograc{q_0(U_0)\mathcal{P}_{ ext{f}}[U_0,\dots,U]}{p(U)\mathcal{P}_{ ext{r}}[U,U_{n_{ ext{step}}-1},\dots,U_0]}$$

Intuitively we want to be as close to equilibrium as possible!

We can measure the similarity of forward and reverse processes

$$\tilde{D}_{\mathrm{KL}}(q_0\mathcal{P}_{\mathrm{f}} \| p\mathcal{P}_{\mathrm{r}}) = \int [\mathcal{D}U_0 \dots \mathcal{D}U] \, q_0(U_0) \mathcal{P}_{\mathrm{f}}[U_0, \dots, U] \log \frac{q_0(U_0)\mathcal{P}_{\mathrm{f}}[U_0, \dots, U]}{p(U)\mathcal{P}_{\mathrm{r}}[U, U_{n_{\mathrm{step}}-1}, \dots, U_0]}$$

Clear "thermodynamic" interpretation

$$\tilde{D}_{\mathrm{KL}}(q_0 \mathcal{P}_{\mathrm{f}} \| p \mathcal{P}_{\mathrm{r}}) = \langle W \rangle_{\mathrm{f}} + \log \frac{Z}{Z_0} = \underbrace{\langle W \rangle_{\mathrm{f}} - \Delta F \ge 0}_{\text{Second Law of thermodynamics}}$$

 \rightarrow measure of how reversible the process is!

For NFs we minimize $ilde{D}_{\mathrm{KL}}(q\|p)$. But interestingly

 $ilde{D}_{ ext{KL}}(q\|p) \leq ilde{D}_{ ext{KL}}(q_0\mathcal{P}_{ ext{f}}\|p\mathcal{P}_{ ext{r}})$

Effective Sample Size: defined in general as the ratio between the "theoretical" variance and the actual variance of the NE observable

$$\frac{\operatorname{Var}(\mathcal{O})_{\operatorname{NE}}}{n} = \frac{\operatorname{Var}(\mathcal{O})_{p}}{n\operatorname{ESS}}$$

but difficult to compute

We use the (customary) approximate estimator

$$\hat{\mathrm{ESS}} = \frac{\langle \exp(-W) \rangle_{\mathrm{f}}^2}{\langle \exp(-2W) \rangle_{\mathrm{f}}} = \frac{1}{\langle \exp(-2W_d) \rangle_{\mathrm{f}}}$$

Easy to understand in terms of the variance of exp(-W):

$$\operatorname{Var}(\exp(-W)) = \left(\frac{1}{\operatorname{ESS}} - 1\right) \exp(-2\Delta F) \ge 0$$

which leads to

 $0 < \mathrm{E\hat{S}S} \leq 1$

Most natural example: changing β in SU(3) pure gauge

[Bulgarelli, Cellini, AN; 2412.00200]

Prior: thermalized Markov Chain at $\beta_0 < \beta_{target}$

Protocol: linearly increase β (compress the volume)

d.o.f. involved $\sim (L/a)^4$

Sampling possible at any intermediate β

Most natural example: changing β in SU(3) pure gauge

[Bulgarelli, Cellini, AN; 2412.00200]



 $ilde{D}_{
m KL} = \langle W
angle_{
m f} - \Delta F$ decreases with increasing $\textit{n}_{
m step}$

Prior: thermalized Markov Chain at $\beta_0 < \beta_{target}$

Protocol: linearly increase β (compress the volume)

d.o.f. involved $\sim (L/a)^4$

Sampling possible at any intermediate β

Most natural example: changing β in SU(3) pure gauge

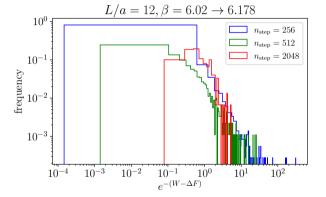
[Bulgarelli, Cellini, AN; 2412.00200]

