
Tackling the Signal to Noise problem
with Stochastic Automatic Differentiation

[G.C., A. Ramos, arXiv:2502.15570]

Guilherme Catumba
Alberto Ramos

Università degli Studi di Milano-Bicocca

April 2, 2025

The Signal to Noise problemThe Signal to Noise problem

2/19

Physical properties – Euclidean time behavior of 2-point functions

C(x0) =
∑
x⃗

〈
O†(x)O(0)

〉
c
=

∑
n

|⟨0|O|n⟩|2e−Enx0 −−−−→
x0→∞

|⟨0|O|i⟩|2e−Eix0

large time behavior
energy levels, matrix elements

Parisi/Lepage argument for the variance [Parisi 1984; Lepage 1989]

Case of a scalar interpolator

σ2(x0) ∝
〈
O2(x0)O

2(0)
〉
− ⟨O(x0)O(0)⟩2

⟨A(x0)B(0)⟩ −−−−→
x0→∞

⟨A(x0)⟩ ⟨B(0)⟩ = ⟨A(0)⟩ ⟨B(0)⟩

σ(x0) −−−−→
x0→∞

C(x0 = 0)/
√
Nconf

Signal to Noise
error[C(x0)]

C(x0)
−−−−→
x0→∞

eE0x0

√
Nconf

The Signal to Noise problemThe Signal to Noise problem

2/19

Physical properties – Euclidean time behavior of 2-point functions

C(x0) =
∑
x⃗

〈
O†(x)O(0)

〉
c
=

∑
n

|⟨0|O|n⟩|2e−Enx0 −−−−→
x0→∞

|⟨0|O|i⟩|2e−Eix0

large time behavior
energy levels, matrix elements

Parisi/Lepage argument for the variance [Parisi 1984; Lepage 1989]

Case of a scalar interpolator

σ2(x0) ∝
〈
O2(x0)O

2(0)
〉
− ⟨O(x0)O(0)⟩2

⟨A(x0)B(0)⟩ −−−−→
x0→∞

⟨A(x0)⟩ ⟨B(0)⟩ = ⟨A(0)⟩ ⟨B(0)⟩

σ(x0) −−−−→
x0→∞

C(x0 = 0)/
√
Nconf

Signal to Noise
error[C(x0)]

C(x0)
−−−−→
x0→∞

eE0x0

√
Nconf

The Signal to Noise problemThe Signal to Noise problem

2/19

Physical properties – Euclidean time behavior of 2-point functions

C(x0) =
∑
x⃗

〈
O†(x)O(0)

〉
c
=

∑
n

|⟨0|O|n⟩|2e−Enx0 −−−−→
x0→∞

|⟨0|O|i⟩|2e−Eix0

large time behavior
energy levels, matrix elements

Parisi/Lepage argument for the variance [Parisi 1984; Lepage 1989]

Case of a scalar interpolator

σ2(x0) ∝
〈
O2(x0)O

2(0)
〉
− ⟨O(x0)O(0)⟩2

⟨A(x0)B(0)⟩ −−−−→
x0→∞

⟨A(x0)⟩ ⟨B(0)⟩ = ⟨A(0)⟩ ⟨B(0)⟩

σ(x0) −−−−→
x0→∞

C(x0 = 0)/
√
Nconf

Signal to Noise
error[C(x0)]

C(x0)
−−−−→
x0→∞

eE0x0

√
Nconf

The Signal to Noise problemThe Signal to Noise problem

3/19

More generally: apply the same argument to the variance〈
O†(x)O†(x)O(0)O(0)

〉
=

∑
n

∣∣〈0|O2|n
〉∣∣2e−Enx0 −−−−→

x0→∞
|⟨0|O|j⟩|2e−Ejx0

error[C(x0)]

C(x0)
−−−−→
x0→∞

e(Ei−Ej/2)x0

√
Nconf

.

Scalar: StN ∼ eE0x0

Pion: StN ∼ const.
Proton: StN ∼ e(mp−3mπ)x0

0.5 1 1.5 2 2.5 3 3.5 4 4.5

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

x
0
 / r

0

N
 m

e
ff
 −

 o
ff

s

proton

Omega
V(r

0
)

V(r
1
)

F
π

eff

[Sommer 2014]

The Signal to Noise problemThe Signal to Noise problem

3/19

More generally: apply the same argument to the variance〈
O†(x)O†(x)O(0)O(0)

〉
=

∑
n

∣∣〈0|O2|n
〉∣∣2e−Enx0 −−−−→

x0→∞
|⟨0|O|j⟩|2e−Ejx0

error[C(x0)]

C(x0)
−−−−→
x0→∞

e(Ei−Ej/2)x0

√
Nconf

.

Scalar: StN ∼ eE0x0

Pion: StN ∼ const.
Proton: StN ∼ e(mp−3mπ)x0

0.5 1 1.5 2 2.5 3 3.5 4 4.5

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

x
0
 / r

0

N
 m

e
ff
 −

 o
ff

s

proton

Omega
V(r

0
)

V(r
1
)

F
π

eff

[Sommer 2014]

The Signal to Noise problemThe Signal to Noise problem

3/19

More generally: apply the same argument to the variance〈
O†(x)O†(x)O(0)O(0)

〉
=

∑
n

∣∣〈0|O2|n
〉∣∣2e−Enx0 −−−−→

x0→∞
|⟨0|O|j⟩|2e−Ejx0

error[C(x0)]

C(x0)
−−−−→
x0→∞

e(Ei−Ej/2)x0

√
Nconf

.

Scalar: StN ∼ eE0x0

Pion: StN ∼ const.
Proton: StN ∼ e(mp−3mπ)x0

0.5 1 1.5 2 2.5 3 3.5 4 4.5

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

x
0
 / r

0

N
 m

e
ff
 −

 o
ff

s

proton

Omega
V(r

0
)

V(r
1
)

F
π

eff

[Sommer 2014]

The Signal to Noise problemThe Signal to Noise problem

3/19

More generally: apply the same argument to the variance〈
O†(x)O†(x)O(0)O(0)

〉
=

∑
n

∣∣〈0|O2|n
〉∣∣2e−Enx0 −−−−→

x0→∞
|⟨0|O|j⟩|2e−Ejx0

error[C(x0)]

C(x0)
−−−−→
x0→∞

e(Ei−Ej/2)x0

√
Nconf

.

Scalar: StN ∼ eE0x0

Pion: StN ∼ const.
Proton: StN ∼ e(mp−3mπ)x0

0.5 1 1.5 2 2.5 3 3.5 4 4.5

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

x
0
 / r

0

N
 m

e
ff
 −

 o
ff

s

proton

Omega
V(r

0
)

V(r
1
)

F
π

eff

[Sommer 2014]

Solutions?Solutions?

