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Physical properties — Euclidean time behavior of 2-point functions
Clwo) = 3 (O1@)0(0)) = So10l0) e =0 ——— (o]0} *e=" ™

large time behavior
energy levels, matrix elements
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Physical properties — Euclidean time behavior of 2-point functions

— T — 2 — x0 N2 —Ixo
Clan) = 3 {01()00)) = 31010} e s [0J0l) e
x
= large time behavior
= energy levels, matrix elements
Parisi/Lepage argument for the variance (pavis 1981 Lepage 1959]
Case of a scalar interpolator

0% (20) o (0% (x0)0%(0)) — (O()0(0))*
{A(20)B(0)) ——=— (A(z0)) (B(0)) = (A(0)) (B(0))

O'(LU()) _— C(.’Eo = 0)/\/ Nconf

To—00
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Physical properties — Euclidean time behavior of 2-point functions

— T — 2 — x0 N2 —Ixo
Clan) = 3 {01()00)) = 31010} e s [0J0l) e
x
= large time behavior
= energy levels, matrix elements
Parisi/Lepage argument for the variance (pavis 1981 Lepage 1959]
Case of a scalar interpolator

0% (20) o (0% (x0)0%(0)) — (O()0(0))*
{A(20)B(0)) ——=— (A(z0)) (B(0)) = (A(0)) (B(0))

O'(LU()) _— C(.’Eo = 0)/\/ Nconf

To—00

Signal to Noise
error[C(zg)] el oo

C(xO) To—r00 Neont
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More generally: apply the same argument to the variance

(0(@)0"(@)0(0)0(0)) = Z\<0l02!n g p— (TP C R

To—00
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The Signal to Noise problem

= More generally: apply the same argument to the variance

To—00

(O1(@)01(@)0(0)0(0)) = >~ [(0[0%n)[*e™" =0 —— |(0[Olj) e

error[C(x)] _elBi=Ei/2)z0

(7(%0) xOA»oo/ ]Véonf
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The Signal to Noise problem
= More generally: apply the same argument to the variance

(O1(@)01(@)0(0)0(0)) = >~ [(0[0%n)[*e™" =0 —— |(0[Olj) e

To—00

error[C(x)] _elBi=Ei/2)z0

(7(x0) xOA»oo/ ]Véonf

Scalar: StN ~ e¢fozo
Pion: StN ~ const.
Proton: StN ~ e(mp—3mz)zo

mEE EE =m
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The Signal to Noise problem
= More generally: apply the same argument to the variance

(O1(@)01(@)0(0)0(0)) = >~ [(0[0%n)[*e™" =0 —— |(0[Olj) e

To—00

= @

IR
error[C(zg)] e(Fi=Ej/2)zo st Igl”%mm%
Clo) 20+ /Neont ey
€07t H
Z | Trrsasses HHHH
0.6
:. Scalar: StN ~ eEO-TO S T ff?r(;:%vga
n . .V(f,‘)
= Pion: StN ~ const. W, = o
“ Proton: StN ~ e(mp—3m=)zo R

[Sommer 2014]
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Longstanding & ubiquitous problem
in MC
Typical solutions (smearing, GEVP,
etc.)

== Allow to extract information at

earlier xq

= Excited state contamination
== Do not solve the StN problem

« LW

. LZB
1.00
< 0.98 } l
|
0.96 { {
0.94
0 10 15 20 25
t/a

[Blum et al. 2016]
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1.02 ‘ ‘ ‘ Y LW
. LZB
Longstanding & ubiquitous problem 1.00
in MC -
Typical solutions (smearing, GEVP, gz 098 } l
etc.) g i %
== Allow to extract information at 0.96 { {
earlier xg }
<= Excited state contamination 0.94
Do not solve the StN problem ‘
0 5 10 15 20 25
t/a
[Blum et al. 2016]

Source:
2-point expectation value
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Derivatives & Sources — another perspective

= Do not compute a 2-point function
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Derivatives & Sources — another perspective

= Do not compute a 2-point function
= Add source to the action

0

AT | ;g

1-point function!

Z[J] = /D¢e—5[¢]+r/()(:1f00> SN C(t)= (O(xp))
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Do not compute a 2-point function
Add to the action

Z[J] = / Dge= 51+ —
1-point function!

1-point expectation value
Variance of a derivative depends on how it is computed
(usual 2-point function corresponds to a reweighting evaluation of the derivative)
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Do not compute a 2-point function
Add to the action

Z|J) = / Dge 51+ —
1-point function!