Prior: thermalized Markov Chain at $\beta_0 < \beta_{target}$

Protocol: linearly increase β (compress the volume)

d.o.f. involved $\sim (L/a)^4$

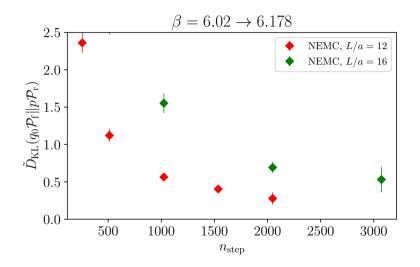
Sampling possible at any intermediate β



 $\operatorname{Var}(\exp(-W_d)) = rac{1}{\operatorname{ESS}} - 1$ decreases with increasing n_{step}

Evolutions in β : volume scaling

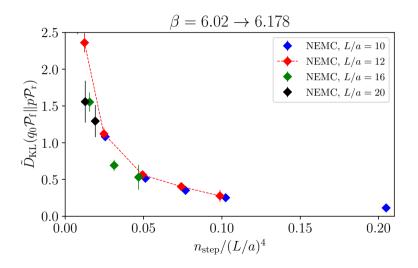
 $(1.8 {
m fm})^4
ightarrow (1.4 {
m fm})^4$ for L/a=20



Evolutions in β : volume scaling

 $(1.8 {\rm fm})^4 \to (1.4 {\rm fm})^4$ for L/a = 20

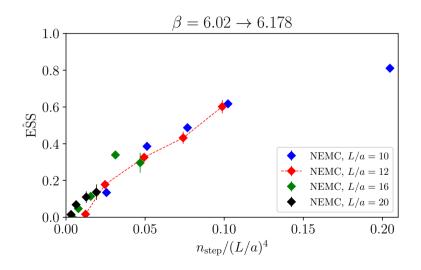
clear scaling with $n_{
m step} \sim (L/a)^4$



Evolutions in β : volume scaling

 $(1.8 {
m fm})^4
ightarrow (1.4 {
m fm})^4$ for L/a=20

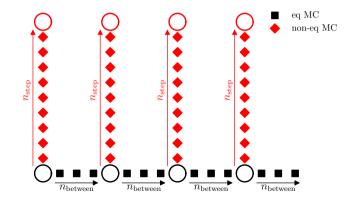
clear scaling with $n_{
m step} \sim (L/a)^4$



Stochastic Normalizing Flows

SNFs as systematic improvement of non-equilibrium evolutions

What if you introduce the same transformations used in NFs between the non-equilibrium Monte Carlo updates?

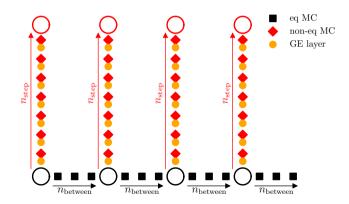


SNFs as systematic improvement of non-equilibrium evolutions

What if you introduce the same transformations used in NFs between the non-equilibrium Monte Carlo updates?

Stochastic Normalizing Flows (introduced in [Wu et al.; 2002.06707])

$$U_0 \stackrel{\underline{s_1}}{\longrightarrow} g_1(U_0) \stackrel{\underline{P_{c(1)}}}{\longrightarrow} U_1 \stackrel{\underline{g_2}}{\longrightarrow} g_2(U_1) \stackrel{\underline{P_{c(2)}}}{\longrightarrow} U_2 \stackrel{\underline{g_3}}{\longrightarrow} \dots \stackrel{P_{c(n_{\mathrm{step}})}}{\longrightarrow} U_{n_{\mathrm{step}}}$$



SNFs as systematic improvement of non-equilibrium evolutions

What if you introduce the same transformations used in NFs between the non-equilibrium Monte Carlo updates?