4/19

Longstanding & ubiquitous problem
in MC
Typical solutions (smearing, GEVP,
etc.)

Allow to extract information at
earlier x0

Excited state contamination
Do not solve the StN problem

0 5 10 15 20 25
t/a

0.94

0.96

0.98

1.00

1.02

a
m

ef
f

h
h
h
(t
)

LW

LZ3B

[Blum et al. 2016]

Source:
2-point expectation value

Solutions?Solutions?

4/19

Longstanding & ubiquitous problem
in MC
Typical solutions (smearing, GEVP,
etc.)

Allow to extract information at
earlier x0

Excited state contamination
Do not solve the StN problem

0 5 10 15 20 25
t/a

0.94

0.96

0.98

1.00

1.02

a
m

ef
f

h
h
h
(t
)

LW

LZ3B

[Blum et al. 2016]

Source:
2-point expectation value

Derivatives & Sources – another perspectiveDerivatives & Sources – another perspective

5/19

Do not compute a 2-point function

Add source to the action

Z[J] =

∫
Dϕe−S[ϕ]+JO(x0=0) −→ C(t)=

∂

∂J

∣∣∣∣
J=0

⟨O(x0)⟩

1-point function!

1-point expectation value
Variance of a derivative depends on how it is computed

(usual 2-point function corresponds to a reweighting evaluation of the derivative)
How to compute derivatives efficiently

Not with finite differences [Detmold 2005]

Stochastic automatic differentiation [G.C., A. Ramos, B. Zaldivar, 2024]

Derivatives & Sources – another perspectiveDerivatives & Sources – another perspective

5/19

Do not compute a 2-point function
Add source to the action

Z[J] =

∫
Dϕe−S[ϕ]+JO(x0=0) −→ C(t)=

∂

∂J

∣∣∣∣
J=0

⟨O(x0)⟩

1-point function!

1-point expectation value
Variance of a derivative depends on how it is computed

(usual 2-point function corresponds to a reweighting evaluation of the derivative)
How to compute derivatives efficiently

Not with finite differences [Detmold 2005]

Stochastic automatic differentiation [G.C., A. Ramos, B. Zaldivar, 2024]

Derivatives & Sources – another perspectiveDerivatives & Sources – another perspective

5/19

Do not compute a 2-point function
Add source to the action

Z[J] =

∫
Dϕe−S[ϕ]+JO(x0=0) −→ C(t)=

∂

∂J

∣∣∣∣
J=0

⟨O(x0)⟩

1-point function!

1-point expectation value
Variance of a derivative depends on how it is computed

(usual 2-point function corresponds to a reweighting evaluation of the derivative)

How to compute derivatives efficiently
Not with finite differences [Detmold 2005]

Stochastic automatic differentiation [G.C., A. Ramos, B. Zaldivar, 2024]

Derivatives & Sources – another perspectiveDerivatives & Sources – another perspective

5/19

Do not compute a 2-point function
Add source to the action

Z[J] =

∫
Dϕe−S[ϕ]+JO(x0=0) −→ C(t)=

∂

∂J

∣∣∣∣
J=0

⟨O(x0)⟩

1-point function!

1-point expectation value
Variance of a derivative depends on how it is computed

(usual 2-point function corresponds to a reweighting evaluation of the derivative)
How to compute derivatives efficiently

Not with finite differences [Detmold 2005]

Stochastic automatic differentiation [G.C., A. Ramos, B. Zaldivar, 2024]

Automatic Differentiation – truncated polynomialsAutomatic Differentiation – truncated polynomials

6/19

Extend AD to MC methods
Power series O

(
εK

)
x̃ ≡ x0 + x1ε+ x2ε

2 + · · ·+ xKεK

Define operations & elementary functions – exact at each order
x̃ỹ = x0y0 + (x0y1 + x1y0)ε+ (x0y2 + 2x1y1 + x2y0)ε

2 + . . .

exp(x̃) = ex0 + ex0x1ε+ ex0(x21/2 + x2)ε
2 + . . .

. . .

Chain rule

Evaluate function at x̃ = x0 + ε (Taylor theorem)

f(x̃) = f(x0) + f ′(x0)ε+
1

2
f ′′(x0)ε

2

deterministic
function

Automatic Differentiation – truncated polynomialsAutomatic Differentiation – truncated polynomials

6/19

Extend AD to MC methods
Power series O

(
εK

)
x̃ ≡ x0 + x1ε+ x2ε

2 + · · ·+ xKεK

Define operations & elementary functions – exact at each order
x̃ỹ = x0y0 + (x0y1 + x1y0)ε+ (x0y2 + 2x1y1 + x2y0)ε

2 + . . .

exp(x̃) = ex0 + ex0x1ε+ ex0(x21/2 + x2)ε
2 + . . .

. . .

Chain rule

Evaluate function at x̃ = x0 + ε (Taylor theorem)

f(x̃) = f(x0) + f ′(x0)ε+
1

2
f ′′(x0)ε

2

deterministic
function

Automatic Differentiation – truncated polynomialsAutomatic Differentiation – truncated polynomials

6/19

Extend AD to MC methods
Power series O

(
εK

)
x̃ ≡ x0 + x1ε+ x2ε

2 + · · ·+ xKεK

Define operations & elementary functions – exact at each order
x̃ỹ = x0y0 + (x0y1 + x1y0)ε+ (x0y2 + 2x1y1 + x2y0)ε

2 + . . .

exp(x̃) = ex0 + ex0x1ε+ ex0(x21/2 + x2)ε
2 + . . .

. . .

Chain rule

Evaluate function at x̃ = x0 + ε (Taylor theorem)

f(x̃) = f(x0) + f ′(x0)ε+
1

2
f ′′(x0)ε

2
deterministic

function

Automatic Differentiation – truncated polynomialsAutomatic Differentiation – truncated polynomials

6/19

Extend AD to MC methods
Power series O

(
εK

)
x̃ ≡ x0 + x1ε+ x2ε

2 + · · ·+ xKεK

Define operations & elementary functions – exact at each order
x̃ỹ = x0y0 + (x0y1 + x1y0)ε+ (x0y2 + 2x1y1 + x2y0)ε

2 + . . .

exp(x̃) = ex0 + ex0x1ε+ ex0(x21/2 + x2)ε
2 + . . .

. . .

