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Isospin symmetry breaking

Isospin symmetry is the symmetry in the exchange between the up 
and down quarks 

In QCD is an approximate symmetry: there is a small difference 
between  and   (strong isospin breaking) 

In QCD+QED the symmetry is also broken by the difference in the 
electric charges  and   (electromagnetic 
isospin breaking)
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QCD+QED on the lattice
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In an era where measurements aim to 1% precision both the 
coupling to QED and the strong isospin breaking have to be taken 
into account in QCD lattice simulations 

The coupling to QED is challenging on the lattice due to the need 
to impose boundary conditions, in the standard case of periodic 
boundary conditions in space we can look at Gauss law:

Q = ∫
L

0
dx3ρ(x) = ∫

L

0
dx3∇ ⋅ E(x) = 0

No interpolating operator can have a superposition with a charged 
state and we can’t measure masses of charged hadrons

(1)
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 boundary conditions C*

One solution comes from  boundary conditions, consisting in the 
charge conjugation of quark and gauge fields when crossing the 
boundaries of the lattice

C*

This choice preserves locality, gauge and translational invariance

/28

In this case we obtain for Gauss law:

Since the electric field changes sign under charge conjugation and 
becomes anti-periodic

Q = ∫
L

0
dx3ρ(x) = ∫

L

0
dx3∇ ⋅ E(x) ≠ 0
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In the openQxD code these boundary conditions are implemented 
through the orbifold construction 

 boundary conditions C*

From: Isabel Campos et al. “openQ*D code: a versatile tool for QCD+QED 
simulations”.In: The European Physical Journal C (Mar. 2020).

Physical lattice Mirror lattice
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With  boundary conditions there are additional contributions 
to quark propagators:

C*

⟨qA
a (x) qB

b(y)⟩ = D−1(x, y)AB
ab

⟨qA
a (x)qB,T

b (y)⟩ = − D−1(x, y + L1̂)AB
ad Cdb

⟨qA,T
a (x)qB

b(y)⟩ = CadD−1(x + L1̂, y)AB
db

(1)

(2)

(3)

 boundary conditions C*

This is the reason for the presence of additional contractions in 
baryonic two-point functions
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Baryon masses on ensembles with C* BC
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Baryon octet Baryon decuplet

Baryons are hadrons composed of three valence quarks

the   baryon has been used to set the 
scale of lattice simulations

Ω−
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Baryon masses on the lattice
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To measure baryon masses on the lattice we have to define 
interpolating operators

vm;d
Ω− (x) = ∑

abc
ABC

Wd;m
abc ϵABCψC

c (x)ψ A
a (x)ψB

b (x)

vm;d
Ω− (x) = ∑

abc
ABC

Wd;m
abcϵ

ABCψB
b(x)ψ A

a(x)ψC
c (x)

Wd;m
abc = Pml

dc Γl
ab + Pml

db Γl
ac + Pml

da Γl
cb

Wd;m
abc = Pml

cd Γl
ab + Pml

bd Γl
ac + Pml

ad Γl
cb

Pml = [δmlId4×4 −
1
3

γmγl]

Γl = Cγl

Where

(1)

(2)
(3)
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Baryon masses on the lattice

Constructing the two-point correlation function at zero 
momentum and measuring its exponential decay at large time 
separation we can obtain the mass of the interpolated state

CΩ−(x0) = ∑
dd′￼

m

∑x
P+

dd′￼
vm;d

Ω− (x)vm;d′￼

Ω− (0)

Where: P+ =
1 + γ0

2

(1)

(2)

Due to  boundary conditions the two point function has 
contributions from two kind of diagrams: 3-quark connected and 
1-quark connected

C*
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CΩ−(x0) = ∑
d′￼d
m

∑
αbc

α′￼b′￼c′￼

∑x ∑
ABC

A′￼B′￼C′￼

[Wd′￼;m
a′￼b′￼c′￼

P+
dd′￼

Wd;m
abc ϵABCϵA′￼B′￼C′￼ψ A

a (x)ψ A′￼

a′￼
(0)

3-quark connected contributions
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ψB
b (x)ψB′￼

b′￼
(0)ψC

c (x)ψC′￼

c′￼
(0)]

(1)

The two space-time points are connected by three quark 
propagators, we obtain these contributions also in the standard 
case of periodic boundary conditions in space

All the inversions are performed using point sources

/28
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Baryon effective masses for the 
ensemble A360a50b324+RW2 for          
4 point sources with the selected 
plateaux and the fits to a constant. 

