

Isospin-breaking corrections to weak decays Current status and future prospects

Matteo Di Carlo

3rd April 2025

Funded by the European Union

Second LatticeNET workshop on challenges in Lattice field theory

Motivations

Indirect searches of new physics > high precision > isospin-breaking corrections

HVP muon g-2

Inclusive τ decays

(semi)leptonic decays

CP violation parameters

Flavour physics

Flavour physics offers opportunities to test the Standard Model and probe new physics effects

$$V_{\rm CKM} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix}$$
 In the Standard Model:
3 mixing angles + 1 CPV phase

$$|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 = 1$$

Matrix elements can be extracted e.g. from leptonic and semileptonic decays of hadrons

in the Ctondard Madel

The Cabibbo anomaly

$$\begin{aligned} \frac{|V_{us}|}{|V_{ud}|} & \frac{f_{K^{\pm}}}{f_{\pi^{\pm}}} = 0.27599(41) \end{aligned} & \text{M.Moulson, PoS CKM2016 (20)} \\ \frac{|V_{ud}|}{|V_{us}|} & \frac{f_{K^{\pm}}}{|f_{+}^{K^{0}\pi^{-}}(0)|} = 0.21654(41) \end{aligned}$$

Different **tensions** in the V_{us} - V_{ud} plane:

$$|V_u|_{\mathcal{O}}^2 - 1 = 2.8\sigma$$
$$|V_u|^2 - 1 = 3.1\sigma \qquad |V_u|^2 - 1 = 1.7\sigma$$

Experimental and **theoretical** control of these quantities is of crucial importance to solve the issue

Lattice QCD inputs

 $f_{K^{\pm}}/f_{\pi^{\pm}} = 1.1934\,(19)$

LAGS f_K/f_{π} and $f_+^{K\pi}(0)$ determined from lattice Averaging Group Group Group f_K/f_{π} and $f_+^{K\pi}(0)$ determined from lattice Averaging Group f_K/f_{π} and $f_+^{K\pi}(0)$ determined from lattice Averaging Group f_K/f_{π} and $f_+^{K\pi}(0)$ determined from lattice Averaging Group f_K/f_{π} and $f_+^{K\pi}(0)$ determined from lattice $f_+^{K\pi}(0)$ determined fro

QED and isospin-breaking effects

Current level of precision requires the inclusion of isospin-breaking corrections due to

strong effects $[m_u - m_d]_{QCD} \neq 0$ electromagnetic effects $\alpha \neq 0$

$$\frac{\Gamma(K \to \ell \nu_{\ell})}{\Gamma(\pi \to \ell \nu_{\ell})} \propto \frac{|V_{us}|^2}{|V_{ud}|^2} \left(\frac{f_K}{f_{\pi}}\right)^2 \left(1 + \delta R_{K\pi}\right)$$

- results currently quoted in the PDG come from χPT V.Cirigliano & H.Neufeld, PLB 700 (2011)
- fully non-perturbative (structure dependent) quantities
- first-principle lattice calculations are possible!

- $\sim \mathcal{O}(1\%)$

$$\Gamma(K \to \pi \ell \nu_{\ell}) \propto |V_{us}|^2 |f_+^{K\pi}(0)|^2 \mathcal{I}_{K\pi}^{\ell} \left(1 + \delta R_{K\pi}^{\ell}\right)$$

Lattice QCD + QED

Computing QED corrections on a finite-sized lattice is challenging:

- long-range interactions don't like finite volumes with periodic boundary conditions
- finite-volume effects can be sizeable and power-like M.Hayakawa & S.Uno, PTP 120 (2008) / Z.Davoudi & M.Savage, PRD 90 (2014) / S.Borsanyi et al., Science 347 (2015)
- logarithmic infrared divergences arise in virtual/real decay rates V.Lubicz et al., PRD **95** (2017)

There are also recent proposals to compute radiative corrections as convolutions of hadronic correlators with **infinite-volume** QED kernels

N.Asmussen et al., [1609.08454] / T.Blum et al., PRD 96 (2017) / X.Feng & L.Jin, PRD 100 (2019) / N.Christ et al., [2304.08026] / J.Parrino et al., [2501.03192]

Charged states in a finite box

$$Q = \int_{\text{p.b.c.}} d^3 \mathbf{x} \ j_0(t, \mathbf{x}) = \int_{\text{p.b.c.}} d^3 \mathbf{x} \ \boldsymbol{\nabla} \cdot \boldsymbol{E}(t, \mathbf{x}) = 0$$

Possible solutions currently employed:

 $\Omega_3 = 2\pi \mathbb{Z}^3 / L$

remove spatial zero-mode of the photon field

M.Hayakawa & S.Uno, PTP 120 (2008)

QED_{C*} $\Omega_3 = 2\pi \mathbb{Z}^3 / L \quad \Omega'_3 = (2 \mathbb{Z}^3 + \bar{\mathbf{n}}) \pi / L$

employ C* boundary conditions

A.S.Kronfeld & U.-J.Wiese, NPB **357** (1991) B.Lucini et al., JHEP **02** (2016)

Gauss law: only zero net charge is allowed in a finite volume with periodic boundary conditions

 $\Omega_4 = \mathbb{R}^4$

infinite-volume reconstruction

X.Feng & L.Jin, PRD 100 (2019) N.Christ et al., [2304.08026]

M.G.Endres et al., [1507.08916]

QEDr regularization Special case of "IR-improvement"

shell of radius $|\mathbf{p}| = \frac{2\pi}{L} |\mathbf{r}| \quad (\mathbf{r} \in \mathbb{Z}^3)$

QED_L:
$$D_L^{\mu\nu}(k_0, \mathbf{k}) = \delta^{\mu\nu} \frac{1 - \delta_{\mathbf{k}, \mathbf{0}}}{k_0^2 + \mathbf{k}^2} \implies$$

Z.Davoudi et al., PRD **99** (2019) MDC, PoS LATTICE2023 (2024) [2401.07666] MDC et al., [2501.07936]

The spatial zero mode is not removed but redistributed over the neighbouring modes on a

QED_r:
$$D_{\mathbf{p}}^{\mu\nu}(k_0, \mathbf{k}) = \delta^{\mu\nu} \frac{1 - \delta_{\mathbf{k}, \mathbf{0}}}{k_0^2 + \mathbf{k}^2} + \frac{\delta_{\mathbf{k}^2, \mathbf{p}^2}}{n(\mathbf{p}^2)} \frac{\delta^{\mu\nu}}{k_0^2 + \mathbf{p}^2}$$