Chain rule

Evaluate function at x̃ = x0 + ε (Taylor theorem)

f(x̃) = f(x0) + f ′(x0)ε+
1

2
f ′′(x0)ε

2

deterministic
function

Automatic Differentiation – truncated polynomialsAutomatic Differentiation – truncated polynomials

6/19

Extend AD to MC methods
Power series O

(
εK

)
x̃ ≡ x0 + x1ε+ x2ε

2 + · · ·+ xKεK

Define operations & elementary functions – exact at each order
x̃ỹ = x0y0 + (x0y1 + x1y0)ε+ (x0y2 + 2x1y1 + x2y0)ε

2 + . . .

exp(x̃) = ex0 + ex0x1ε+ ex0(x21/2 + x2)ε
2 + . . .

. . .

Chain rule

Evaluate function at x̃ = x0 + ε (Taylor theorem)

f(x̃) = f(x0) + f ′(x0)ε+
1

2
f ′′(x0)ε

2
deterministic

function

Numerical ImplementationNumerical Implementation

7/19

“Teach” the computer to operate with truncated polynomials
Compute Taylor expansion of any deterministic function

Julia implementation:
https://igit.ific.uv.es/alramos/formalseries.jl

Formally equivalent to:

f(0 + ε) =
1

1− ε
= 1 + 1ε+ 1ε2 + 1ε3 + 1ε4 + . . .

Multiple expansions ε −→ εi

Basis of Forward Automatic Differentiation

https://igit.ific.uv.es/alramos/formalseries.jl

Numerical ImplementationNumerical Implementation

7/19

“Teach” the computer to operate with truncated polynomials
Compute Taylor expansion of any deterministic function

Julia implementation:
https://igit.ific.uv.es/alramos/formalseries.jl

Code (Julia)
julia> using FormalSeries
julia> f(x) = 1/(1-x)
julia> xs = Series((0.0,1.0,0.0,0.0,0.0))
julia> f(xs)
Series{Float64, 5}((1.0, 1.0, 1.0, 1.0, 1.0))

Formally equivalent to:

f(0 + ε) =
1

1− ε
= 1 + 1ε+ 1ε2 + 1ε3 + 1ε4 + . . .

Multiple expansions ε −→ εi

Basis of Forward Automatic Differentiation

https://igit.ific.uv.es/alramos/formalseries.jl

Numerical ImplementationNumerical Implementation

7/19

“Teach” the computer to operate with truncated polynomials
Compute Taylor expansion of any deterministic function

Julia implementation:
https://igit.ific.uv.es/alramos/formalseries.jl

Code (Julia)
julia> using FormalSeries
julia> f(x) = 1/(1-x)
julia> xs = Series((0.0,1.0,0.0,0.0,0.0))
julia> f(xs)
Series{Float64, 5}((1.0, 1.0, 1.0, 1.0, 1.0))

Formally equivalent to:

f(0 + ε) =
1

1− ε
= 1 + 1ε+ 1ε2 + 1ε3 + 1ε4 + . . .

Multiple expansions ε −→ εi

Basis of Forward Automatic Differentiation

https://igit.ific.uv.es/alramos/formalseries.jl

Numerical ImplementationNumerical Implementation

7/19

“Teach” the computer to operate with truncated polynomials
Compute Taylor expansion of any deterministic function

Julia implementation:
https://igit.ific.uv.es/alramos/formalseries.jl

Code (Julia)
julia> using FormalSeries
julia> f(x) = 1/(1-x)
julia> xs = Series((0.0,1.0,0.0,0.0,0.0))
julia> f(xs)
Series{Float64, 5}((1.0, 1.0, 1.0, 1.0, 1.0))

Formally equivalent to:

f(0 + ε) =
1

1− ε
= 1 + 1ε+ 1ε2 + 1ε3 + 1ε4 + . . .

Multiple expansions ε −→ εi

Basis of Forward Automatic Differentiation

https://igit.ific.uv.es/alramos/formalseries.jl

Metropolis & Truncated PolynomialsMetropolis & Truncated Polynomials

8/19

Metropolis as basis for sampling algorithms
Action S(θ): θ denotes some couplings

Sampling proposal (e.g., HMC)

S(θ) −→ S′(θ)

Accept using
min {1, e−∆S(θ̃)}

Not possible if θ̃ is a series element

Automatic Differentiation ruled out due to Stochastic elements

How to overcome this?

Metropolis & Truncated PolynomialsMetropolis & Truncated Polynomials

8/19

Metropolis as basis for sampling algorithms
Action S(θ): θ denotes some couplings
Sampling proposal (e.g., HMC)

S(θ) −→ S′(θ)

Accept using
min {1, e−∆S(θ̃)}

Not possible if θ̃ is a series element

Automatic Differentiation ruled out due to Stochastic elements

How to overcome this?

Metropolis & Truncated PolynomialsMetropolis & Truncated Polynomials

8/19

Metropolis as basis for sampling algorithms
Action S(θ): θ denotes some couplings
Sampling proposal (e.g., HMC)

S(θ) −→ S′(θ)

Accept using
min {1, e−∆S(θ̃)}

Not possible if θ̃ is a series element

Automatic Differentiation ruled out due to Stochastic elements

How to overcome this?

Metropolis & Truncated PolynomialsMetropolis & Truncated Polynomials

8/19

Metropolis as basis for sampling algorithms
Action S(θ): θ denotes some couplings
Sampling proposal (e.g., HMC)

S(θ) −→ S′(θ)

Accept using
min {1, e−∆S(θ̃)}

Not possible if θ̃ is a series element

Automatic Differentiation ruled out due to Stochastic elements

How to overcome this?

Metropolis & Truncated PolynomialsMetropolis & Truncated Polynomials

8/19

Metropolis as basis for sampling algorithms
Action S(θ): θ denotes some couplings
Sampling proposal (e.g., HMC)

S(θ) −→ S′(θ)

Accept using
min {1, e−∆S(θ̃)}

Not possible if θ̃ is a series element

Automatic Differentiation ruled out due to Stochastic elements

How to overcome this?

Reweighting & Automatic DifferentiationReweighting & Automatic Differentiation

9/19

[G.C., A. Ramos, B. Zaldivar, 2024]

Samples

{xα}Nα=1 ∼ e−S(x;θ)

Expectation values w.r.t

e−S(x;θ′)

Conventional Reweighting

⟨f(x)⟩S′ =

〈
eS−S′

f(x)
〉
S

⟨eS−S′⟩S
Introduce truncated polynomials with θ̃ = θ + ε

wα = eS(x,θ)−S(x,θ̃) = 1 + (. . .)ε+ (. . .)ε2 + . . .