1-point expectation value
Variance of a derivative depends on how it is computed

= (usual 2-point function corresponds to a reweighting evaluation of the derivative)
How to compute derivatives efficiently

" With ﬁnite differences [Detmold 2005]
== Stochastic automatic differentiation [c.c., A. Ramos, B. Zaldivar, 2024]
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Automatic Differentiation — truncated polynomials

= Extend AD to MC methods
- Power series O(EK )

5)2330+$16+:L‘262+---+J)K6K
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Extend AD to MC methods
Power series O(eK )

i5$0+l’16+l‘262+"'+$K€K

Define operations & elementary functions —

Y = x2oyo + (Toy1 + x1y0)e + (Toy2 + 2211 + £U2y0)52 +...

exp(F) = € + ™0z + (23 /2 4+ 29)e? + ...
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Extend AD to MC methods
Power series O(eK )

:iE:Bo+SU1€~I—m262—|—--~+LEK€K
Define operations & elementary functions —

£ = xoyo + (zoy1 + T1y0)e + (Toya + 2T1y1 + Tay0)e” + . ..
exp(F) = € + ™0z + (23 /2 4+ 29)e? + ...

Chain rule
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Automatic Differentiation — truncated polynomials

= Extend AD to MC methods
= Power series O(EK )

L}
| |
|}
u
~ 2 K
T =20+ T1E+ 226" + - -+ TKE
= Define operations & elementary functions — cxact at cach order

Zj = zoyo + (zoy1 + T190)e + (Toyz + 221y1 + Tayo)e” + ...
exp(F) = €™ + e™x1e + ™ (232 + 29)e? + . ..

> Chain rule

Evaluate function at = = 1 + = (Taylor theorem)

7(@) = f(z0) + £'(zo)e + 5 " (@o)e?
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Automatic Differentiation
Extend AD to MC methods

Power series O (EK )

izazo+x15+x262+--~+x;{s

truncated polynomials

K

= Define operations & elementary functions — cxact at cach order

Zj = zoyo + (zoy1 + T190)e + (Toyz + 221y1 + Tayo)e” + ...
exp(F) = €™ + e™x1e + ™ (232 + 29)e? + . ..

Chain rule

Evaluate function at =

f(@)

7+ ¢ (Taylor theorem)

, 1,, . deterministic
f(xo) + f'(xo0)e + §f (xo)e function
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“Teach” the computer to operate with truncated polynomials

Compute Taylor expansion of any deterministic function
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https://igit.ific.uv.es/alramos/formalseries.jl

Numerical Implementation

= “Teach” the computer to operate with truncated polynomials

= Compute Taylor expansion of any deterministic function

Julia implementation:
https://igit.ific.uv.es/alramos/formalseries.jl

Code (Julia)
julia> using FormalSeries

julia> f(x) = 1/(1-x)

julia> xs = Series((0.0,1.0,0.0,0.0,0.0))

julia> f(xs)

Series{Float64, 5}((1.0, 1.0, 1.0, 1.0, 1.0))
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Numerical Implementation

= “Teach” the computer to operate with truncated polynomials
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= Formally equivalent to:

1
f(0+€):1—:1+15+152+1€3+1E4+...
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https://igit.ific.uv.es/alramos/formalseries.jl

Numerical Implementation

= “Teach” the computer to operate with truncated polynomials

= Compute Taylor expansion of any deterministic function

Julia implementation:
https://igit.ific.uv.es/alramos/formalseries.jl

Code (Julia)
julia> using FormalSeries

julia> f(x) = 1/(1-x)

julia> xs = Series((0.0,1.0,0.0,0.0,0.0))

julia> f(xs)

Series{Float64, 5}((1.0, 1.0, 1.0, 1.0, 1.0))

= Formally equivalent to:

1
f(O—l—E):1—:1+15+152+1€3+1E4+...

= Multiple expansions ¢ — ¢;

- Basis of Forward Automatic Differentiation 7/19


https://igit.ific.uv.es/alramos/formalseries.jl

Metropolis as basis for sampling algorithms

Action S(6): 6 denotes some couplings
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Metropolis as basis for sampling algorithms
Action S(6): 6 denotes some couplings

Sampling proposal (e.g., HMC)

S(0) — §'()
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Metropolis as basis for sampling algorithms
Action S(6): 6 denotes some couplings

Sampling proposal (e.g., HMC)
S(0) — S'(0)

Accept using
min {1, e A8l )}
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Metropolis as basis for sampling algorithms
Action S(6): 6 denotes some couplings

Sampling proposal (e.g., HMC)
S(0) — S'(0)

Accept using
min {1, e A8l )}

Not possible if fis a element
Automatic Differentiation ruled out due to Stochastic elements

How to overcome this?