From L. Bushnaq et al. “First results on QCD+QED with C* boundary conditions”. In Journal of 
high energy physics (Mar. 2023) 

3-quark connected contributions

/28

https://link.springer.com/article/10.1007/JHEP03(2023)012
https://link.springer.com/article/10.1007/JHEP03(2023)012
https://link.springer.com/article/10.1007/JHEP03(2023)012


13

Baryon effective masses for the 
ensemble A380a07b324+RW1 for          8 
8 point sources with the selected 
plateaux and the fits to a constant. 

From L. Bushnaq et al. “First results on QCD+QED with C* boundary conditions”. In Journal of 
high energy physics (Mar. 2023) 

3-quark connected contributions

/28

https://link.springer.com/article/10.1007/JHEP03(2023)012
https://link.springer.com/article/10.1007/JHEP03(2023)012
https://link.springer.com/article/10.1007/JHEP03(2023)012
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3-quark connected contributions

Relative error on baryon 
effective masses for 40 
configurations spaced 50 of 
the ensemble 
A380a07b324+RW1 as a 
function of the number of 
point sources with a fit to 

 at fixed t
a
NsrcWe start to approach the gauge noise 

for 90 sources
/28
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3-quark connected contributions

Motivated by the previous plots we decided to increase the number of 
point sources used in the measurements up to 100 or 150  

Project in new HLRN allocation, where we were granted 89.46 
Mcore-h 

Distribute between three ensembles: 2 QCD and 1 QCD+QED

/28



16

3-quark connected contributions: preliminary 

First results for B400a00b324  

QDC ensemble                                   
large volume: 80x48x48x48          
1000 configurations                              
10 point sources

/28

 MeVMoctet = 1170(10)

 MeVMdecuplet = 1460(20)

Only two non degenerate masses 
because at the SU(3) symmetric 
point



CΩ−(x0) = − ∑
d′￼d
m

∑
αbc

α′￼b′￼c′￼

∑x ∑
ABC

A′￼B′￼C′￼

[Wd′￼;m
a′￼b′￼c′￼

P+
dd′￼

Wd;m
abc ϵA′￼B′￼C′￼ϵABCψ A′￼

a′￼
(0)ψB′￼

b′￼
(0)

ψC
c (x)ψC′￼

c′￼
(0) ψB

b (x)ψ A
a (x)]

(1)
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1-quark connected contributions

1-quark connected contributions are a finite-volume effect due to 
 boundary conditions, obtained when we consider quark-quark 

and antiquark-antiquark propagators. 

The two space-time points are connected by 1 quark propagator only

C*

/28
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1-quark connected contributions

CΩ−(x0) = − ∑
d′￼d
m

∑
αabc

α′￼a′￼b′￼c′￼

∑x ∑
ABC

A′￼B′￼C′￼

[Wd′￼;m
a′￼b′￼c′￼

P+
dd′￼

Wd;m
abc ϵABCϵA′￼B′￼C′￼

(1)

Ca′￼α′￼
D−1(L1̂,0)A′￼B′￼

α′￼b′￼
D−1(x,0)CC′￼

cc′￼
D−1(x, x + L1̂)BA

bα Cαa]
The result is obtained with a combination of   point sources  and 
stochastic sources  inversions 

/28
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1-quark connected contributions

Point sources

η(z)(Aα)
Vv = δVAδvαδ0,z ξ(z)(B′￼b′￼)

A′￼α′￼
= D−1(z; z′￼)A′￼V

α′￼v η(z′￼)(B′￼b′￼)
Vv

Stochastic sources

1
Ns ∑

n

χ(x)(n)†A
a χ(y)(n)B

b = δABδabδxy

Using the identity:

1
Ns ∑

n

[D−1χ(n)]B
b(x) χ†(n)(x + L1̂)A

αD−1(x; x + L1̂)BA
bα =

/28

(1)

(2)

(3)
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1-quark connected contributions

C(x0) = − ∑
abc

a′￼b′￼c′￼

∑x ∑
ABC

A′￼B′￼C′￼

[Ta′￼b′￼c′￼,abcϵABCϵA′￼B′￼C′￼ξ(L1̂)(B′￼b′￼)
A′￼a′￼

ξ(x)(C′￼c′￼)
Cc

Ta′￼b′￼c′￼,abc = ∑
d′￼dα′￼α

m

Wd′￼;m
α′￼b′￼c′￼

P+
dd′￼

Wd;m
αbc Cα′￼a′￼

Caα
Defining: 

1
Ns ∑

n
[D−1χ(n)](x)B

b χ†(n)(x + L1̂)A
a]

/28

(1)

(2)

= − ∑
abc

a′￼b′￼c′￼

∑x ∑
ABC

A′￼B′￼C′￼

[Ta′￼b′￼c′￼,abc ΨΩ−(x0)abc,a′￼b′￼c′￼]
Computed in the codeProjection in analysis

(3)
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1-quark connected contributions:  
check programs

It is possible to test the results of the measurements checking that 
they present the correct properties, we are considering: 

1. Gauge invariance 

2. Tree level result 

3. Translational invariance

/28



We can prove these transformation rules by applying the 
transformation to the two-point function and seeing that all the 
transformations cancel 
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Check invariance under a random gauge transformation  

Apply the gauge transformation to sources and gauge fields:

G(x)

U(x) → UG(x)
D−1(U, x, y) → D−1(UG, x, y) = G(x)D−1(U, x, y)G†(y)
χ(x) → G(x)χ(x) = χG(x)
η(y)(z) → G(z)η(y)(z)G†(y) = Id3×3δyz = η(y)(z)

Gauge fields

Dirac operator

Stochastic source

Point source

(1)

(3)

(4)

(2)

1-quark connected contributions:  
check of  gauge invariance

/28
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The check consists in comparing the result with and without 
applying the gauge transformation up to machine precision 

ΨΩ−(x0)abc,a′￼b′￼c′￼
[U, χ, η] = ΨΩ−(x0)abc,a′￼b′￼c′￼

[UG, χG, η]?

1-quark connected contributions:  
check of gauge invariance

The code passes this check 

/28

(1)
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This check consists in performing the measurements for free 
fermions (trivial gauge fields), in this case the Dirac operator is 
trivial in colour indices: 

1-quark connected contributions:  
check of tree level result

∑
ABC

A′￼B′￼C′￼

ϵABCϵA′￼B′￼C′￼δABδCC′￼δA′￼B′￼ = 0

/28

(1)D−1(x, y)AB
ab = D−1(x, y)abδAB

And the tree level result is zero by construction: 

(2)



We can then perform the measurements with trivial gauge fields and 
compare with the expected result 
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The code passes this check 

1-quark connected contributions:  
check of tree level result

/28

ΨΩ−(x0)abc,a′￼b′￼c′￼
[IdSU(3)×U(1), χ, η] = 0?

(1)
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1-quark connected contributions:  
check of translational invariance

This check relies on the property of the Dirac operator under a 
translation of the gauge fields:

D−1(U; x, y) → D−1(U(S); x, y) = D−1(U; x + S, y + S)

We can use the identity for the Dirac operator:

D−1(U(S); x − S, y − S) = D−1(U; x, y)

/28

(1)U(x) → U(x + S) = U(S)(x)

(3)

(2)
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1-quark connected contributions:  
check of translational invariance

ΨΩ−(x0)abc,a′￼b′￼c′￼
[U, χ, η] = ΨΩ−(x0)abc,a′￼b′￼c′￼

[U(S), χ(−S), η(−S)]
?