Expectation value an Taylor series coefficients∑
α e

S(xα,θ)−S(xα,θ̃)f(x)∑
α e

S(xα,θ)−S(xα,θ̃)
=

K∑
n=0

fnε
n, fn =

1

n!

∂n

∂θn
⟨f(x)⟩

∣∣∣∣
θ

Reweighting & Automatic DifferentiationReweighting & Automatic Differentiation

9/19

[G.C., A. Ramos, B. Zaldivar, 2024]

Samples

{xα}Nα=1 ∼ e−S(x;θ)

Expectation values w.r.t

e−S(x;θ′)

Conventional Reweighting

⟨f(x)⟩S′ =

〈
eS−S′

f(x)
〉
S

⟨eS−S′⟩S

Introduce truncated polynomials with θ̃ = θ + ε

wα = eS(x,θ)−S(x,θ̃) = 1 + (. . .)ε+ (. . .)ε2 + . . .

Expectation value an Taylor series coefficients∑
α e

S(xα,θ)−S(xα,θ̃)f(x)∑
α e

S(xα,θ)−S(xα,θ̃)
=

K∑
n=0

fnε
n, fn =

1

n!

∂n

∂θn
⟨f(x)⟩

∣∣∣∣
θ

Reweighting & Automatic DifferentiationReweighting & Automatic Differentiation

9/19

[G.C., A. Ramos, B. Zaldivar, 2024]

Samples

{xα}Nα=1 ∼ e−S(x;θ)

Expectation values w.r.t

e−S(x;θ′)

Conventional Reweighting

⟨f(x)⟩S′ =

〈
eS−S′

f(x)
〉
S

⟨eS−S′⟩S
Introduce truncated polynomials with θ̃ = θ + ε

wα = eS(x,θ)−S(x,θ̃) = 1 + (. . .)ε+ (. . .)ε2 + . . .

Expectation value an Taylor series coefficients∑
α e

S(xα,θ)−S(xα,θ̃)f(x)∑
α e

S(xα,θ)−S(xα,θ̃)
=

K∑
n=0

fnε
n, fn =

1

n!

∂n

∂θn
⟨f(x)⟩

∣∣∣∣
θ

Reweighting & Automatic DifferentiationReweighting & Automatic Differentiation

9/19

[G.C., A. Ramos, B. Zaldivar, 2024]

Samples

{xα}Nα=1 ∼ e−S(x;θ)

Expectation values w.r.t

e−S(x;θ′)

Conventional Reweighting

⟨f(x)⟩S′ =

〈
eS−S′

f(x)
〉
S

⟨eS−S′⟩S
Introduce truncated polynomials with θ̃ = θ + ε

wα = eS(x,θ)−S(x,θ̃) = 1 + (. . .)ε+ (. . .)ε2 + . . .

Expectation value an Taylor series coefficients∑
α e

S(xα,θ)−S(xα,θ̃)f(x)∑
α e

S(xα,θ)−S(xα,θ̃)
=

K∑
n=0

fnε
n, fn =

1

n!

∂n

∂θn
⟨f(x)⟩

∣∣∣∣
θ

Conventional 2-point functions & ReweightingConventional 2-point functions & Reweighting

10/19

Samples

{xα}Nα=1 ∼ e−S(x;θ)

Expectation values w.r.t

e−S(x;θ)−JO(0)

Expansion in J = 0 + ε

wα = eS(x,θ)−S(x,θ̃)+JO(0) = 1 + εO(0) + ε2O(0)2/2 + . . .

Reweighting to compute d/dJ

⟨O(x0)⟩S′ =
⟨wαO(x0)⟩S

⟨wα⟩S
= ⟨O(x0)⟩+ ε⟨O(x0)O(0)⟩c +O

(
ε2
)

Conventional computation of a 2-point function can be seen as reweighting

Signal to Noise can be seen as a reweighting variance problem

Conventional 2-point functions & ReweightingConventional 2-point functions & Reweighting

10/19

Samples

{xα}Nα=1 ∼ e−S(x;θ)

Expectation values w.r.t

e−S(x;θ)−JO(0)

Expansion in J = 0 + ε

wα = eS(x,θ)−S(x,θ̃)+JO(0) = 1 + εO(0) + ε2O(0)2/2 + . . .

Reweighting to compute d/dJ

⟨O(x0)⟩S′ =
⟨wαO(x0)⟩S

⟨wα⟩S
= ⟨O(x0)⟩+ ε⟨O(x0)O(0)⟩c +O

(
ε2
)

Conventional computation of a 2-point function can be seen as reweighting

Signal to Noise can be seen as a reweighting variance problem

Conventional 2-point functions & ReweightingConventional 2-point functions & Reweighting

10/19

Samples

{xα}Nα=1 ∼ e−S(x;θ)

Expectation values w.r.t

e−S(x;θ)−JO(0)

Expansion in J = 0 + ε

wα = eS(x,θ)−S(x,θ̃)+JO(0) = 1 + εO(0) + ε2O(0)2/2 + . . .

Reweighting to compute d/dJ

⟨O(x0)⟩S′ =
⟨wαO(x0)⟩S

⟨wα⟩S
= ⟨O(x0)⟩+ ε⟨O(x0)O(0)⟩c +O

(
ε2
)

Conventional computation of a 2-point function can be seen as reweighting

Signal to Noise can be seen as a reweighting variance problem

Conventional 2-point functions & ReweightingConventional 2-point functions & Reweighting

10/19

Samples

{xα}Nα=1 ∼ e−S(x;θ)

Expectation values w.r.t

e−S(x;θ)−JO(0)

Expansion in J = 0 + ε

wα = eS(x,θ)−S(x,θ̃)+JO(0) = 1 + εO(0) + ε2O(0)2/2 + . . .

Reweighting to compute d/dJ

⟨O(x0)⟩S′ =
⟨wαO(x0)⟩S

⟨wα⟩S
= ⟨O(x0)⟩+ ε⟨O(x0)O(0)⟩c +O

(
ε2
)

Conventional computation of a 2-point function can be seen as reweighting
Signal to Noise can be seen as a reweighting variance problem

HMC & Automatic DifferentiationHMC & Automatic Differentiation

11/19

1. Fictitious momenta π conjugate to ϕ

H(ϕ, π) =
1

2
π2 + S(ϕ; θ)

2. Solve EoM with initial random momenta
π(t = 0) ∼ N(0, 1)

ϕ̇ =
∂H

∂π
= π, π̇ = −∂H

∂ϕ

(ϕ(0), π(0)) −→ (ϕ(t), π(t))

3. Metropolis: Acc./Rej. with probability e−∆H

4. Repeat

Promote θ −→ θ̃ = θ + ε
(also π, ϕ)

Solve EoM at each order

ϕ −→ ϕ̃

∆H as Taylor series
Cannot Acc./Rej.