8/19



Reweighting & Automatic Differentiation

[G.C., A. Ramos, B. Zaldivar, 2024]

Samples Expectation values w.r.t

Q- Qp!
{wa (11\721 ~ e S(z;0) e S(x;6")
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Reweighting & Automatic Differentiation

[G.C., A. Ramos, B. Zaldivar, 2024]

Samples

{xa (11\]:1 ~ (jfb(.r:é‘)

= Conventional Reweighting

(f(@)y =

Expectation values w.r.t

(e 1 (@)

S

(=)

(&

—S(x;0")
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[G.C., A. Ramos, B. Zaldivar, 2024]

Samples Expectation values w.r.t

a N —S(x;0")
{1" a=1"" € ) :

Conventional Reweighting

(e 1))

<f(x)>b” = <€ —S/>
Introduce truncated polynomials with ¢ = ¢ + =

w* =e D =1 ()L )ER
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[G.C.,

A. Ramos, B. Zaldivar, 2024]

Samples Expectation values w.r.t

—S(x;0")

{a g:1 ~ e
Conventional Reweighting
(e 1))

(f(@)y = W

Introduce truncated polynomials with ¢ = ¢ + =

w* =e —S(z0) =14+ (...)e+(...)e%+...

Expectation value an Taylor series coefficients

E:ae —sh‘/)f( B 1 o7

e —S(ze,0)

0
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Conventional 2-point functions & Reweighting

Samples Expectation values w.r.t

{xa é\;l ~ 675(;1?:0) efs(a:;ﬁ)fJO(O)
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Conventional 2-point functions & Reweighting

Samples Expectation values w.r.t

{xa éVZl ~ 6;55(;1,‘:()) (ifé(a:;())fJO(O)

= Expansionin J =0+¢

w® = eS(:r,H)—S(;I;,é)vLJO(O) =1+ EO(O) + 820(0)2/2 +...
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Samples Expectation values w.r.t

{2}, ~ o—S(@;6)—=J0(0)
a=
Expansion in J =0+¢

w = =S HI00) Z 1 4 20(0) 4+ £20(0)2/2 + . ..

Reweighting to compute d/d.J

(w*O(xo))
(we)

Conventional computation of a 2-point function can be seen as

(O(z0)) o = = (O(z0)) + &(O(0)0(0)). + O(?)
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Samples Expectation values w.r.t

{2}, ~ o—S(@;6)—=J0(0)
a=
Expansion in J =0+¢

w = =S HI00) Z 1 4 20(0) 4+ £20(0)2/2 + . ..

Reweighting to compute d/d.J

(w*O(xo))
(we)

Conventional computation of a 2-point function can be seen as
Signal to Noise can be seen as a reweighting variance problem

(O(z0)) o = = (O(z0)) + &(O(0)0(0)). + O(?)
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1. Fictitious momenta 7 conjugate to ¢

H(,m) = 57° + 5(656)

2. Solve EoM with initial random momenta

3. Metropolis: Acc./Rej. with probability e~

w(t=0)~ N(0,1)

b= 982 _ . o
“or T T 06

(¢(0), 7(0)) — (o(t), 7(t))
AH

. Repeat
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1. Fictitious momenta 7 conjugate to ¢

1, Promote § — 0 =0 + ¢
H(¢,m) = 3™+ S(¢;0) (also 7, @)

2. Solve EoM with initial random momenta

3. Metropolis: Acc./Rej. with probability e~
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b= 982 _ . o
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1. Fictitious momenta 7 conjugate to ¢

1, Promote § — 0 =0 + ¢
H(¢p,m) = 3™+ S(¢;0) (also 7, @)

2. Solve EoM with initial random momenta

3. Metropolis: Acc./Rej. with probability e~

w(t=0)~ N(0,1)

 9H O <Solve EoM at each 0rder>

S
(6(0), 7(0)) — (6(t), 7(¥))
AH

. Repeat
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1. Fictitious momenta 7 conjugate to ¢

1, Promote § — 0 =0 + ¢
H(¢p,m) = 3™+ S(¢;0) (also 7, @)

2. Solve EoM with initial random momenta

3. Metropolis. Acc. [Rej. -with_ prahahility e=2H

w(t=0)~ N(0,1)

<Solve EoM at each 0rder>

. O0H . OH -
ot T 6 — 9
(¢(0),m(0)) — (o(t),7(t)) AH as Taylor series
Cannot Acc./Rej.