Weak decays — some recent works

N.Carrasco et al., PRD 91 (2015) V.Lubicz et al., PRD 95 (2017) N.Tantalo et al., [1612.00199v2] D.Giusti et al., PRL 120 (2018) MDC et al., PRD 100 (2019) MDC et al., PRD 105 (2022) P.Boyle, MDC et al., JHEP 02 (2023) N.Christ et al., [2304.08026]

R.Frezzotti et al., [2402.03262]

D.Giusti et al., [2302.01298]

G.M.de Divitiis et al., [1908.10160] C.Kane et al., [1907.00279 & 2110.13196] R.Frezzotti et al., PRD 103 (2021) A.Desiderio et al., PRD 102 (2021) R.Frezzotti et al., [2306.05904]

```
C.Sachrajda et al., [1910.07342]
N.Christ et al., PRD 108 (2023)
N.Christ et al., [2402.08915]
```


G.Gagliardi et al., Phys. Rev. D 105 (2022) R.Frezzotti et al., [2306.07228]

R.Abbott et al., PRD 102 (2020) Z.Bai et al., PRL 115 (2015) N.Christ et al., PRD 106 (2022) N.Christ & X.Feng, EPJ Web Conf. 175 (2018) Y.Cai & Z.Davoudi, [1812.11015]

Leptonic decays of hadrons

Leptonic decays of hadrons

Leptonic decays of pseudoscalar mesons

Can be studied in an effective Fermi theory with the W-boson integrated out and the local interaction described by

$$\mathcal{H}_{\text{eff}} = \frac{G_F}{\sqrt{2}} V_{q_1 q_2}^* \left[\bar{q}_2 \,\gamma_\mu (1 - \gamma_5) \,q_1 \right] \left[\bar{\nu}_\ell \,\gamma^\mu (1 - \gamma_5) \,q_2 \right] \left[\bar{\nu}_\ell \,\gamma^\mu (1 - \gamma$$

In the PDG convention, the tree-level decay rate takes the form

$$\Gamma_P^{\text{tree}} = \frac{G_F^2}{8\pi} m_{\ell}^2 \left(1 - \frac{m_{\ell}^2}{m_P^2} \right)^2 m_P \left[f_{P,0} \right]$$

with the non-perturbative dynamic encoded in the **decay constant**

$$\mathcal{Z}_0 \langle 0 | \bar{q}_2 \gamma_0 \gamma_5 q_1 | P, \mathbf{0} \rangle^{(0)} = i \, m_{P,0} f_{P,0}$$

 $(-\gamma_5)\ell$

- $1/a \ll m_W$

Leptonic decay rate at $\mathcal{O}(\alpha)$

- The decay constant $f_{P,0}$ becomes an ambiguous and unphysical quantity
- IR divergences appear in intermediate steps of the calculation

$$\Gamma(P_{\ell 2}) = \lim_{\Lambda_{\rm IR} \to 0} \left\{ \begin{array}{c} \mathbf{P} \\ \mathbf{P} \\ \mathbf{IR} \end{array} + \mathbf{P} \\ \mathbf{IR} \end{array} \right\}$$

$$\mathcal{H}_{\text{eff}} = \frac{G_F}{\sqrt{2}} V_{q_1 q_2}^* \left(1 + \frac{\alpha_{\text{em}}}{\pi} \ln\left(\frac{M_Z}{M_W}\right) \right) \left[\bar{q}_2 \gamma_\mu (1 - \gamma_5) q_1 \right]$$
$$O_1^{\text{W-reg}}(M_W) = Z^{\text{W-S}}\left(\frac{M_W}{\mu}, \alpha_s(\mu), \alpha_{\text{em}}\right) O_1^{\text{S}}(\mu)$$

F. Bloch & A. Nordsieck, PR 52 (1937) 54

• UV divergences: need to include QED corrections to the renormalization of the weak Hamiltonian

 $egin{aligned} & O_1^{ ext{W-reg}}(M_W) \ & \left[\, ar{q}_2 \, \gamma_\mu (1 - \gamma_5) \, q_1 \,
ight] \, \left[\, ar{
u}_\ell \, \gamma^\mu (1 - \gamma_5) \, \ell \,
ight] \end{aligned}$

A.Sirlin, NPB 196 (1982) E.Braaten & C.S.Li, PRD **42** (1990)

perturbative @ 2 loops in QCD+QED

non-perturbative in lattice QCD+QED

MDC et al., PRD 100 (2019)

Leptonic decay rate at $\mathcal{O}(\alpha)$ The RM123+Soton approach

F. Bloch & A. Nordsieck, PR **52** (1937)

N. Carrasco et al., PRD **91** (2015)

D. Giusti et al., PRL 120 (2018)

MDC et al., PRD 100 (2019)

P.Boyle, MDC et al., JHEP **02** (2023)

Leptonic decay rate at $\mathcal{O}(\alpha)$ The RM123+Soton approach

F. Bloch & A. Nordsieck, PR **52** (1937)

- N. Carrasco et al., PRD **91** (2015)
 - D. Giusti et al., PRL 120 (2018)
 - MDC et al., PRD 100 (2019)
- P.Boyle, MDC et al., JHEP **02** (2023)

Leptonic decay rate at $\mathcal{O}(\alpha)$ The RM123+Soton approach

F. Bloch & A. Nordsieck, PR **52** (1937)

- N. Carrasco et al., PRD **91** (2015)
 - D. Giusti et al., PRL 120 (2018)
 - MDC et al., PRD 100 (2019)
- P.Boyle, MDC et al., JHEP **02** (2023)

D. Giusti et al., [2302.01298] R.Frezzotti et al., [2306.05904]

Leptonic decay rate at $\mathcal{O}(\alpha)$ Virtual decay rate

$$\Gamma(P_{\ell 2}) = \frac{\Gamma_P^{\text{tree}}}{P} (1 + \delta R_P) \quad \triangleright \quad \Gamma_P^{\text{tree}} = \frac{G_F^2}{8\pi} m_\ell^2 \left(1 - \frac{m_\ell^2}{m_P^2} \right)^2 m_P [f_{P,0}]^2 \quad \triangleright \quad \delta R_P = 2 \left(\frac{\delta \mathcal{A}_P}{\mathcal{A}_{P,0}} - \frac{\delta m_P}{m_{P,0}} + \frac{\delta \mathcal{Z}}{\mathcal{Z}_0} \right)^2$$

$$PDG \text{ convention}$$

- δm_P correction to the meson mass
- δZ correction to the renormalization of the weak operator O_W

$$\frac{\Gamma(K_{\ell 2})}{\Gamma(\pi_{\ell 2})} \rightarrow \delta R_{K\pi} = 2\left(\frac{\delta \mathcal{A}_K}{\mathcal{A}_{K,0}} - \frac{\delta m_K}{m_{K,0}}\right) - 2\left(\frac{\delta \mathcal{A}_\pi}{\mathcal{A}_{\pi,0}} - \frac{\delta m_\pi}{m_{\pi,0}}\right)$$

• $\delta \mathcal{A}_{P}$ from the correction to the (bare) matrix element $\mathcal{M}_{P}^{rs}(\mathbf{p}_{\ell}) = \langle \ell^{+}, r, \mathbf{p}_{\ell}; \nu_{\ell}, s, \mathbf{p}_{\nu} | O_{W} | P^{+}, \mathbf{0} \rangle$

MDC et al., PRD 100 (2019)

IB corrections to the decay amplitude Correlation functions in RM123 approach

Current calculations have been performed in the electro-quenched approximation (sea quarks electrically neutral). Work in progress to compute the remaining diagrams by different collaborations.