MC average as Taylor series

⟨f(ϕ)⟩ = 1

N

∑
α

f(ϕ̃) =
K∑

n=0

fnε
n

HMC & Automatic DifferentiationHMC & Automatic Differentiation

11/19

1. Fictitious momenta π conjugate to ϕ

H(ϕ, π) =
1

2
π2 + S(ϕ; θ)

2. Solve EoM with initial random momenta
π(t = 0) ∼ N(0, 1)

ϕ̇ =
∂H

∂π
= π, π̇ = −∂H

∂ϕ

(ϕ(0), π(0)) −→ (ϕ(t), π(t))

3. Metropolis: Acc./Rej. with probability e−∆H

4. Repeat

Promote θ −→ θ̃ = θ + ε
(also π, ϕ)

Solve EoM at each order

ϕ −→ ϕ̃

∆H as Taylor series
Cannot Acc./Rej.

MC average as Taylor series

⟨f(ϕ)⟩ = 1

N

∑
α

f(ϕ̃) =
K∑

n=0

fnε
n

HMC & Automatic DifferentiationHMC & Automatic Differentiation

11/19

1. Fictitious momenta π conjugate to ϕ

H(ϕ, π) =
1

2
π2 + S(ϕ; θ)

2. Solve EoM with initial random momenta
π(t = 0) ∼ N(0, 1)

ϕ̇ =
∂H

∂π
= π, π̇ = −∂H

∂ϕ

(ϕ(0), π(0)) −→ (ϕ(t), π(t))

3. Metropolis: Acc./Rej. with probability e−∆H

4. Repeat

Promote θ −→ θ̃ = θ + ε
(also π, ϕ)

Solve EoM at each order

ϕ −→ ϕ̃

∆H as Taylor series
Cannot Acc./Rej.

MC average as Taylor series

⟨f(ϕ)⟩ = 1

N

∑
α

f(ϕ̃) =
K∑

n=0

fnε
n

HMC & Automatic DifferentiationHMC & Automatic Differentiation

11/19

1. Fictitious momenta π conjugate to ϕ

H(ϕ, π) =
1

2
π2 + S(ϕ; θ)

2. Solve EoM with initial random momenta
π(t = 0) ∼ N(0, 1)

ϕ̇ =
∂H

∂π
= π, π̇ = −∂H

∂ϕ

(ϕ(0), π(0)) −→ (ϕ(t), π(t))

3. Metropolis: Acc./Rej. with probability e−∆H

4. Repeat

Promote θ −→ θ̃ = θ + ε
(also π, ϕ)

Solve EoM at each order

ϕ −→ ϕ̃

∆H as Taylor series
Cannot Acc./Rej.

MC average as Taylor series

⟨f(ϕ)⟩ = 1

N

∑
α

f(ϕ̃) =
K∑

n=0

fnε
n

HMC & Automatic DifferentiationHMC & Automatic Differentiation

11/19

1. Fictitious momenta π conjugate to ϕ

H(ϕ, π) =
1

2
π2 + S(ϕ; θ)

2. Solve EoM with initial random momenta
π(t = 0) ∼ N(0, 1)

ϕ̇ =
∂H

∂π
= π, π̇ = −∂H

∂ϕ

(ϕ(0), π(0)) −→ (ϕ(t), π(t))

3. Metropolis: Acc./Rej. with probability e−∆H

4. Repeat

Promote θ −→ θ̃ = θ + ε
(also π, ϕ)

Solve EoM at each order

ϕ −→ ϕ̃

∆H as Taylor series
Cannot Acc./Rej.

MC average as Taylor series

⟨f(ϕ)⟩ = 1

N

∑
α

f(ϕ̃) =
K∑

n=0

fnε
n

HMC & Automatic DifferentiationHMC & Automatic Differentiation

12/19

HMC samples are truncated polynomials

ϕ̃ = ϕ+ εϕ(1)

{ϕ̃α}Nconf.
α=1 = {ϕα + εϕα

(1)}
Nconf.
α=1 ∼ e−S(ϕ,θ̃)

Samples carry information about the dependence on θ

Usual MC averages 〈
Õ(ϕ)

〉
=

1

Nconf

∑
α

O(ϕ̃α)

= ⟨O(ϕ)⟩+ d
dθ ⟨O(ϕ)⟩ε

No RW factors – no disconnected contributions
Hamiltonian AD finds the exact transformation that leads to constant RW
factors [G.C., A. Ramos, B. Zaldivar, 2024; G.C. 2025 (Thesis)]

HMC & Automatic DifferentiationHMC & Automatic Differentiation

12/19

HMC samples are truncated polynomials

ϕ̃ = ϕ+ εϕ(1)

{ϕ̃α}Nconf.
α=1 = {ϕα + εϕα

(1)}
Nconf.
α=1 ∼ e−S(ϕ,θ̃)

Samples carry information about the dependence on θ

Usual MC averages 〈
Õ(ϕ)

〉
=

1

Nconf

∑
α

O(ϕ̃α)

= ⟨O(ϕ)⟩+ d
dθ ⟨O(ϕ)⟩ε

No RW factors – no disconnected contributions

Hamiltonian AD finds the exact transformation that leads to constant RW
factors [G.C., A. Ramos, B. Zaldivar, 2024; G.C. 2025 (Thesis)]

HMC & Automatic DifferentiationHMC & Automatic Differentiation

12/19

HMC samples are truncated polynomials

ϕ̃ = ϕ+ εϕ(1)

{ϕ̃α}Nconf.
α=1 = {ϕα + εϕα

(1)}
Nconf.
α=1 ∼ e−S(ϕ,θ̃)

Samples carry information about the dependence on θ

Usual MC averages 〈
Õ(ϕ)

〉
=

1

Nconf

∑
α

O(ϕ̃α)

= ⟨O(ϕ)⟩+ d
dθ ⟨O(ϕ)⟩ε

No RW factors – no disconnected contributions
Hamiltonian AD finds the exact transformation that leads to constant RW
factors [G.C., A. Ramos, B. Zaldivar, 2024; G.C. 2025 (Thesis)]

Field transformations & ReweightingField transformations & Reweighting

13/19

Reweighting generally leads to large variance
weights wα

Consider a change of variables before reweighting

ϕ −→ ϕ̃ = ϕ+ εf(ϕ)

Reweighting factors become

w̃[ϕ̃] = exp
[
−S̃J [ϕ̃] + log

∣∣∣∣∣dϕ̃dϕ

∣∣∣∣∣+ S[ϕ]

]
Find transformation that eliminates RW factors

Exact – RW factors drop from the computation!