Stochastic Normalizing Flows (introduced in [Wu et al.; 2002.06707])

$$U_0 \xrightarrow{g_1} g_1(U_0) \xrightarrow{P_{c(1)}} U_1 \xrightarrow{g_2} g_2(U_1) \xrightarrow{P_{c(2)}} U_2 \xrightarrow{g_3} \dots \xrightarrow{P_{c(n_{step})}} U_{n_{step}}$$

The (generalized) work now is

[Caselle, Cellini, AN, Panero; 2201.08862]

$$W = \sum_{n=0}^{n_{step}-1} \underbrace{S_{c(n+1)}(g_n(U_n)) - S_{c(n)}(g_n(U_n))}_{stochastic} - \underbrace{\log |\det J_n(U_n)|}_{deterministic}$$

- \blacktriangleright use gauge-equivariant layers to effectively decrease $n_{\rm step}$
- how to do training? advantages from the architecture
- scaling with the volume?

Implementation of the coupling layers introduced in [Nagai and Tomiya; 2103.11965] and the link-level flow used in [Abbott et al.; 2305.02402]

Implementation of the coupling layers introduced in [Nagai and Tomiya; 2103.11965] and the link-level flow used in [Abbott et al.; 2305.02402]

Essentially a stout-smearing transformation [Morningstar and Peardon; 2003]

$$U'_{\mu}(x) = g_l(U_{\mu}(x)) = \exp\left(Q^{(l)}_{\mu}(x)
ight) \ U_{\mu}(x)$$

with the algebra-valued

$$Q_{\mu}^{(l)}(x) = 2 \left[\Omega_{\mu}^{(l)}(x) \right]_{\mathrm{TA}} \qquad \qquad \Omega_{\mu}^{(l)}(x) = \underbrace{C_{\mu}^{(l)}(x)}_{\mathrm{frozen active}} \underbrace{U_{\mu}^{\dagger}(x)}_{\mathrm{frozen active}} \underbrace{U_{\mu}^{\dagger}(x$$

Invertibility + easy computation of log J guaranteed by $2 \times D = 8$ masks

Implementation of the coupling layers introduced in [Nagai and Tomiya; 2103.11965] and the link-level flow used in [Abbott et al.; 2305.02402]

Essentially a stout-smearing transformation [Morningstar and Peardon; 2003]

$$U'_{\mu}(x) = g_l(U_{\mu}(x)) = \exp\left(Q^{(l)}_{\mu}(x)
ight) \ U_{\mu}(x)$$

with the algebra-valued

$$Q_{\mu}^{(l)}(x) = 2 \left[\Omega_{\mu}^{(l)}(x) \right]_{\mathrm{TA}} \qquad \qquad \Omega_{\mu}^{(l)}(x) = \underbrace{C_{\mu}^{(l)}(x)}_{\mathrm{freen active}} \underbrace{U_{\mu}^{\dagger}(x)}_{\mathrm{freen active}} \underbrace$$

Invertibility + easy computation of log J guaranteed by $2 \times D = 8$ masks

Sum of frozen staples

$$C_{\mu}^{(l)}(x) = \sum_{\nu \neq \mu} \underbrace{\rho_{\mu\nu}^{(l)}(x) S_{\mu\nu}(x)}_{\text{train staple}}$$

in this work: $ho_{\mu
u}^{(l)}(x) \longrightarrow
ho^{(l)}$, meaning 1 parameter per mask/8 parameters per layer

[Bulgarelli, Cellini, AN; 2412.00200]

Architecture: (1 gauge-equivariant CL + 1 full MC update) $\times n_{\rm step}$

Training: minimizing $\tilde{D}_{\mathrm{KL}}(q_0 \mathcal{P}_{\mathrm{f}} \| p \mathcal{P}_{\mathrm{r}}) = \langle W \rangle_{\mathrm{f}} + \mathrm{const}$

[Bulgarelli, Cellini, AN; 2412.00200]

Architecture: (1 gauge-equivariant CL + 1 full MC update) $\times n_{\rm step}$

Training: minimizing $\tilde{D}_{\mathrm{KL}}(q_0 \mathcal{P}_{\mathrm{f}} || p \mathcal{P}_{\mathrm{r}}) = \langle W \rangle_{\mathrm{f}} + \mathrm{const}$