G.M.de Divitiis et al. [RM123], PRD 87 (2013)

IB corrections to the decay amplitude Correlation functions in RM123 approach

MDC et al., PRD 100 (2019)

G.M.de Divitiis et al. [RM123], PRD 87 (2013)

P.Boyle, MDC et al., JHEP 02 (2023)

IB corrections to the decay amplitude Correlation functions in RM123 approach

MDC et al., PRD 100 (2019)

G.M.de Divitiis et al. [RM123], PRD 87 (2013)

P.Boyle, MDC et al., JHEP 02 (2023)

Results for $\delta R_{K\pi}$

• $\delta R_{K\pi} = -0.0086 \, (13)(39)_{\text{vol.}}$

V.Cirigliano et al., PLB 700 (2011) MDC et al., PRD 100 (2019) P.Boyle, MDC et al., JHEP **02** (2023)

$$\frac{\Gamma(K \to \ell \nu_{\ell})}{\Gamma(\pi \to \ell \nu_{\ell})} \propto \frac{|V_{us}|^2}{|V_{ud}|^2} \left(\frac{f_K}{f_{\pi}}\right)^2 \left(1 + \delta R_{K\pi}\right)$$

- Good evidence that $\delta R_{K\pi}$ can be computed from first principles non-perturbatively on the lattice!
- **RBC-UKQCD error** dominated by a large systematic uncertainty related to finite-volume effects (!) Work in progress to improve the result.
- Errors on $|V_{\mu s}| / |V_{\mu d}|$ from theoretical inputs could become comparable with those from experiments

Charmed QCD decay constants

 $f_{D_s}/f_D = 1.1783(0.0016)$

Charmed QCD decay constants

1. Cottingham formula:

$$m_{P} = m_{P}^{(0)} + \frac{\mathrm{i}\,e^{2}}{4m_{P}} \int \frac{\mathrm{d}^{4}k}{(2\pi)^{4}} \frac{T_{\mu\nu}(k_{0},\mathbf{k})g^{\mu\nu}}{k_{0}^{2} - \mathbf{k}^{2} + \mathrm{i}\epsilon}$$
$$T_{\mu}^{\ \mu}(k_{0},\mathbf{k}) = \mathrm{i}\int \mathrm{d}^{4}x \,\mathrm{e}^{\mathrm{i}kx} \,\langle P(\mathbf{0})|\mathrm{T}\left\{J_{\mu}(x)J^{\mu}(0)\right\}|P(\mathbf{0})\rangle_{\mathrm{c}}$$

using the notation of B.Lucini et al., JHEP 1602 (2016)

using the notation of B.Lucini et al., JHEP 1602 (2016)

$$+ \frac{\mathrm{i}\,e^2}{4m_P} \int \frac{\mathrm{d}^4k}{(2\pi)^4} \frac{T_{\mu\nu}(k_0,\mathbf{k})g^{\mu\nu}}{k_0^2 - \mathbf{k}^2 + \mathrm{i}\epsilon}$$
$$= \mathrm{i}\int \mathrm{d}^4x \,\mathrm{e}^{\mathrm{i}kx} \left\langle P(\mathbf{0}) | \mathrm{T}\left\{ J_{\mu}(x)J^{\mu}(0) \right\} | P(\mathbf{0}) \right\rangle_{\mathrm{c}}$$

using the notation of B.Lucini et al., JHEP 1602 (2016)

$$+ \frac{\mathrm{i}\,e^2}{4m_P} \int \frac{\mathrm{d}^4 k}{(2\pi)^4} \frac{T_{\mu\nu}(k_0,\mathbf{k})g^{\mu\nu}}{k_0^2 - \mathbf{k}^2 + \mathrm{i}\epsilon}$$
$$= \mathrm{i} \int \mathrm{d}^4 x \,\mathrm{e}^{\mathrm{i}kx} \left\langle P(\mathbf{0}) | \mathrm{T} \left\{ J_{\mu}(x) J^{\mu}(0) \right\} | P(\mathbf{0}) \right\rangle_{\mathrm{c}}$$

3.
$$\Delta m_P(L) = m_P(L) - m_P(\infty) = \frac{e^2}{4m_P} \left[\frac{1}{L^3} \sum_{\mathbf{k} \in \Pi_{\theta}} -\int \frac{\mathrm{d}^3 \mathbf{k}}{(2\pi)^3} \right] \frac{M_{\mu}{}^{\mu}(-|\mathbf{k}|, \mathbf{k})}{|\mathbf{k}|}$$
$$M_{\mu}{}^{\mu}(-|\mathbf{k}|, \mathbf{k}) = \frac{Z_{1\mathrm{P}}(0)}{|\mathbf{k}|} + \mathcal{M}(|\mathbf{k}|)$$

3.
$$\Delta m_P(L) = m_P(L) - m_P(\infty) = \frac{e^2}{4m_P} \left[\frac{1}{L^3} \sum_{\mathbf{k} \in \Pi_{\theta}} -\int \frac{d^3 \mathbf{k}}{(2\pi)^3} \right] \frac{M_{\mu}{}^{\mu}(-|\mathbf{k}|, \mathbf{k})}{|\mathbf{k}|}$$
$$M_{\mu}{}^{\mu}(-|\mathbf{k}|, \mathbf{k}) = \frac{Z_{1P}(0)}{|\mathbf{k}|} + \mathcal{M}(|\mathbf{k}|) \qquad \mathbf{k} = \frac{2\pi}{L} \mathbf{n}$$
$$\Delta m_P(L) = \frac{e^2}{4m_P} \left[c_2(\theta) \frac{Z_{1P}(0)}{4\pi^2 L} + c_1(\theta) \frac{\mathcal{M}(0)}{2\pi L^2} + c_0(\theta) \frac{\mathcal{M}'(0)}{L^3} + \sum_{\ell=0}^{\infty} \frac{(2\pi)^{\ell+1}}{L^{4+\ell}} \frac{c_{-1-\ell}(\theta)}{(\ell+2)!} \mathcal{M}^{(\ell+2)}(0) \right]$$
$$c_s(\theta) = \left(\sum_{\mathbf{n} \in \Omega_{\theta}} -\int d^3 \mathbf{n} \right) \frac{1}{|\mathbf{n}|^s}$$

universal terms fixed by Ward identities

es structure + multi-particle dependence

S

22

$$\Delta m_P(L) = \frac{e^2}{4m_P} \left[c_2(\theta) \frac{Z_{1P}(0)}{4\pi^2 L} + c_1(\theta) \frac{\mathcal{M}(0)}{2\pi L^2} + c_0(\theta) \frac{\mathcal{M}'(0)}{L^3} + \sum_{\ell=0}^{\infty} \frac{(2\pi)^{\ell+1}}{L^{4+\ell}} \frac{c_{-1-\ell}(\theta)}{(\ell+2)!} \mathcal{M}^{(\ell+2)}(0) \right]$$

