Recent developments for proton GPDs from lattice QCD

Martha Constantinou

Second LatticeNET workshop on challenges in Lattice field theory

(Benasque Science Center, Mar 30 - Apr 05, 2025)

OUTLINE

A. Methods to access GPDs from lattice QCD

B. Selected results for the proton:

- twist-2 GPDs
- twist-3 GPDs

C. Synergy with phenomenology

D. Concluding remarks

OUTLINE

A. Methods to access GPDs from lattice QCD

- **B.** Selected results for the proton:
 - twist-2 GPDs
 - twist-3 GPDs

$$f_i = f_i^{(0)} + \frac{f_i^{(1)}}{Q} + \frac{f_i^{(2)}}{Q^2} \cdots$$

- **C.** Synergy with phenomenology
- **D.** Concluding remarks

Twist-2 $(f_i^{(0)})$			
Quark Nucleon	U (γ ⁺)	L (γ ⁺ γ ⁵)	Τ (σ ^{+j})
U	$H(x, \xi, t)$ $E(x, \xi, t)$ unpolarized		
L		$\widetilde{H}(x,\xi,t)$ $\widetilde{E}(x,\xi,t)$ helicity	
т			$\begin{array}{c} H_T, E_T\\ \widetilde{H}_T, \widetilde{E}_T\\ \text{transversity} \end{array}$

Nucleon Characterization

Wigner distributions

Т

- ★ Fully characterize partonic structure of hadrons
- ★ Provide multi-dim images of the parton distributions in phase space

Correlations between momenta, positions, spins

★ Information on the hadron's mechanical properties (OAM, pressure, etc.)

Nucleon Characterization

Wigner distributions

'זנ'

- ★ Fully characterize partonic structure of hadrons
- \star Provide multi-dim images of the parton distributions in phase space

★ Partons contain information on
 x: longitudinal momentum fraction
 k_T: transverse momentum
 *b*_⊥: impact parameter

Correlations between momenta, positions, spins

Information on the hadron's mechanical properties (OAM, pressure, etc.)

Accessing PDFs/GPDs from lattice QCD

★ Parton model: physical picture valid for infinite momentum frame

[R. P. Feynman, Phys. Rev. Lett. 23, 1415 (1969)]

★ PDFs via matrix elements of nonlocal light-cone operators ($-t^2 + \vec{r}^2 = 0$) $f(x) = \frac{1}{4\pi} \int dy^- e^{-ixP^+y^-} \langle P, S | \bar{\psi}_f \gamma^+ W \psi_f | P, S \rangle$

★ Light-cone correlations inaccessible from Euclidean lattices ($\tau^2 + \vec{r}^2 = 0$)

★ Parton model: physical picture valid for infinite momentum frame

[R. P. Feynman, Phys. Rev. Lett. 23, 1415 (1969)]

- ★ PDFs via matrix elements of nonlocal light-cone operators ($-t^2 + \vec{r}^2 = 0$) $f(x) = \frac{1}{4\pi} \int dy^- e^{-ixP^+y^-} \langle P, S | \bar{\psi}_f \gamma^+ W \psi_f | P, S \rangle$
- **t** Light-cone correlations inaccessible from Euclidean lattices ($\tau^2 + \vec{r}^2 = 0$)

★ Parton model: physical picture valid for infinite momentum frame

[R. P. Feynman, Phys. Rev. Lett. 23, 1415 (1969)]

- ★ PDFs via matrix elements of nonlocal light-cone operators ($-t^2 + \vec{r}^2 = 0$) $f(x) = \frac{1}{4\pi} \int dy^- e^{-ixP^+y^-} \langle P, S | \bar{\psi}_f \gamma^+ W \psi_f | P, S \rangle$
- **t** Light-cone correlations inaccessible from Euclidean lattices ($\tau^2 + \vec{r}^2 = 0$)

★ Parton model: physical picture valid for infinite momentum frame

[R. P. Feynman, Phys. Rev. Lett. 23, 1415 (1969)]

- ★ PDFs via matrix elements of nonlocal light-cone operators ($-t^2 + \vec{r}^2 = 0$) $f(x) = \frac{1}{4\pi} \int dy^- e^{-ixP^+y^-} \langle P, S | \bar{\psi}_f \gamma^+ W \psi_f | P, S \rangle$
- **t** Light-cone correlations inaccessible from Euclidean lattices ($\tau^2 + \vec{r}^2 = 0$)