−S̃J [ϕ̃] + log
∣∣∣∣∣dϕ̃dϕ

∣∣∣∣∣+ S[ϕ] = const.

Approximate – partially eliminate RW factors

Field transformations & ReweightingField transformations & Reweighting

13/19

Reweighting generally leads to large variance
weights wα

Consider a change of variables before reweighting

ϕ −→ ϕ̃ = ϕ+ εf(ϕ)

Reweighting factors become

w̃[ϕ̃] = exp
[
−S̃J [ϕ̃] + log

∣∣∣∣∣dϕ̃dϕ

∣∣∣∣∣+ S[ϕ]

]
Find transformation that eliminates RW factors

Exact – RW factors drop from the computation!

−S̃J [ϕ̃] + log
∣∣∣∣∣dϕ̃dϕ

∣∣∣∣∣+ S[ϕ] = const.

Approximate – partially eliminate RW factors

Field transformations & ReweightingField transformations & Reweighting

13/19

Reweighting generally leads to large variance
weights wα

Consider a change of variables before reweighting

ϕ −→ ϕ̃ = ϕ+ εf(ϕ)

Reweighting factors become

w̃[ϕ̃] = exp
[
−S̃J [ϕ̃] + log

∣∣∣∣∣dϕ̃dϕ

∣∣∣∣∣+ S[ϕ]

]

Find transformation that eliminates RW factors
Exact – RW factors drop from the computation!

−S̃J [ϕ̃] + log
∣∣∣∣∣dϕ̃dϕ

∣∣∣∣∣+ S[ϕ] = const.

Approximate – partially eliminate RW factors

Field transformations & ReweightingField transformations & Reweighting

13/19

Reweighting generally leads to large variance
weights wα

Consider a change of variables before reweighting

ϕ −→ ϕ̃ = ϕ+ εf(ϕ)

Reweighting factors become

w̃[ϕ̃] = exp
[
−S̃J [ϕ̃] + log

∣∣∣∣∣dϕ̃dϕ

∣∣∣∣∣+ S[ϕ]

]
Find transformation that eliminates RW factors

Exact – RW factors drop from the computation!

−S̃J [ϕ̃] + log
∣∣∣∣∣dϕ̃dϕ

∣∣∣∣∣+ S[ϕ] = const.

Approximate – partially eliminate RW factors

4D Scalar field theory4D Scalar field theory

14/19

S4D
latt(ϕ;m,λ) =

∑
x

{
1

2

∑
µ

[ϕ(x+ µ)− ϕ(x)]2 +
m2

2
ϕ2(x) + λϕ4(x)

}

Operator: O(x0) =
∑
x⃗

ϕ(x0, x⃗)

Good testbed – No excited state contamination

HAD (HMC + AD):

S(ϕ̃) =Slatt(ϕ̃) + JO(0)

J = 0 + ε

˙̃
ϕ(x) = π̃(x) ,

˙̃π(x) =
1

2

∑
µ

[
ϕ̃(x+ µ) + ϕ̃(x− µ)

]
− (4 + m̂2)ϕ̃(x)− 4λϕ̃3(x)

+ ϵδx0,0

4D Scalar field theory4D Scalar field theory

14/19

S4D
latt(ϕ;m,λ) =

∑
x

{
1

2

∑
µ

[ϕ(x+ µ)− ϕ(x)]2 +
m2

2
ϕ2(x) + λϕ4(x)

}

Operator: O(x0) =
∑
x⃗

ϕ(x0, x⃗)

Good testbed – No excited state contamination

HAD (HMC + AD):

S(ϕ̃) =Slatt(ϕ̃) + JO(0)

J = 0 + ε

˙̃
ϕ(x) = π̃(x) ,

˙̃π(x) =
1

2

∑
µ

[
ϕ̃(x+ µ) + ϕ̃(x− µ)

]
− (4 + m̂2)ϕ̃(x)− 4λϕ̃3(x)

+ ϵδx0,0

4D Scalar field theory4D Scalar field theory

14/19

S4D
latt(ϕ;m,λ) =

∑
x

{
1

2

∑
µ

[ϕ(x+ µ)− ϕ(x)]2 +
m2

2
ϕ2(x) + λϕ4(x)

}

Operator: O(x0) =
∑
x⃗

ϕ(x0, x⃗)

Good testbed – No excited state contamination

HAD (HMC + AD):

S(ϕ̃) =Slatt(ϕ̃) + JO(0)

J = 0 + ε

˙̃
ϕ(x) = π̃(x) ,

˙̃π(x) =
1

2

∑
µ

[
ϕ̃(x+ µ) + ϕ̃(x− µ)

]
− (4 + m̂2)ϕ̃(x)− 4λϕ̃3(x)

+ ϵδx0,0

HAD solution for the Signal to Noise problemHAD solution for the Signal to Noise problem

15/19

C(x0)
2−point = ⟨O(x0)O(0)⟩

C(x0)
HAD =

〈
Õ(x0)

〉
(1)

m̂eff(x0) = − log C(x0 + a)

C(x0)
.

HAD solves StN problem completely
convergence
compact variables, complex interpolators

HAD solution for the Signal to Noise problemHAD solution for the Signal to Noise problem

15/19

C(x0)
2−point = ⟨O(x0)O(0)⟩

C(x0)
HAD =

〈
Õ(x0)

〉
(1)

m̂eff(x0) = − log C(x0 + a)

C(x0)
.

HAD solves StN problem completely
convergence
compact variables, complex interpolators

HAD solution for the Signal to Noise problemHAD solution for the Signal to Noise problem

15/19

C(x0)
2−point = ⟨O(x0)O(0)⟩

C(x0)
HAD =

〈
Õ(x0)

〉
(1)

m̂eff(x0) = − log C(x0 + a)

C(x0)
.

HAD solves StN problem completely
convergence
compact variables, complex interpolators

HAD solution for the Signal to Noise problemHAD solution for the Signal to Noise problem

15/19

C(x0)
2−point = ⟨O(x0)O(0)⟩

C(x0)
HAD =

〈
Õ(x0)

〉
(1)

m̂eff(x0) = − log C(x0 + a)

C(x0)
.

HAD solves StN problem completely
convergence
compact variables, complex interpolators

HAD solution for the Signal to Noise problemHAD solution for the Signal to Noise problem

15/19

C(x0)
2−point = ⟨O(x0)O(0)⟩

C(x0)
HAD =

〈
Õ(x0)

〉
(1)

m̂eff(x0) = − log C(x0 + a)

C(x0)
.