However... this series is potentially divergent and should rather be interpreted as an asymptotic series!

In QED_L or QED_c, the series can be rewritten as

$$\Delta m_P(\mathbf{L}) = \frac{e^2}{4m_P} \left[c_2(\theta) \, \frac{Z_{1P}(0)}{4\pi^2 \mathbf{L}} + c_0(\theta) \, \frac{\mathcal{M}'(0)}{\mathbf{L}^3} + \frac{1}{\mathbf{L}^2} \, \sum_{\ell=0}^{\infty} \, b_\ell \, \frac{1}{(m_P \mathbf{L})^{2\ell}} \right]$$

with $|b_{\ell}| \propto |(2\ell)! \, \bar{c}_{2+2\ell}(\theta) \, a_{\ell}|$

and
$$T_{\mu}^{\mu}(|\boldsymbol{k}|,\boldsymbol{k}) = \sum_{\ell=0}^{\infty} \boldsymbol{a}_{\ell} \left(|\boldsymbol{k}|/m_{P}\right)^{2\ell}$$

23

QED finite-volume effects

Asymptotic series: an instructive example

$$\operatorname{Ei}(z) = \int_{-\infty}^{z} \frac{e^{t}}{t} dt = \frac{e^{z}}{z} \left[1 + \frac{1}{z} + \frac{2}{z^{2}} + \frac{6}{z^{3}} + \dots \right]$$

However, when truncated it can give a good approximation of $\operatorname{Ei}(z)e^{-z}z$:

$$\delta_z(n) = \left| \operatorname{Ei}(z) e^{-z} z - \sum_{\ell=0}^n \frac{\ell!}{z^\ell} \right|$$

There exist an **optimal truncation**:

$$n^{\star} \sim |z|$$
$$\delta_z(n^{\star}) \leq \sqrt{2\pi} |z|^{-1/2} e^{-|z|}$$

QED finite-volume effects

Asymptotic series: an instructive example

$$\operatorname{Ei}(z) = \int_{-\infty}^{z} \frac{e^{t}}{t} dt = \frac{e^{z}}{z} \left[1 + \frac{1}{z} + \frac{2}{z^{2}} + \frac{6}{z^{3}} + \dots \right]$$

However, when truncated it can give a good approximation of $\operatorname{Ei}(z)e^{-z}z$:

$$\delta_z(n) = \left| \operatorname{Ei}(z) e^{-z} z - \sum_{\ell=0}^n \frac{\ell!}{z^\ell} \right|$$

There exist an **optimal truncation**:

$$n^{\star} \sim |z|$$
$$\delta_z(n^{\star}) \leq \sqrt{2\pi} |z|^{-1/2} e^{-|z|}$$

$$\frac{1}{L^2} \sum_{\ell=0}^{\infty} \frac{b_{\ell}}{(m_P L)^{2\ell}}$$

$$|b_{\ell}| \propto |(2\ell)! \,\overline{c}_{2+2\ell}(\theta) \,a_{\ell}| \qquad n^{\star} \stackrel{?}{\sim} (m_P L)/2$$

Possible scenarios:

... is there an **optimal truncation** here?

Ongoing study in QEDL, QEDc & QEDr

26

QED finite-volume effects Leptonic decays

Finite-volume calculation more tricky due to appearance of infrared divergences & dependence on external lepton momentum p_ℓ

$$\Gamma_P = \mathcal{K}_P f_P^2 (1 + e^2 \,\delta R_P^{\text{virt}} + e^2 \,\delta R_P^{\text{real}})$$

$$Y(L) = \lim_{\varepsilon \to 0} Y_{\varepsilon}(L) \equiv \lim_{\varepsilon \to 0} \left\{ Y_{\varepsilon}(\infty) + \Delta Y_{\varepsilon}(\infty) \right\}$$

 $= \lim_{\varepsilon \to 0} \left\{ Y_{\varepsilon}(\infty) + \Delta Y_{\varepsilon}(L) \right\} = Y^{\text{SD}}(\infty) + \lim_{\varepsilon \to 0} \left\{ Y_{\varepsilon}^{\text{uni}}(\infty) + \Delta Y_{\varepsilon}(L) \right\}$ target of our lattice calculation \checkmark

finite-volume effects $\begin{cases} \text{ point-like decay rate with massive photon } \\ \Delta Y(L) \end{cases}$ sum-integral differences at finite photon mass

V. Lubicz et al., PRD **95** (2017)

$$\delta R_P^{\rm virt}(L) = \frac{Y(L)}{8\pi^2}$$

27

QED finite-volume effects Leptonic decays

$$\Delta Y(L) = \frac{3}{4} + 4 \log\left(\frac{m_{\ell}}{m_{W}}\right) + 2 \log\left(\frac{m_{W}L}{4\pi}\right) - 2A_{1}(\mathbf{v}_{\ell}) \left[\log\frac{m_{P}L}{2\pi} + \log\frac{m_{\ell}L}{4\pi} - 1\right] + \frac{c_{3} - 2(c_{3}(\mathbf{v}_{\ell}) - B_{1}(\mathbf{v}_{\ell}))}{2\pi} - \frac{1}{m_{P}L} \left[\frac{(1 + r_{\ell}^{2})^{2}c_{2} - 4r_{\ell}^{2}c_{2}(\mathbf{v}_{\ell})}{1 - r_{\ell}^{4}}\right] + \frac{1}{(m_{P}L)^{2}} \left[-\frac{F_{A}(\mathbf{0})}{f_{P}}\frac{4\pi m_{P}[(1 + r_{\ell})^{2}c_{1} - 4r_{\ell}^{2}c_{1}(\mathbf{v}_{\ell})]}{1 - r_{\ell}^{4}} + \frac{8\pi[(1 + r_{\ell}^{2})c_{1} - 2c_{1}(\mathbf{v}_{\ell})]}{(1 - r_{\ell}^{4})}\right] r_{\ell} = m_{\ell}/m_{P} + \frac{1}{(m_{P}L)^{3}} \left[\frac{32\pi^{2}c_{0}\left(2 + r_{\ell}^{2}\right)}{(1 + r_{\ell}^{2})^{3}} + c_{0}C_{\ell}^{(1)} + c_{0}(\mathbf{v}_{\ell})C_{\ell}^{(2)}\right] C_{\ell}^{(2)} = \frac{32\pi^{2}}{f_{P}m_{P}^{2}(1 - r_{\ell}^{4})} \left[F_{V} - F_{A}^{-} + 2r_{\ell}^{2}\frac{\partial F_{A}^{-}}{\partial x_{\gamma}}\right]$$