. Repeat
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1. Fictitious momenta 7 conjugate to ¢

1, Promote § — 0 =0 + ¢
H(¢p,m) = 3™+ S(¢;0) (also 7, @)

2. Solve EoM with initial random momenta

3. Metropolis: Acc. [Rej

w(t=0)~ N(0,1)

 9H O <Solve EoM at each 0rder>
(z) = 87 =, mT=—— -
T

d¢ ¢ —9

(¢(0),7(0)) — (&(t), 7(t)) AH as Taylor series
Al Cannot Acc./Rej.

MC average as Taylor series

K
(F6) = 5 S F@) =3 fuc"
a n=0

. Repeat

11/19




HMC samples are

p=0¢+ £Q(1)
{67rasg" = {0 + ey Jasyt ~ &5

Samples carry information about the dependence on 6
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HMC samples are

p=0¢+ £Q(1)
{67rasg" = {0 + ey Jasyt ~ &5

= Samples carry information about the dependence on 6

Usual MC averages

(0(0)) = — 305"

= (0@ + 1 (0(0)e

= No RW factors — no disconnected contributions
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HMC samples are

b =0+edq
{67rasg" = {0 + ey Jasyt ~ &5

Samples carry information about the dependence on 6

Usual MC averages

(00)) = 5y 2206

= (0@ + 1 (0(0)e

== No RW factors — no disconnected contributions

Hamiltonian AD finds the exact that leads to constant RW

factors [(c.c., A. Ramos, B. Zaldivar, 2024; G.C. 2025 (Thesis)]
12/19



Field transformations & Reweighting
= Reweighting generally leads to large variance
«=  weights w®

13/19



Reweighting generally leads to large variance
= weights w®

Consider a change of variables reweighting

¢ — d=0+ef(9)
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Reweighting generally leads to large variance
= weights w®

Consider a change of variables reweighting
¢ — 6 =0¢+cf(9)
Reweighting factors become

W[¢] = exp [—SJ 4] + log

do
a6 + S[¢]
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Reweighting generally leads to large variance
= weights w®
Consider a change of variables reweighting

¢ —d=0+ef(9)
Reweighting factors become

W[¢] = exp [—SJ 4] + log

do
a6 + S[¢]

Find transformation that eliminates RW factors
Exact — RW factors drop from the computation!

dé B
a6 + S[o) =

= Approximate — partially eliminate RW factors

—5][(;5] + log

13/19



Operator:

Good testbed — No excited state contamination
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Operator:

Good testbed — No excited state contamination

HAD (HMC + AD):

S(¢) :Slatt(¢) +J
J=0+¢
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Operator:

Good testbed — No excited state contamination

$e) =7(a)
HAD (HMC + AD): Fa)= 5 32 [6w+ )+ 3 — p)
w

S(¢) =St () + J — (4+ m2)P(x) — 40G° (x)

J=0+¢
+

14/19



HAD solution for the Signal to Noise problem
Clzo)” " = (O(20)0(0))

C(wo) 1P = <O($0)>(1)
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HAD solution for the Signal to Noise problem
C(0)2 7t = (O(10)0(0))

0 20 10 60 80 100 120
zy/a
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HAD solution for the Signal to Noise problem
Clzo)” """ = (O(20)0(0))

- C(l’o +a)
C(:L’O)HAD _ <O(LL’0)>(1) .