To avoid memory issues for large n_{step} and large volumes we train each layer separately during the non-equilibrium evolution

It's a feature of SNFs

$$U_0 \xrightarrow{g_1} g_1(U_0) \xrightarrow{P_{c(1)}} U_1 \xrightarrow{g_2} g_2(U_1) \xrightarrow{P_{c(2)}} U_2 \xrightarrow{g_3} \dots \xrightarrow{P_{c(n_{step})}} U_{n_{step}}$$

Look at the loss $W = S(U_{n_{ ext{step}}}) - S_0(U_0) - Q - \log J$

$$Q + \log J = \sum_{n=0}^{n_{\text{step}}-1} S_{c(n+1)}(U_{n+1}) - S_{c(n+1)}(g_n(U_n)) + \log \det J_n(U_n)$$

the terms in the sum can be trained separately!

 \rightarrow each layer connects two neighbouring intermediate distributions

 \rightarrow reminiscent of CRAFT [Matthews at al.; 2201.13117]

 \rightarrow memory usage independent of $\mathit{n_{\rm step}}!$

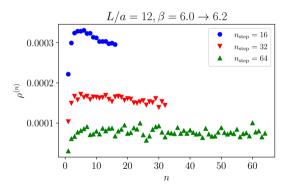
 \rightarrow bias in the gradient (no visible effect)

Transferring ρ

Short trainings: 200-1000 epochs enough to saturate

[Bulgarelli, Cellini, AN; 2412.00200]

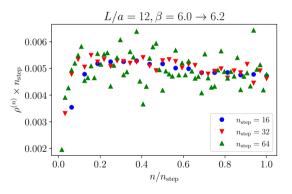
Training only with small n_{step} : clear pattern emerges



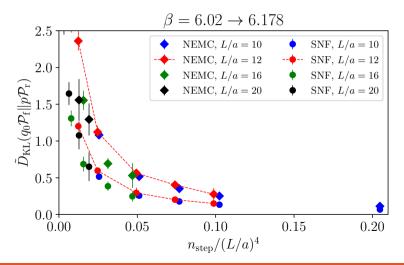
Transferring ρ

Short trainings: 200-1000 epochs enough to saturate

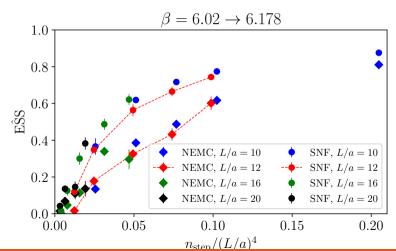
Training only with small n_{step} : clear pattern emerges



- global interpolation of ρ from trainings at n_{step} = 16, 32, 64
- ▶ $\rho^{(I)}$ extrapolated to large $n_{\text{step}} \rightarrow$ no retraining!
- Heavy use of transfer learning for each $\beta_0 \rightarrow \beta$ evolution
- Transfer learning also possible between different volumes



[Bulgarelli, Cellini, AN; 2412.00200]



 $n_{
m step} \sim V$ for fixed $ilde{D}_{
m KL}$ or ESS

Alessandro Nada (UniTo)

A strategy to mitigate topological freezing

On the lattice: topological sectors characterized by integer Q emerge for a
ightarrow 0

Transition between these sectors is strongly suppressed using standard MCMC

Topological freezing in lattice gauge theory

On the lattice: topological sectors characterized by integer Q emerge for $a \rightarrow 0$ Transition between these sectors is strongly suppressed using standard MCMC

- Strong freezing of topology at $\beta \ge 6.5$ ($r_0/a > 11$)
- ▶ $\tau_{int}(Q^2) > 10^3$ with 1 heat-bath step + 4 over-relaxation steps ($z \sim 5$)
- Open Boundary Conditions [Lüscher and Schaefer; 1105.4749] remove the sectors and mitigate the issue. But: complications due to boundary effects
- General strategy for mitigation of critical slowing down?