HAD solves StN problem completely
convergence
compact variables, complex interpolators

Transformed Reweighting (TRW)Transformed Reweighting (TRW)

16/19

Transformation?

Slatt(ϕp;m) =
∑
p

ϕ∗
p

[∑
µ

p̂2µ +m2

]
ϕp +O(λ), p̂ = 2 sin(ap/2)

Free Theory case – exact transformation∑
x⃗

ϕ(0, x⃗), ϕp −→ ϕ̃p = ϕp +
1

2

δ(p⃗)

p̂2 +m2
transf

ε

m̂transf. = m̂
Transforms Sfree(ϕ) into S̃free

J̃
(ϕ̃)

Constant reweighting factors
λ ̸= 0: use the same (approximate) transformation

m̂transf. = m̂R

Transformed Reweighting (TRW)Transformed Reweighting (TRW)

16/19

Transformation?

Slatt(ϕp;m) =
∑
p

ϕ∗
p

[∑
µ

p̂2µ +m2

]
ϕp +O(λ), p̂ = 2 sin(ap/2)

Free Theory case – exact transformation∑
x⃗

ϕ(0, x⃗), ϕp −→ ϕ̃p = ϕp +
1

2

δ(p⃗)

p̂2 +m2
transf

ε

m̂transf. = m̂
Transforms Sfree(ϕ) into S̃free

J̃
(ϕ̃)

Constant reweighting factors

λ ̸= 0: use the same (approximate) transformation
m̂transf. = m̂R

Transformed Reweighting (TRW)Transformed Reweighting (TRW)

16/19

Transformation?

Slatt(ϕp;m) =
∑
p

ϕ∗
p

[∑
µ

p̂2µ +m2

]
ϕp +O(λ), p̂ = 2 sin(ap/2)

Free Theory case – exact transformation∑
x⃗

ϕ(0, x⃗), ϕp −→ ϕ̃p = ϕp +
1

2

δ(p⃗)

p̂2 +m2
transf

ε

m̂transf. = m̂
Transforms Sfree(ϕ) into S̃free

J̃
(ϕ̃)

Constant reweighting factors
λ ̸= 0: use the same (approximate) transformation

m̂transf. = m̂R

Exact & approximate transformationsExact & approximate transformations

17/19

Conventional samples tuned to have
(amR)

2 ∼ 0.025

ϕp → ϕ̃p = ϕp +
1

2

δ(p⃗)

p̂2 +m2
transf

ε

Exact for λ = 0

HAD = TRW
Confirms reparametrization
argument

Approximate for λ ̸= 0

Still provides an improvement
But how do we choose m̂transf.?

Exact & approximate transformationsExact & approximate transformations

17/19

Conventional samples tuned to have
(amR)

2 ∼ 0.025

ϕp → ϕ̃p = ϕp +
1

2

δ(p⃗)

p̂2 +m2
transf

ε

Exact for λ = 0

HAD = TRW
Confirms reparametrization
argument

Approximate for λ ̸= 0

Still provides an improvement
But how do we choose m̂transf.?

Exact & approximate transformationsExact & approximate transformations

17/19

Conventional samples tuned to have
(amR)

2 ∼ 0.025
ϕp → ϕ̃p = ϕp +

1

2

δ(p⃗)

p̂2 +m2
transf

ε

Exact for λ = 0

HAD = TRW
Confirms reparametrization
argument

Approximate for λ ̸= 0

Still provides an improvement
But how do we choose m̂transf.?

Exact & approximate transformationsExact & approximate transformations

17/19

Conventional samples tuned to have
(amR)

2 ∼ 0.025
ϕp → ϕ̃p = ϕp +

1

2

δ(p⃗)

p̂2 +m2
transf

ε

Exact for λ = 0

HAD = TRW
Confirms reparametrization
argument

Approximate for λ ̸= 0

Still provides an improvement
But how do we choose m̂transf.?

Interacting case – transformation dependenceInteracting case – transformation dependence

18/19

Scan over m̂trans. (cheap) ϕp → ϕ̃p = ϕp +
1

2

δ(p⃗)

p̂2 +m2
transf

ε

Optimal m̂trans. = m̂R

Nonetheless, large range of m̂trans.

Precision degrades with λ

m̂trans. ̸= m̂R still provides an
improvement w.r.t. 2-point

Interacting case – transformation dependenceInteracting case – transformation dependence

18/19

Scan over m̂trans. (cheap) ϕp → ϕ̃p = ϕp +
1

2

δ(p⃗)

p̂2 +m2
transf

ε

Optimal m̂trans. = m̂R

Nonetheless, large range of m̂trans.

Precision degrades with λ

m̂trans. ̸= m̂R still provides an
improvement w.r.t. 2-point

Interacting case – transformation dependenceInteracting case – transformation dependence

18/19

Scan over m̂trans. (cheap) ϕp → ϕ̃p = ϕp +
1

2

δ(p⃗)

p̂2 +m2
transf

ε

Optimal m̂trans. = m̂R

Nonetheless, large range of m̂trans.

Precision degrades with λ

m̂trans. ̸= m̂R still provides an
improvement w.r.t. 2-point

Interacting case – transformation dependenceInteracting case – transformation dependence

18/19

Scan over m̂trans. (cheap) ϕp → ϕ̃p = ϕp +
1

2

δ(p⃗)

p̂2 +m2
transf

ε

Optimal m̂trans. = m̂R

Nonetheless, large range of m̂trans.

Precision degrades with λ

m̂trans. ̸= m̂R still provides an
improvement w.r.t. 2-point

Interacting case – transformation dependenceInteracting case – transformation dependence

18/19

Scan over m̂trans. (cheap) ϕp → ϕ̃p = ϕp +
1

2

δ(p⃗)

p̂2 +m2
transf

ε

Optimal m̂trans. = m̂R

Nonetheless, large range of m̂trans.

Precision degrades with λ

m̂trans. ̸= m̂R still provides an
improvement w.r.t. 2-point

Interacting case – transformation dependenceInteracting case – transformation dependence

18/19

Scan over m̂trans. (cheap) ϕp → ϕ̃p = ϕp +
1

2

δ(p⃗)

p̂2 +m2
transf

ε

Optimal m̂trans. = m̂R

Nonetheless, large range of m̂trans.