C(xo)

Megr(To) = — log

24% % 128; m* = — 0.020815, A = 0.025

2 — poi
—— HAD,

0 20 10 60 80 100 120
zy/a
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HAD solution for the Signal to Noise problem
Clzo)” """ = (O(20)0(0))

~ efi(z9) = — log Clao +a)
C(LUO)HAD — <O(LLO)>(1) eff (L0 C(xo) .
) 24° % 128; 1m® = — 0.020815, A = 0.025 24° x 128; 1% = — 0.020815, A = 0.025
10° F
2 — poi " 2 — point
——HAD, A HAD
10 03 {
;510’2 3
~— (E .
© " Hf“““A“Aul”HHH‘ AAAAAAAAAAAAA
wef ‘
0.1
10 1 1 = 1 1 1 | | | |
0 20 10 60 80 100 120 0 10 20 30 10
zy/a xy/a
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HAD solution for the Signal to Noise problem

C (o)
C(.’L’())HAD

<(>(w0)>(1)

24% % 128; m* = — 0.020815, A = 0.025

107 | 0.4
2 — poi
——HAD

1L

10 0.3

—~
S, £

Lw o

S} .
0

0.1

0 20 10 60 80 100 120
zy/a
L}

= HAD solves StN problem completely

convergence
== compact variables, complex interpolators

C(l‘o + a)
C(wo)

efi(z9) = — log

24% x 128; m* = — 0.020815, A = 0.025

2 — point
A HAD

15/19



Transformation?

Sl )= 54 lz

21 6p+0(), p = 2sin(ap/2)
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Transformation?

Sl )= 54 lz

¢p + O, p = 2sin(ap/2)

Free Theory case — exact transformation

= = 1 o(p
Z¢(Oax)v ¢p — gbp = g[)p )4}:[25

transf

= Miranst, = M _ 5
- Transforms S%¢(¢) into S?ee(¢)
Constant reweighting factors
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Transformation?

Sl )= 54 [z

bp+00),  p=2sin(ap/2)

Free Theory case — exact transformation

+ ms

transf

~ o(p
ng)(o’f)’ ¢p — pr = d’p %<7]>5

= Miranst, = M _ 5
Transforms S%¢(¢) into S?ee(¢)
Constant reweighting factors

A # 0: use the same (approximate) transformation

" Myranst. = MR
16/19



Exact & approximate transformations

= Conventional samples tuned to have
(amp)? ~ 0.025
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Exact & approximate transformations

= Conventional samples tuned to have
(amp)? ~ 0.025

24% x 128; 1m” = 0.025, A = 0.0

0.30
2 — point
025t I TRW, i} =0.025
A HAD
== =Fxact
020 F
&

015 |- R R

0.10

5 10 15 2
xy/a
* Exact for A =0
HAD = TRW
-« Confirms reparametrization
argument
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Exact & approximate transformations

= Conventional samples tuned to have
(amp)? ~ 0.025

24% x 128; 1m” = 0.025, A = 0.0

0.30
2 — point
025t I TRW, i} =0.025
A HAD
== =Fxact
_ 020
I~
0.15 -*?'*’*'****+'+’+'#'4 %
0.10
5 10 15 20
xy/a
= Exact for A =0
n

HAD = TRW

== Confirms reparametrization
argument

L)
2 p2 +m?

transf

pr — é;p = pr +

24% x 128; m® = — 0.020815, A = 0.025

04 F
017

ER

0.13

= 0.12
< 2 4 6 8 10 12 14 .-
€ 02t

2 — poin B
o1r [ TRW,ml, = 0.027
A HAD

0 10 20 30
z/a
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Exact & approximate transformations

= Conventional samples tuned to have
(amp)? ~ 0.025

24% x 128; 1m” = 0.025, A = 0.0

0.30
2 — point
025t I TRW, i} =0.025
A HAD
== =Fxact
020 f

Mgy

015 |- R R

0.10

5 10 15 20
xy/a

= Exact for A\ =0
HAD = TRW

-« Confirms reparametrization
argument

~ 1 0
bo— b= b+ 2D
p p p 2 2 2
p°+ Miranst
24% % 128; 12— — 0.020815, A — 0.025
04 |
017
0.16 I
v sheadkisdi T#T
03 F o014

0.13

= 0.12
< 2 4 6 8 10 12 14
€ 02t

2 — point
01t [ TRW,m}, . = 0.027
A HAD

0 10 20 30
z/a

= Approximate for \ # 0
= Still provides an improvement

== But how do we choose Mranst.?  17/19



Interacting case — transformation dependence

1 (ﬁ)

| A
= Scan over Myyans. (cheap) bp — ¢p = ¢p + 5 =
+ mtransf
24% % 128; 1> = — 0.020815, A = 0.025
0.028 —
0.027 f _EAD
P
0.026
S 0025 | S— Hj — T — —
0.024
0.023
00050 —0.0025_ 00000 00025 0.0050
mtransf. - mR
-

= Optimal Myipans, = Mg
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Scan over Myyans. (cheap)

24% % 128 m® = — 0.020815, A = 0.025

0.028 -
TRW
0.027 | HAD
2p
0.026
o
=3
€ 0025 | — ———— e — e — o — o
0.024
0.023 -

| | | | |
00050 —0.0025 00000  0.0025  0.0050
Mranst. — TR

Optimal Myirans. = MR

Nonetheless, large range of Mirans.