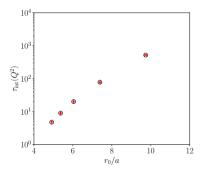


Image courtesy of C. Bonanno

Goal: sample (frozen) topological observables at β_{target} on a L^4 lattice

A non-equilibrium strategy for topological freezing in SU(3)

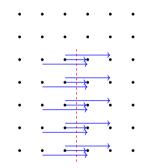
Goal: sample (frozen) topological observables at β_{target} on a L^4 lattice

NE-MCMC in the Boundary Conditions

 $\mathbf{Prior:}$ thermalized Markov Chain at β_{target} with OBC on a L^3_d defect

Protocol: switch defect BC (# d.o.f. $\sim (L_d/a)^3$) linearly until PBC

Can be combined with coupling layers acting around the defect to get a SNF



A non-equilibrium strategy for topological freezing in SU(3)

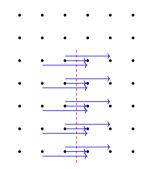
Goal: sample (frozen) topological observables at β_{target} on a L^4 lattice

NE-MCMC in the Boundary Conditions

 $\mathbf{Prior:}$ thermalized Markov Chain at β_{target} with OBC on a L^3_d defect

Protocol: switch defect BC (# d.o.f. $\sim (L_d/a)^3$) linearly until PBC

Can be combined with coupling layers acting around the defect to get a SNF



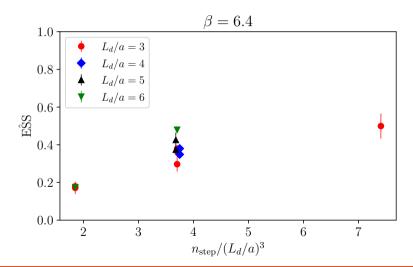
Applied to CP^{N-1} model in 2d [Bonanno, AN, Vadacchino; 2402.06561]

Promising results: $\tau_{\rm int}(Q^2) \sim 10^5$ tamed to effectively a few thousands + length of non-equilibrium evolutions scales with defect size



Switching BC in SU(3): scaling with the defect size

preliminary results

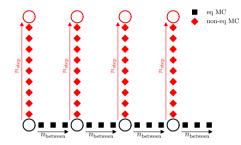


Metric for scaling

$$n_{
m ev}^{
m (eff)} imes (n_{
m step} + n_{
m between}) \simeq n_{
m ev} rac{2 au_{
m int}}{
m E \hat{S}S} imes (n_{
m step} + n_{
m between})$$

Metric for scaling

$$n_{
m ev}^{
m (eff)} imes (n_{
m step} + n_{
m between}) \simeq n_{
m ev} rac{2 au_{
m int}}{
m ESS} imes (n_{
m step} + n_{
m between})$$

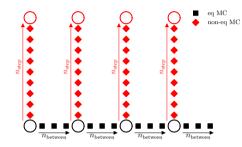


Rescale $\mathit{n}_{\rm step}$ and $\mathit{n}_{\rm between}$ to keep ${\rm E \hat{S}S}$ and $\tau_{\rm int}$ fixed for $a \rightarrow 0$

$$n_{
m step} \sim \left(rac{L_d}{a}
ight)^3 \sim a^{-3}$$
 $n_{
m between} \sim a^{-2}$
 $n_{
m ev} rac{ ext{fixed}}{ ext{2} au_{
m int}} imes (n_{
m step} + n_{
m between}) \sim a^{-3}$

Metric for scaling

$$n_{
m ev}^{
m (eff)} imes (\textit{n}_{
m step} + \textit{n}_{
m between}) \simeq n_{
m ev} rac{2 au_{
m int}}{
m ESS} imes (\textit{n}_{
m step} + \textit{n}_{
m between})$$