with new finite-volume coefficients $c_s(\mathbf{v}_s)$

V. Lubicz et al., PRD 95 (2017) MDC et al., PRD 105 (2022) N. Tantalo et al., [1612.00199v2] MDC et al., [2310.13358] MDC et al., [2501.07936]

$$\boldsymbol{\ell} = \left(\sum_{\mathbf{n}\neq\mathbf{0}} - \int \mathrm{d}^3\mathbf{n}\right) \frac{1}{|\mathbf{n}|^s \left(1 - \mathbf{v}_{\ell} \cdot \hat{\mathbf{n}}\right)}$$

Collinear divergences

|v| = 0.40

In infinite volume they appear as $\log(m_{\ell}/m_{P})$, arising from photons parallel to the lepton $\mathbf{v} \parallel \mathbf{k}$ In finite volume they also appear, but rotational symmetry breaking induces a dependence on $\hat{\mathbf{v}}$

$$|v| = 0.95$$

|v| = 0.999

 $\max \bar{c}_0(\mathbf{v}) = 9002.2317$ $\min \bar{c}_0(\mathbf{v}) = -807.4018$

29

Velocity-dependent coefficients in QEDr

MDC et al., [2501.07936]

Inclusive hadronic τ decays

Alternative determinations of $|V_{\mu s}|$ can be obtained from inclusive hadronic τ decays

- Yet another **puzzle**: lower value of $|V_{us}|_{\tau-\text{incl.}}$
- Inclusive $au o X_{us}
 u_{ au}$ result in HFLAV plot obtained using truncated OPE
- Exclusive channels give results larger than $|V_{us}|_{\tau-\text{incl.}}$ but smaller than that obtained imposing CKM unitarity

34

Inclusive hadronic τ decays Isosymmetric QCD

Recent calculation obtains inclusive decay rate using smeared spectral densities reconstructed from finite-volume Euclidean lattice correlators M.Hansen, A.Lupo & N.Tantalo, PRD 99 (2019)

$$\rho(q) = \langle \tau^- | \mathcal{H}^{us}_{w} (2\pi)^4 \delta^4 (\mathbb{P} - q) \mathcal{H}^{us}_{w} | \tau^- \rangle$$

$$\hat{\rho}_L(E,\epsilon) = \int_0^\infty \frac{\mathrm{d}\omega}{2\pi} \Delta_\epsilon(E,\omega) \,\rho_L(\omega,\mathbf{0})$$
$$= \sum_{t=1}^T g_t(E,\epsilon) \,C_L(t)$$
$$\hat{\rho}_L(m,\epsilon)$$

 $\Rightarrow \Gamma(\tau \to X_{us}\nu_{\tau}) = \lim_{\epsilon \to 0} \lim_{L \to \infty} \frac{\mu_{L}(m_{\tau}, \tau)}{2m_{\tau}}$

Result confirms $\sim 3\sigma$ tension between τ -inclusive and purely hadronic determinations ...underestimated exp. uncertainties?

A.Evangelista et al. (ETMC), PRD 108 (2023) C.Alexandrou et al. (ETMC), PRL 132 (2024)

...missing isospin-breaking effects?

35

Inclusive hadronic τ decays Isospin breaking effects

Now we can consider the rate in full **QCD+QED**

$$\Gamma(\tau \to X_{us}\nu_{\tau}) = \frac{\rho(m_{\tau}, \mathbf{0})}{2m_{\tau}} \qquad \rho(q) = \langle \tau^{-} | \mathcal{H}_{w}^{us} (2\pi)^{4} \delta^{4}(\mathbb{P} - q) \mathcal{H}_{w}^{us} | \tau^{-} \rangle$$

with $X_{\mu s}$ being inclusive in hadrons + photons:

$$\Gamma = \Gamma_{lep} + \Gamma_{fact} + \Gamma_{non-fact}$$

Building on previous works:

- current-current correlators already computed in other projects
- same \mathcal{H}_{w} as in $K_{\ell 2}$: similar non-perturbative QCD+QED renormalization

- > separately infrared finite
 - computable to all orders in $\alpha_{\rm em}$

Università di Roma Tor Vergata

Antonio Evangelista Roberto Frezzotti Lorenzo Maio Francesca Margari Nazario Tantalo

Università di Roma Tre

Francesco D'Angelo Giuseppe Gagliardi Vittorio Lubicz Francesco Sanfilippo Silvano Simula

Humboldt Universität

Eric Bäske Lukas Holan Agostino Patella

Cyprus Institute Simone Bacchio

Helmholtz-Institut Mainz Alessandro De Santis

Matteo Di Carlo

Inclusive hadronic *τ* **decays** RM123 approach

$$\Gamma = \Gamma_{\rm lep} + \frac{\Gamma_{\rm fact}}{\Gamma_{\rm fact}}$$

 $+\Gamma_{non-fact}$

$$= \frac{G_F^2 m_\tau^5}{(4\pi)^4} \int_0^\infty ds \left[\delta \mathcal{K}_{\mathrm{T}}(s)\rho_{\mathrm{T}}(s) + \delta \mathcal{K}_{\mathrm{L}}(s)\rho_{\mathrm{L}}(s)\right]$$

$$_{\mathrm{t}} = \frac{G_F^2 m_{\tau}^5}{32\pi^2} \int_0^\infty ds \left[\mathcal{K}_{\mathrm{T}}(s) \rho_{\mathrm{T}}^{\mathrm{full}}(s) + \mathcal{K}_{\mathrm{L}}(s) \rho_{\mathrm{L}}^{\mathrm{full}}(s) \right]$$

$$_{\text{n-fact}} = \frac{G_F^2 \, m_\tau^5}{64\pi^2} \, \int_0^\infty \, ds \, \mathcal{K}(s) \, \delta\rho(s)$$