$p = $p = bp +

160

2p2 4+ m?

transf
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Interacting case — transformation dependence

1 (17)

= Scan over Tgans. (cheap) bp — ¢p = ¢p + ==
2 P2+ m2 g + mtransf

24% x 128; 1m? = — 0.020815, A = 0.025 24% x 128, m? = — 0.33085, A = 0.2

0.028 0.027 1
TRW TRW

L e AD 0.026 + e AD
0.027
2p 2p L J
0.026 | 0.025 | j —_— - —
~F > 0.024 |
£ 0.025 - ——+—T—i—T—~1—
0.023 |

meff

0.024
0.022
0.023
0.021 +
—0.0050  —0.0025 0.0000 0.0025 0.0050 —0.0050  —0.0025 0.0000 0.0025 0.0050
Miranst. — MR Miranst. — MR
. . .
= Optimal 7rans. = MR

= Nonetheless, large range of Mgrans.
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Interacting case — transformation

= Scan over Tgans. (cheap)

24% x 128; 1m? = — 0.020815, A = 0.025

0.028 TRW
0.027 ;‘IAD
P
0.026
%
€ 0.025 —_—— - T —_ —_
0.024
0.023
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= Precision degrades with A
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Scan over Myyans. (cheap)

24% % 128 m® = — 0.020815, A = 0.025
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e
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Nonetheless, large range of Mirans.

bp = By = b+ 22D

52
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24 x 128 m® = — 1.6, A =10
0.024
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= 0.020
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0.016 2 — point
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—0.006 —0.004 —0.002 0.000 0.002 0.004 0.006
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Precision degrades with A

Mtrans. 7 Mpg still provides an
improvement w.r.t. 2-point
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StN is an important problem for lattice field theory

A change of perspective of the StN is possible:

<= The usual 2-point computation is a
the StN problem stems from the variance of the RW factors
Correlator as derivative of a 1-point function — variance depends on how it is

computed (RW is just one possible way)

Key ingredient: Stochastic AD

== Computes derivatives
Single simulation, no need for finite-differences

Hamiltonian method solves the StN exactly
= mnot generally applicable (convergence, complex interpolators, etc.)

Field transformations can reduce (or eliminate) the variance — solves the StN problem

= Re-utilize samples — TRW is cheap

% General (no problems with convergence, etc)
* Normalizing flows/Trivializing maps — attack the StN and not the sampling
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Comparison & Change of variables

Reweighting

= {z}, ~ e 5@
= Weights i * Samples carry dependence on
w® = eS@*mA)=S(@*m.A) take the parameters 6

. {ia (])‘\le ~ e—S(:E;é)

into account dependence on
parameters 6

J

How are these methods related?
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Comparison & Change of variables

Reweighting

= {z} ) ~ e S0
- Weights
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Comparison & Change of variables

Reweighting

= {z} ) ~ e S0

- Weights )
w® = eS(xo‘;m,)\)—S(xo‘;ﬁt,A) take

. {ja g:1 ~ e—S(cE;é)

* Samples carry dependence on
the parameters 0

into account dependence on
parameters 6

J

How are these methoc%s

po() = 7

e_ 202

Toy model:
ov2m

cf=1—0

Transformation: y* = oz,
wa

cf=1—0

(y) = y — independent

related?

) {ma} ~ Por—1,

w(x) = x — dependent

{ya} ~ Do
‘No Reweighting’
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Comparison & Change of variables

y* =ox® e=o0—-1
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Comparison & Change of variables

y¢ = ox® g ="+ 1" e=0-1
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Comparison & Change of variables

y¢ = ox® g ="+ 1" e=0—1

What about HMC'? Tg=—— (x0)
Equations of motion

Order 0
Order 1

<.’I71> — <.’1,‘()>
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Comparison & Change of variables

y* =ox” gt =a"+ 1" e=o0—1
What about [1MI(? Fo=—22, (o)
Equations of motion gl Zo

Order 0

= Hamiltonian method finds the change of variables z — § that lead to
constant reweighting factors
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