B. Matrix elements of nonlocal operators (quasi-GPDs, pseudo-GPDs)

 $\langle N(P_f) | \bar{\Psi}(z) \Gamma \mathcal{W}(z,0) \Psi(0) | N(P_i) \rangle_{\mu}$

Nonlocal operator with Wilson line

 $\langle N(P')|O_V^{\mu}(x)|N(P)\rangle = \overline{U}(P') \left\{ \gamma^{\mu}H(x,\xi,t) + \frac{i\sigma^{\mu\nu}\Delta_{\nu}}{2m_N}E(x,\xi,t) \right\} U(P) + \text{ht},$ $\langle N(P')|O_A^{\mu}(x)|N(P)\rangle = \overline{U}(P') \left\{ \gamma^{\mu}\gamma_5 \widetilde{H}(x,\xi,t) + \frac{\gamma_5 \Delta^{\mu}}{2m_N} \widetilde{E}(x,\xi,t) \right\} U(P) + \text{ht},$ $\langle N(P')|O_T^{\mu\nu}(x)|N(P)\rangle = \overline{U}(P') \left\{ i\sigma^{\mu\nu}H_T(x,\xi,t) + \frac{\gamma^{[\mu}\Delta^{\nu]}}{2m_N}E_T(x,\xi,t) + \frac{\overline{P}^{[\mu}\Delta^{\nu]}}{m_N^2} \widetilde{H}_T(x,\xi,t) + \frac{\gamma^{[\mu}\overline{P}^{\nu]}}{m_N} \widetilde{E}_T(x,\xi,t) \right\} U(P) + \text{ht},$

B. Matrix elements of nonlocal operators (quasi-GPDs, pseudo-GPDs)

 $\langle N(P_f) | \bar{\Psi}(z) \Gamma \mathcal{W}(z,0) \Psi(0) | N(P_i) \rangle_{\mu}$

Nonlocal operator with Wilson line

 $\langle N(P')|O_V^{\mu}(x)|N(P)\rangle = \overline{U}(P') \left\{ \gamma^{\mu}H(x,\xi,t) + \frac{i\sigma^{\mu\nu}\Delta_{\nu}}{2m_N}E(x,\xi,t) \right\} U(P) + \text{ht}, \\ \langle N(P')|O_A^{\mu}(x)|N(P)\rangle = \overline{U}(P') \left\{ \gamma^{\mu}\gamma_5 \widetilde{H}(x,\xi,t) + \frac{\gamma_5 \Delta^{\mu}}{2m_N} \widetilde{E}(x,\xi,t) \right\} U(P) + \text{ht}, \\ \langle N(P')|O_T^{\mu\nu}(x)|N(P)\rangle = \overline{U}(P') \left\{ i\sigma^{\mu\nu}H_T(x,\xi,t) + \frac{\gamma^{[\mu}\Delta^{\nu]}}{2m_N}E_T(x,\xi,t) + \frac{\overline{P}^{[\mu}\Delta^{\nu]}}{m_N^2} \widetilde{H}_T(x,\xi,t) + \frac{\gamma^{[\mu}\overline{P}^{\nu]}}{m_N} \widetilde{E}_T(x,\xi,t) \right\} U(P) + \text{ht},$

B. Matrix elements of nonlocal operators (quasi-GPDs, pseudo-GPDs)

 $\langle N(P_f) | \bar{\Psi}(z) \Gamma \mathcal{W}(z,0) \Psi(0) | N(P_i) \rangle_{\mu}$