37

Inclusive hadronic *τ* **decays** RM123 approach

$$\Gamma = \Gamma_{\rm lep} + \frac{\Gamma_{\rm fact}}{\Gamma_{\rm fact}} + \frac{\Gamma_{\rm non-fact}}{\Gamma_{\rm non-fact}}$$

preliminary data look promising!

$$= \frac{G_F^2 m_\tau^5}{(4\pi)^4} \int_0^\infty ds \left[\delta \mathcal{K}_{\mathrm{T}}(s)\rho_{\mathrm{T}}(s) + \delta \mathcal{K}_{\mathrm{L}}(s)\rho_{\mathrm{L}}(s)\right]$$

$$_{\rm t} = \frac{G_F^2 m_{\tau}^5}{32\pi^2} \int_0^\infty ds \left[\mathcal{K}_{\rm T}(s) \rho_{\rm T}^{\rm full}(s) + \mathcal{K}_{\rm L}(s) \rho_{\rm L}^{\rm full}(s) \right]$$

$$f_{\text{n-fact}} = \frac{G_F^2 m_\tau^5}{64\pi^2} \int_0^\infty ds \,\mathcal{K}(s) \,\delta\rho(s)$$

37

Other applications of spectral reconstruction methods

Huge theoretical and computational progress in the recent years.

Spectral reconstruction methods applied to a variety of processes: gluon plasma, scattering amplitudes, etc...

- see A.Patella's talk on Friday
- R-ratio, inclusive heavy meson decay rates, radiative leptonic decays, properties of quark-

38

Other applications of spectral reconstruction methods

Huge theoretical and computational progress in the recent years.

Spectral reconstruction methods applied to a variety of processes: gluon plasma, scattering amplitudes, etc...

Novel application: long-distance contributions to neutral D-meson mixing with Felix Erben (CERN) & Max Hansen (Edinburgh)

- see A.Patella's talk on Friday

d, s

R-ratio, inclusive heavy meson decay rates, radiative leptonic decays, properties of quark-

38

Semi-leptonic decays of hadrons

QED corrections to semileptonic decays

• Without QED corrections:

 $\sum \pi^{-} \quad \langle \pi(p_{\pi}) | \bar{s} \gamma^{\mu} u | K(p_{K}) \rangle = \mathbf{f}_{+}$

$$\frac{\mathrm{d}^2\Gamma^{(0)}}{\mathrm{d}q^2\mathrm{d}s_{\pi\ell}} = G_F^2 |V_{us}|^2 \left[a_1(q^2, s_{\pi\ell}) |\mathbf{f_+}(\mathbf{q^2})|^2 + a_2(q^2, s_{\pi\ell}) \,\mathbf{f_+}(\mathbf{q^2}) \mathbf{f_0}(\mathbf{q^2}) + a_3(q^2, s_{\pi\ell}) \,|\mathbf{f_0}(\mathbf{q^2})|^2 \right]$$

$$\left[(p_{\pi} + p_{K})^{\mu} - \frac{m_{K}^{2} - m_{\pi}^{2}}{q^{2}} q^{\mu} \right] + f_{0}(q^{2}) \frac{m_{K}^{2} - m_{\pi}^{2}}{q^{2}} q^{\mu}$$

An appropriate observable to study is the differential decay rate: $s_{\pi\ell} = (p_{\pi} + p_{\ell})^2$, $q^2 = (p_K - p_{\pi})^2$

QED corrections to semileptonic decays

• Without QED corrections:

 $\square \pi^{-} \quad \langle \pi(p_{\pi}) | \bar{s} \gamma^{\mu} u | K(p_{K}) \rangle = \mathbf{f}_{+}$

$$\frac{\mathrm{d}^2\Gamma^{(0)}}{\mathrm{d}q^2\mathrm{d}s_{\pi\ell}} = G_F^2 |V_{us}|^2 \left[a_1(q^2, s_{\pi\ell}) |\mathbf{f_+}(\mathbf{q^2})|^2 + a_2(q^2, s_{\pi\ell}) \,\mathbf{f_+}(\mathbf{q^2}) \mathbf{f_0}(\mathbf{q^2}) + a_3(q^2, s_{\pi\ell}) \,|\mathbf{f_0}(\mathbf{q^2})|^2 \right]$$

• Including QED, we can treat IR divergences using the RM123S method: C.Sachrajda et al., [1910.07342]

$$\frac{\mathrm{d}^2 \Gamma}{\mathrm{d}q^2 \mathrm{d}s_{\pi\ell}} = \lim_{\Lambda_{\mathrm{IR}} \to 0} \left[\frac{\mathrm{d}^2 \Gamma_0}{\mathrm{d}q^2 \mathrm{d}s_{\pi\ell}} - \frac{\mathrm{d}^2 \Gamma_0^{\mathrm{pt}}}{\mathrm{d}q^2 \mathrm{d}s_{\pi\ell}} \right] + \lim_{\Lambda_{\mathrm{IR}} \to 0} \left[\frac{\mathrm{d}^2 \Gamma_0^{\mathrm{pt}}}{\mathrm{d}q^2 \mathrm{d}s_{\pi\ell}} + \frac{\mathrm{d}^2 \Gamma_1}{\mathrm{d}q^2 \mathrm{d}s_{\pi\ell}} \right]$$

$$-(\boldsymbol{q^2})\left[(p_{\pi}+p_{K})^{\mu}-\frac{m_{K}^2-m_{\pi}^2}{q^2}q^{\mu}\right]+\boldsymbol{f_0(\boldsymbol{q^2})}\,\frac{m_{K}^2-m_{\pi}^2}{q^2}\,q^{\mu}$$

An appropriate observable to study is the differential decay rate: $s_{\pi\ell} = (p_{\pi} + p_{\ell})^2$, $q^2 = (p_K - p_{\pi})^2$

QED corrections to semileptonic decays

Although the RM123+Soton method could in principle be applied, additional **difficulties** arise compared to **leptonic decays**:

• integration over three-body phase-space

 problems of analytical continuation when intermediate on-shell states are lighter than external ones

$$\omega_{\pi}(\boldsymbol{p_{\pi}+k}) + \omega_{\ell}(\boldsymbol{p_{\ell}-k}) \} - \{\omega_{\pi}(\boldsymbol{p_{\pi}}) + \omega_{\ell}(\boldsymbol{p_{\ell}})\} < 0$$

A proper finite-volume formalism is still missing...
> Lellouch-Lüscher + QED?
> Spectral reconstruction techniques?