Rescale $n_{\rm step}$ and $n_{\rm between}$ to keep ${\rm E \hat{S}S}$ and $\tau_{\rm int}$ fixed for a $\rightarrow 0$

$$n_{
m step} \sim \left(rac{L_d}{a}
ight)^3 \sim a^{-3}$$
 $n_{
m between} \sim a^{-2}$
 $n_{
m ev} rac{ ext{fixed}}{ ext{ESS}} imes (n_{
m step} + n_{
m between}) \sim a^{-3}$

Goal of SNF: systematically improve the coefficients

 \rightarrow ongoing work on defect coupling layers

in collaboration with C. Bonanno, A. Bulgarelli, E. Cellini, D. Panfalone, D. Vadacchino, L. Verzichelli

General strategy

▶ Start from NE-MCMC \rightarrow clear scaling with the degrees of freedom

 $n_{
m step} \sim \# {
m d.o.f.}
ightarrow {
m constant} \; ilde{D}_{
m KL} \; {
m or} \; {
m ESS}$

limplement lightweight SNF on top of NE-MCMC \rightarrow improve coefficients of scaling

▶ Implement more complicated architectures → systematic improvement program

(moderate training) (harder training?)

(no training)

General strategy

▶ Start from NE-MCMC \rightarrow clear scaling with the degrees of freedom

 $n_{
m step} \sim \# {
m d.o.f.}
ightarrow {
m constant} \; ilde{D}_{
m KL} \; {
m or} \; {
m ESS}$

• Implement lightweight SNF on top of NE-MCMC \rightarrow improve coefficients of scaling

▶ Implement more complicated architectures → systematic improvement program

Open questions

What happens with less MC and more ML?

Optimal protocols: non-trivial problem, more efficient solutions likely

Same approach, but in continuous time: NETS [Albergo; 2410.02711]

(moderate training) (harder training?)

(no training)

General strategy

▶ Start from NE-MCMC \rightarrow clear scaling with the degrees of freedom

 $n_{
m step} \sim \# {
m d.o.f.}
ightarrow {
m constant} \; ilde{D}_{
m KL} \; {
m or} \; {
m ESS}$

• Implement lightweight SNF on top of NE-MCMC \rightarrow improve coefficients of scaling

▶ Implement more complicated architectures → systematic improvement program

Open questions

What happens with less MC and more ML?

Optimal protocols: non-trivial problem, more efficient solutions likely

Same approach, but in continuous time: NETS [Albergo; 2410.02711]

Characterize thermalization processes?

Completely different applications: signal-to-noise \rightarrow Guilherme's talk on Wednesday

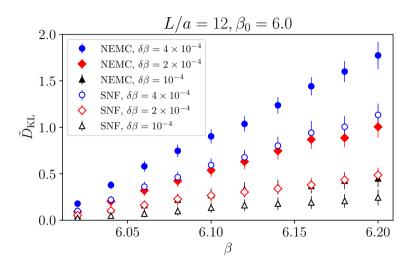
(no training)

(moderate training)

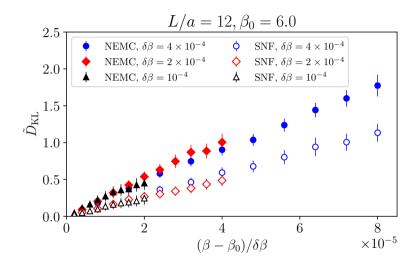
(harder training?)

Thank you for your attention!

Switching β in SU(3): scaling in $\beta - \beta_0$



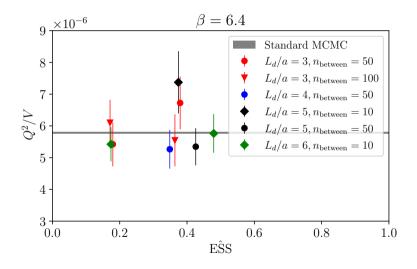
Switching β in SU(3): scaling in $\beta - \beta_0$