Not finalized yet 

/28

Computed using 
 D−1(U(S); x − S, y − S)

The check consists in comparing the result with and without 
applying the translation up to machine precision 

(1)
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Future plans

1. 3-quark connected: 

Finalize the measurements for the three ensembles, using 
all configurations and increasing the number of sources in steps 
of 10 up to 100/150, while checking the behaviour of the error 

2.  1-quark connected:  

End the testing process via translational invariance  

Start running the code on small statistics for A400a00b324 
ensemble and compare the size of the two kinds of 
contributions 

/28



⟨qA
a (x)qB,T

b (y)⟩ = ⟨qA
a (x) C[qB,T

b (y + L1̂)] ⟩ (2)

= − ⟨qA
a (x) qB

d(y + L1̂)] Cdb⟩

= − D−1(x, y + L1̂)AB
ad Cdb

Back up slides: proof of fermion propagators

⟨qA
a (x)qB,T

b (y)⟩ = − D−1(x, y + L1̂)AB
ad Cdb (1)



Back-up slides: 3-quark connected contributions

Project in new HLRN allocation, where we were granted 89.46 
Mcore-h 

Distributed between two QCD ensembles, cheaper since only 2 baryon 
masses are non degenerate, and where we can extend the measurements 
with the Rome123 method to include the coupling to QED: 

1. B400a00b324: a QCD ensemble with a volume of  , 
larger with respect to previous measurements, 1000 configurations 
and 100 sources 

2.  A400a00b324: another QCD ensemble the same pion mass and 
volume ,  also useful  for finite-volume effects evaluation, 
2000 configurations and 150 sources

80 × 96 × 482

642 × 322



Back-up slides: 3-quark connected contributions

A QCD+QED ensemble, more expensive since we have 5 non degenerate 
masses for our ensemble with  

 A418a02b324  with a value of , not used in previous 
measurements, 2000 configurations and 100 sources

md = ms

αB = 0.02



Back-up slides: 3-quark connected contributions

Some details of the ensembles and measurements: 

• O(a) improved Wilson fermions with one  term for QCD gauge 
fields and one for QED gauge fields 

•  fm for all the ensembles considered 

• Scale setting using the CLS determination of  fm 

• Wilson flow gauge smearing 

• Gaussian fermion smearing

SW

a ≃ 0.05

8t0 = 0.415



Using the property:

ΨΩ−(x0)abc,a′￼b′￼c′￼
=

∑ ∑
x

ϵABCϵA′￼B′￼C′￼G†(0)A′￼I′￼G†(0)F′￼B′￼G†(0)H′￼C′￼G(x)AHG(x)BLG(x)CI

D−1(U, L1̂,0)I′￼F′￼D−1(U, x,0)IH′￼D−1(U, x, v)LF χ(v)F χ†(x + L1̂)H

HLIDF
A′￼B′￼C′￼D′￼E′￼F′￼H′￼I′￼

ϵA′￼B′￼C′￼G†(0)A′￼I′￼G†(0)F′￼B′￼G†(0)H′￼C′￼ = ϵI′￼F′￼H′￼det[G] = ϵI′￼F′￼H′￼

ϵABCG(x)AHG(x)BLG(x)CI = ϵHLI det[G] = ϵHLI

We obtain the same result as without performing the gauge 
transformation

(1)

(2)

Back-up slides:  
check of gauge invariance



Same strategy but considering only the part involving stochastic 
sources

Θ(n)(x)C = ∑
ABD

ϵABC D−1(x, v)BD χ(n)(v)D [χ†(n)(x + L1̂)]
A

C

Θ(G,n)(x)C = ∑
ABD
EFM

ϵABC G(x)AMG(x)BED−1(x, v)BF χ(n)(v)F χ†(n)(x + L1̂)M

(1)

(2)

Using again     ϵABCG(x)AHG(x)BLG(x)CI = ϵHLI

Θ(G,n)(x)C = G*(x)DΘ(n)(x)D

We get:

(3)

(4)

Back-up slides: check of gauge invariance of 
stochastic inversions 



The check consists in testing that the gauge transformed result 
follows the expected transformation rule

G*(x)DΘ(n)(x)D[U, χ] = Θ(n)(x)C[UG, χG]?

Back-up slides: check of gauge invariance of 
stochastic inversions 

The code passes this check 