42

Conclusions and outlooks

- Current tensions in CKM unitarity require a combined effort of theory and experiments • Two lattice calculations of IB and QED corrections to light-meson leptonic decay rates
- Finite volume QED effects have to be investigated to reach high precision on $|V_{us}/V_{ud}|$
- QED_r regularisation could help removing unknown $1/L^3$ structure-dependent contributions
- + Extension of the calculation to multiple lattice spacings and volumes is crucial
- Next important step: going beyond electro-quenched approximation
- Spectral reconstruction methods paves the way to the calculation IB effects in new processes: inclusive tau decay, semileptonic decays, ... ?

43

Conclusions and outlooks An interesting future ahead

today

44

This work has received funding from the European Union's Horizon Europe research and innovation programme under the Marie Sklodowska-Curie grant agreement No 101108006

Backup slides

Removing the zero mode

The effect of quenching the zero mode will amount to

$$\frac{1}{L^3} \int^{1/a} \frac{\mathrm{d}k_0}{2\pi} \frac{1}{k_0^4} \sim \frac{a^3}{L^3}$$

-> no new UV divergences expected, but some interplay of cut-off and finite-volume effects

$$\frac{-\boldsymbol{\delta_{\mathbf{k},\mathbf{0}}}}{k^2} H^{\mu\nu}(k) L_{\mu\nu}(k)$$

$$x e^{ikx} \operatorname{T}\langle 0|j^{\mu}(x)j^{\nu}_{\mathrm{w}}(0)|P(p)\rangle \sim \frac{1}{k}$$

 $\Omega_3 = 2\pi \mathbb{Z}^3 / L$

$$\frac{-\boldsymbol{\delta_{k,0}}}{k^4}$$

47

RM123S: lattice setup

Ensemble	β	V/a^4	$N_{\rm cfg}$	$a\mu_{sea} = a\mu_{ud}$	$a\mu_{\sigma}$	$a\mu_{\delta}$	$a\mu_s$	M_{π} (MeV)	M_K (MeV)	$M_{\pi}L$
A40.40	1.90	$40^{3} \times 80$	100	0.0040	0.15	0.19	0.02363	317 (12)	576 (22)	5.7
A30.32		$32^{3} \times 64$	150	0.0030				275 (10)	568 (22)	3.9
A40.32			100	0.0040				316 (12)	578 (22)	4.5
A50.32			150	0.0050				350 (13)	586 (22)	5.0
A40.24		$24^{3} \times 48$	150	0.0040				322 (13)	582 (23)	3.5
A60.24			150	0.0060				386 (15)	599 (23)	4.2
A80.24			150	0.0080				442 (17)	618 (14)	4.8
A100.24			150	0.0100				495 (19)	639 (24)	5.3
A40.20		$20^{3} \times 48$	150	0.0040				330 (13)	586 (23)	3.0
<i>B</i> 25.32	1.95	$32^3 \times 64$	150	0.0025	0.135	0.170	0.02094	259 (9)	546 (19)	3.4
<i>B</i> 35.32			150	0.0035				302 (10)	555 (19)	4.0
<i>B</i> 55.32			150	0.0055				375 (13)	578 (20)	5.0
<i>B</i> 75.32			80	0.0075				436 (15)	599 (21)	5.8
<i>B</i> 85.24		$24^{3} \times 48$	150	0.0085				468 (16)	613 (21)	4.6
D15.48	2.10	$48^{3} \times 96$	100	0.0015	0.1200	0.1385	0.01612	223 (6)	529 (14)	3.4
D20.48			100	0.0020				256 (7)	535 (14)	3.9
D30.48			100	0.0030				312 (8)	550 (14)	4.7

a = { 0.0885(36), 0.0815(30), 0.0619(18) } fm at β = { 1.90, 1.95, 2.10 }

RBC/UKQCD: lattice setup RBC/UKQCD Collaboration, PRD 93 (2016) 074505

- Physical point Möbius domain wall fermion ensemble [$M_{\pi} = 139.15(36)$ MeV]
- $N_f = 2 + 1$ flavours
- Lattice geometry: $48^3 \times 96 (\times 24)_{L_c}$, $a^{-1} \simeq 1.730$ GeV (0.11 fm)
- Valence light quarks: zMöbius domain wall fermion action ($L_s = 10$) **Charged lepton:** free domain wall fermion action
- 60 configurations

Numerical implementation of correlators

- Correlators created using sequential propagators
- Muon momentum $\mathbf{p}_\ell \propto \{1, 1, 1\}$ fixed by energy conservation & injected via twisted boundary conditions
- Photon fields sampled from Gaussian distribution (QED_L)
 - $P(\tilde{\mathcal{A}})\mathrm{d}\tilde{\mathcal{A}}\propto\mathrm{e}$

 $(*) = \{ (A), (b) \}$

 $4^{
u}V^{
u}$

 $i {\cal A}^{\mu} V^{\mu}$

- Sources (): point (RM123S) / Coulomb gauge-fixed wall (RBC-UKQCD)
- Electromagnetic current: conserved (RM123S) / local (RBC-UKQCD)

$$-S_{\gamma}[\tilde{\mathcal{A}}] \qquad S_{\gamma}^{\text{Feyn.}}[\tilde{\mathcal{A}}] = \frac{1}{2V} \sum_{k_0, \mathbf{k} \neq \mathbf{0}} \hat{k}^2 \sum_{\mu} |\tilde{\mathcal{A}}_{\mu}(k)|^2$$
$$\downarrow \mathcal{A} = \checkmark \mathcal{A}$$

50

A general comparison of the calculations

physical masses chiral symmetry fermionic action continuum limit infinite volume limit QED prescription sea effects IB scheme

RBC/UKQCD

 physical point simulations ✓ at finite lattice spacing Domain Wall single lattice spacing single volume QEDL electro-quenching

^[a] BMW, PRL 111 (2013); BMW, PRL 117 (2016) ^[b] Gasser, Rusetsky & Scimemi, EPJC 32 (2003); RM123, PRD 87 (2013)

BMW^[a]

RM123+Soton

extrapolation needed recovered in the continuum Twisted Mass \checkmark continuum limit (3) multiple volumes \checkmark QEDL electro-quenching GRS^[b]

Defining the iso-symmetric theory RBC/UKQCD (2023): BMW scheme with $N_f = 2+1$

QCD+QED $(\hat{m}_{ud}^{\phi}, \delta \hat{m}^{\phi}, \hat{m}_{s}^{\phi} | g, \alpha^{\phi})$

 $\left(\frac{\hat{m}_{\pi^+}^2}{\hat{m}_{\Omega^-}^2}, \frac{\hat{m}_{K^+}^2}{\hat{m}_{\Omega^-}^2}\right)$

QCD $(\hat{m}_{ud}^{\text{QCD}}, \delta \hat{m}^{\text{QCD}}, \hat{m}_{s}^{\text{QCD}} | g, 0)$