Precision degrades with λ

m̂trans. ̸= m̂R still provides an
improvement w.r.t. 2-point

ConclusionsConclusions

19/19

StN is an important problem for lattice field theory
A change of perspective of the StN is possible:

The usual 2-point computation is a reweighting computation of a derivative
the StN problem stems from the variance of the RW factors
Correlator as derivative of a 1-point function – variance depends on how it is
computed (RW is just one possible way)

Key ingredient: Stochastic AD
Computes derivatives exactly
Single simulation, no need for finite-differences

Hamiltonian method solves the StN exactly
not generally applicable (convergence, complex interpolators, etc.)

Field transformations can reduce (or eliminate) the variance – solves the StN problem
Re-utilize samples – TRW is cheap
General (no problems with convergence, etc)
Normalizing flows/Trivializing maps – attack the StN and not the sampling

20/19

Comparison & Change of variablesComparison & Change of variables

21/19

Reweighting

{xα}Nα=1 ∼ e−S(x;θ)

Weights
wα = eS(x

α;m,λ)−S(xα;m̃,λ̃) take
into account dependence on
parameters θ

HMC

{x̃α}Nα=1 ∼ e−S(x̃;θ̃)

Samples carry dependence on
the parameters θ̃

How are these methods related?

Toy model: pσ(x) =
1

σ
√
2π

e−
x2

2σ2 , {xα} ∼ pσ∗=1,

σ∗ = 1 −→ σ wα(x) = x− dependent

Transformation: yα = σxα, {yα} ∼ pσ

σ∗ = 1 −→ σ wα(y) = y − independent ‘No Reweighting’

Comparison & Change of variablesComparison & Change of variables

21/19

Reweighting

{xα}Nα=1 ∼ e−S(x;θ)

Weights
wα = eS(x

α;m,λ)−S(xα;m̃,λ̃) take
into account dependence on
parameters θ

HMC

{x̃α}Nα=1 ∼ e−S(x̃;θ̃)

Samples carry dependence on
the parameters θ̃

How are these methods related?
Toy model: pσ(x) =

1

σ
√
2π

e−
x2

2σ2 , {xα} ∼ pσ∗=1,

σ∗ = 1 −→ σ wα(x) = x− dependent

Transformation: yα = σxα, {yα} ∼ pσ

σ∗ = 1 −→ σ wα(y) = y − independent ‘No Reweighting’

Comparison & Change of variablesComparison & Change of variables

21/19

Reweighting

{xα}Nα=1 ∼ e−S(x;θ)

Weights
wα = eS(x

α;m,λ)−S(xα;m̃,λ̃) take
into account dependence on
parameters θ

HMC

{x̃α}Nα=1 ∼ e−S(x̃;θ̃)

Samples carry dependence on
the parameters θ̃

How are these methods related?
Toy model: pσ(x) =

1

σ
√
2π

e−
x2

2σ2 , {xα} ∼ pσ∗=1,

σ∗ = 1 −→ σ wα(x) = x− dependent

Transformation: yα = σxα, {yα} ∼ pσ

σ∗ = 1 −→ σ wα(y) = y − independent ‘No Reweighting’

Comparison & Change of variablesComparison & Change of variables

21/19

Reweighting

{xα}Nα=1 ∼ e−S(x;θ)

Weights
wα = eS(x

α;m,λ)−S(xα;m̃,λ̃) take
into account dependence on
parameters θ

HMC

{x̃α}Nα=1 ∼ e−S(x̃;θ̃)

Samples carry dependence on
the parameters θ̃

How are these methods related?
Toy model: pσ(x) =

1

σ
√
2π

e−
x2

2σ2 , {xα} ∼ pσ∗=1,

σ∗ = 1 −→ σ wα(x) = x− dependent

Transformation: yα = σxα, {yα} ∼ pσ

σ∗ = 1 −→ σ wα(y) = y − independent ‘No Reweighting’

Comparison & Change of variablesComparison & Change of variables

21/19

Reweighting

{xα}Nα=1 ∼ e−S(x;θ)

Weights
wα = eS(x

α;m,λ)−S(xα;m̃,λ̃) take
into account dependence on
parameters θ

HMC

{x̃α}Nα=1 ∼ e−S(x̃;θ̃)

Samples carry dependence on
the parameters θ̃

How are these methods related?
Toy model: pσ(x) =

1

σ
√
2π

e−
x2

2σ2 , {xα} ∼ pσ∗=1,

σ∗ = 1 −→ σ wα(x) = x− dependent

Transformation: yα = σxα, {yα} ∼ pσ

σ∗ = 1 −→ σ wα(y) = y − independent ‘No Reweighting’

Comparison & Change of variablesComparison & Change of variables

22/19

yα = σxα

ỹα = xα + xαε

ε = σ − 1

What about HMC?
Equations of motion

ẍ0 = −x0
σ2

, ⟨x0⟩

ẍ1 = −x1
σ2

+ 2
x0
σ3

, ⟨x1⟩ = ⟨x0⟩

0 250 500 750 1000
−4

−2

0

2

4

t

Order 0
Order 1

Hamiltonian method finds the change of variables x → ỹ that lead to
constant reweighting factors

Comparison & Change of variablesComparison & Change of variables

22/19

yα = σxα ỹα = xα + xαε ε = σ − 1

What about HMC?
Equations of motion

ẍ0 = −x0
σ2

, ⟨x0⟩

ẍ1 = −x1
σ2

+ 2
x0
σ3

, ⟨x1⟩ = ⟨x0⟩

0 250 500 750 1000
−4

−2

0

2

4

t

Order 0
Order 1

Hamiltonian method finds the change of variables x → ỹ that lead to
constant reweighting factors

Comparison & Change of variablesComparison & Change of variables

22/19

yα = σxα ỹα = xα + xαε ε = σ − 1

What about HMC?
Equations of motion

ẍ0 = −x0
σ2

, ⟨x0⟩

ẍ1 = −x1
σ2

+ 2
x0
σ3

, ⟨x1⟩ = ⟨x0⟩

0 250 500 750 1000
−4

−2

0

2

4

t

Order 0
Order 1

Hamiltonian method finds the change of variables x → ỹ that lead to
constant reweighting factors

Comparison & Change of variablesComparison & Change of variables

22/19

yα = σxα ỹα = xα + xαε ε = σ − 1

What about HMC?
Equations of motion

ẍ0 = −x0
σ2

, ⟨x0⟩

ẍ1 = −x1
σ2

+ 2
x0
σ3

, ⟨x1⟩ = ⟨x0⟩

0 250 500 750 1000
−4

−2

0

2

4

t

Order 0
Order 1

Hamiltonian method finds the change of variables x → ỹ that lead to
constant reweighting factors

	Appendix
	