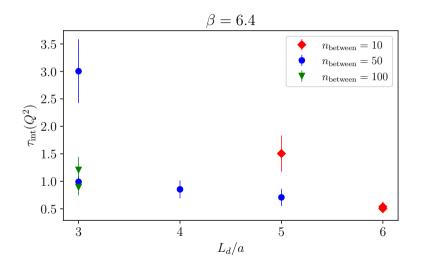


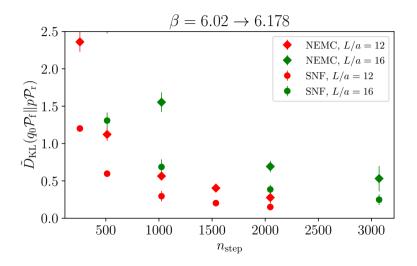
 $ightarrow \deltaeta\simeta-eta_0$ for fixed $ilde{D}_{
m KL}$ (linear protocol)

Alessandro Nada (UniTo)

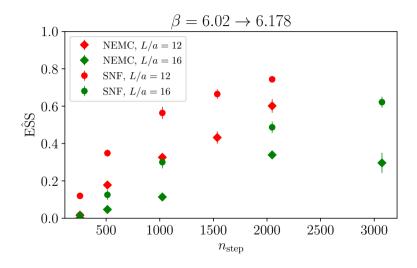
Switching BC in SU(3): topology







Improvements over purely stochastic approach



The Second Law of Thermodynamics

Clausius inequality for an (isothermal) transformation from state A to state B

$$\frac{Q}{T} \leq \Delta S$$

If we use

$$\begin{cases} Q = \Delta E - W & (First Law) \\ F \stackrel{\text{def}}{=} E - ST \end{cases}$$

the Second Law becomes

 $W \ge \Delta F$

where the equality holds for reversible processes.

Moving from thermodynamics to statistical mechanics, we know that actually

$$\langle W \rangle_f \geq \Delta F = F_B - F_A$$

for a given "forward" process f from A to B

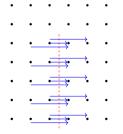
The CP^{N-1} model with a defect

Improved action

$$S_{L}^{(r)} = -2N\beta_{L}\sum_{x,\mu} \left\{ k_{\mu}^{(n)}(x)c_{1}\Re\left[\bar{U}_{\mu}(x)\bar{z}(x+\hat{\mu})z(x)\right] + k_{\mu}^{(n)}(x+\hat{\mu})k_{\mu}^{(n)}(x)c_{2}\Re\left[\bar{U}_{\mu}(x+\hat{\mu})\bar{U}_{\mu}(x)\bar{z}(x+2\hat{\mu})z(x)\right] \right\}$$

with z(x) a vector of N complex numbers with $\bar{z}(x)z(x) = 1$ and $U_{\mu}(x) \in U(1)$

 $c_1 = 4/3$ and $c_2 = -1/12$ are Symanzik-improvement coefficients

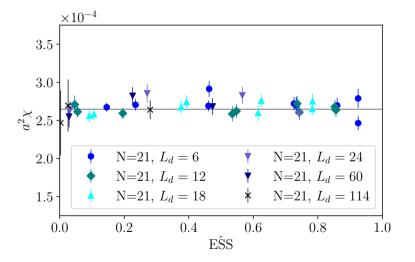


The $k_{\mu}^{(n)}(x)$ regulate the boundary conditions along a given defect D

$$k_{\mu}^{(n)}(x)\equiv egin{cases} c(n) & x\in D\wedge\mu=0\,;\ 1 & ext{otherwise}. \end{cases}$$

at a given step n of the out-of-equilibrium evolution protocol c(n)

Topological susceptibility for various protocols for N = 21, $\beta_L = 0.7$, $V = 114^2$ (roughly similar numerical effort) Note that with OBC $\rightarrow \tau_{int}(\chi) \sim 50$



Black band is from parallel tempering [Bonanno et al.; 2019] ightarrow with $imes \sim$ 100 numerical cost

Alessandro Nada (UniTo)