 $\left(\frac{\hat{M}_{\mathrm{ud}}^2}{\hat{m}_{\Omega^-}^2}, \frac{\Delta \hat{M}_{\mathrm{uc}}^2}{\hat{m}_{\Omega^-}^2}\right)$ iso-QCD $(\hat{m}_{ud}^{(0)}, 0, \hat{m}_s^{(0)}|g, 0)$

BMW mesons: $M_{\rm ud}^2 = \frac{1}{2} \left(M_{ar{u}u}^2 + M_{ar{d}d}^2 \right) \quad M_{K\chi}^2 =$

BMW, PRL 111 (2013) BMW, PRL 117 (2016)

$$\frac{1}{2}, \frac{\hat{m}_{K^0}^2}{\hat{m}_{\Omega^-}^2} \Big)_{\sigma^{\phi}} = \left(\frac{m_{\pi^+}^2}{m_{\Omega^-}^2}, \frac{m_{K^+}^2}{m_{\Omega^-}^2}, \frac{m_{K^0}^2}{m_{\Omega^-}^2}\right)_{\text{PDG}}$$

$$\left(\frac{\hat{M}_{K\chi}^2}{\hat{m}_{\Omega^-}^2} \right)_{\boldsymbol{\sigma}^{\text{QCD}}} = \left(\frac{\hat{M}_{\text{ud}}^2}{\hat{m}_{\Omega^-}^2}, \frac{\Delta \hat{M}_{\text{ud}}^2}{\hat{m}_{\Omega^-}^2}, \frac{\hat{M}_{K\chi}^2}{\hat{m}_{\Omega^-}^2} \right)_{\boldsymbol{\sigma}^{\phi}}$$

$$\frac{\hat{M}_{K\chi}^2}{\hat{m}_{\Omega^-}^2}, \frac{\hat{M}_{K\chi}^2}{\hat{m}_{\Omega^-}^2}\right)_{\boldsymbol{\sigma}^{(0)}} = \left(\frac{\hat{M}_{ud}^2}{\hat{m}_{\Omega^-}^2}, 0, \frac{\hat{M}_{K\chi}^2}{\hat{m}_{\Omega^-}^2}\right)_{\boldsymbol{\sigma}^{\phi}}$$

$$\frac{1}{2} \left(M_{K^+}^2 + M_{K^0}^2 - M_{\pi^+}^2 \right) \quad \Delta M_{\rm ud}^2 = M_{\bar{\rm uu}}^2 - M_{\bar{\rm dd}}^2$$

52

Defining the iso-symmetric theory Gasser, Rusetsky & Scimemi, EPJC 32 (2003) RM123, PRD 87 (2013) RM123S (2019): "GRS" scheme (electroquenched) with $N_f = 2+1+1$

 $\begin{array}{l} \textbf{QCD+QED} \\ (\hat{m}_{ud}^{\phi}, \delta \hat{m}^{\phi}, \hat{m}_{s}^{\phi}, \hat{m}_{c}^{\phi} | g, \alpha^{\phi}) \end{array} \qquad \left(\frac{\hat{m}_{\pi^{0}}^{2}}{\hat{\mathcal{F}}_{\pi}^{2}}, \frac{\hat{m}_{K^{0}}^{2}}{\hat{\mathcal{F}}_{\pi}^{2}}, \frac{\hat{m}_{D_{s}}^{2}}{\hat{\mathcal{F}}_{\pi}^{2}} \right) \end{array}$

QCD $a^{\text{QCD}} = a$ $(\hat{m}_{ud}^{\text{QCD}}, \delta \hat{m}^{\text{QCD}}, \hat{m}_{s}^{\text{QCD}}, \hat{m}_{c}^{\text{QCD}} | g_0, 0)$

iso-QCD $a^{(0)} = a^{\phi}$ $(\hat{m}_{ud}^{(0)}, 0, \hat{m}_{s}^{(0)}, \hat{m}_{c}^{(0)}|g_{0}, 0)$

$$\left. -, \frac{\hat{m}_{K^+}^2 - \hat{m}_{K^0}^2}{\hat{\mathcal{F}}_{\pi}^2} \right)_{\sigma^{\phi}} = \left(\frac{\hat{m}_{\pi^0}^2}{\hat{\mathcal{F}}_{\pi}^2}, \frac{\hat{m}_{K^0}^2}{\hat{\mathcal{F}}_{\pi}^2}, \frac{\hat{m}_{D_s}^2}{\hat{\mathcal{F}}_{\pi}^2}, \frac{\hat{m}_{K^+}^2 - \hat{m}_{K^0}^2}{\hat{\mathcal{F}}_{\pi}^2} \right)_{\mathrm{F}}$$

$$a^{\phi}$$
 $m_f^{\mathrm{R}}(\overline{\mathrm{MS}}, 2 \text{ GeV})^{\mathrm{QCD}} \equiv m_f^{\mathrm{R}}(\overline{\mathrm{MS}}, 2 \text{ GeV})^{\phi}$
 $f = \{u, d, s, c\}$

 $m_f^{\rm R}(\overline{\rm MS}, 2 \text{ GeV})^{(0)} \equiv m_f^{\rm R}(\overline{\rm MS}, 2 \text{ GeV})^{\phi}$ $f = \{ud, s, c\}$

In practice, the renormalization condition on the strong coupling $g^{R}(\overline{MS}, 2 \text{ GeV}) \equiv g_{0}^{R}(\overline{MS}, 2 \text{ GeV})$ is neglected in the "electroquenched approximation"

PDG

Infinite volume reconstruction QED∞

Alternative approach: radiative corrections as a convolution of hadronic correlators with infinitevolume QED kernels

$$\Delta \mathcal{O} = \int \mathrm{d}t \int \mathrm{d}^3 \mathbf{x} \ \mathcal{H}(t, \mathbf{x}) f_{\text{QED}}(t, \mathbf{x})$$

Separate correlator into **short** and **long** distance parts:

$$\Delta \mathcal{O}^{(s)} \approx \frac{1}{2} \int_{-t_s}^{t_s} \mathrm{d}t \int_{L^3} \mathrm{d}^3 \mathbf{x} \ \mathcal{H}^L(t, \mathbf{x}) f_{\text{QED}}(t, \mathbf{x}) dt = 0$$

$$\Delta \mathcal{O}^{(l)} \approx \int_{L^3} \mathrm{d}^3 \mathbf{x} \, \mathcal{H}^L(t_s, \mathbf{x}) \, \mathcal{F}_{\mathrm{QED}}(t_s, \mathbf{x})$$

... systematics under control? -> Exponentially suppressed finite-volume effects Application to leptonic decays under study by RBC N.Christ et al., PRD 108 (2023)

X.Feng & L.Jin, PRD 100 (2019)

54