This talk

Nonlocal operator with Wilson line

 $\langle N(P')|O_V^{\mu}(x)|N(P)\rangle = \overline{U}(P') \left\{ \gamma^{\mu}H(x,\xi,t) + \frac{i\sigma^{\mu\nu}\Delta_{\nu}}{2m_N}E(x,\xi,t) \right\} U(P) + \text{ht},$ $\langle N(P')|O_A^{\mu}(x)|N(P)\rangle = \overline{U}(P') \left\{ \gamma^{\mu}\gamma_5 \widetilde{H}(x,\xi,t) + \frac{\gamma_5 \Delta^{\mu}}{2m_N} \widetilde{E}(x,\xi,t) \right\} U(P) + \text{ht},$ $\langle N(P')|O_T^{\mu\nu}(x)|N(P)\rangle = \overline{U}(P') \left\{ i\sigma^{\mu\nu}H_T(x,\xi,t) + \frac{\gamma^{[\mu}\Delta^{\nu]}}{2m_N}E_T(x,\xi,t) + \frac{\overline{P}^{[\mu}\Delta^{\nu]}}{m_N^2} \widetilde{H}_T(x,\xi,t) + \frac{\gamma^{[\mu}\overline{P}^{\nu]}}{m_N} \widetilde{E}_T(x,\xi,t) \right\} U(P) + \text{ht},$

B. Matrix elements of nonlocal operators (quasi-GPDs, pseudo-GPDs)

 $\langle N(P_f) | \bar{\Psi}(z) \Gamma \mathcal{W}(z,0) \Psi(0) | N(P_i) \rangle_{\mu}$

This talk

Nonlocal operator with Wilson line

 $\langle N(P')|O_V^{\mu}(x)|N(P)\rangle = \overline{U}(P') \left\{ \gamma^{\mu}H(x,\xi,t) + \frac{i\sigma^{\mu\nu}\Delta_{\nu}}{2m_N}E(x,\xi,t) \right\} U(P) + \text{ht},$ $\langle N(P')|O_A^{\mu}(x)|N(P)\rangle = \overline{U}(P') \left\{ \gamma^{\mu}\gamma_5 \widetilde{H}(x,\xi,t) + \frac{\gamma_5\Delta^{\mu}}{2m_N}\widetilde{E}(x,\xi,t) \right\} U(P) + \text{ht},$ $\langle N(P')|O_T^{\mu\nu}(x)|N(P)\rangle = \overline{U}(P') \left\{ i\sigma^{\mu\nu}H_T(x,\xi,t) + \frac{\gamma^{[\mu}\Delta^{\nu]}}{2m_N}E_T(x,\xi,t) + \frac{\overline{P}^{[\mu}\Delta^{\nu]}}{m_N^2}\widetilde{H}_T(x,\xi,t) + \frac{\gamma^{[\mu}\overline{P}^{\nu]}}{m_N}\widetilde{E}_T(x,\xi,t) \right\} U(P) + \text{ht},$

Calculation challenges

- Standard definition of GPDs in symmetric frame separate calculations at each t
- Statistical noise increases with P₃, t
 Projection:
 billions of core-hours for physical point at P₃ = 3 GeV

B. Matrix elements of nonlocal operators (quasi-GPDs, pseudo-GPDs)

 $\langle N(P_f) | \bar{\Psi}(z) \Gamma \mathcal{W}(z,0) \Psi(0) | N(P_i) \rangle_{\mu}$

This talk

Nonlocal operator with Wilson line

 $\langle N(P')|O_V^{\mu}(x)|N(P)\rangle = \overline{U}(P') \left\{ \gamma^{\mu}H(x,\xi,t) + \frac{i\sigma^{\mu\nu}\Delta_{\nu}}{2m_N}E(x,\xi,t) \right\} U(P) + \text{ht},$ $\langle N(P')|O_A^{\mu}(x)|N(P)\rangle = \overline{U}(P') \left\{ \gamma^{\mu}\gamma_5 \widetilde{H}(x,\xi,t) + \frac{\gamma_5\Delta^{\mu}}{2m_N}\widetilde{E}(x,\xi,t) \right\} U(P) + \text{ht},$ $\langle N(P')|O_T^{\mu\nu}(x)|N(P)\rangle = \overline{U}(P') \left\{ i\sigma^{\mu\nu}H_T(x,\xi,t) + \frac{\gamma^{[\mu}\Delta^{\nu]}}{2m_N}E_T(x,\xi,t) + \frac{\overline{P}^{[\mu}\Delta^{\nu]}}{m_N^2}\widetilde{H}_T(x,\xi,t) + \frac{\gamma^{[\mu}\overline{P}^{\nu]}}{m_N}\widetilde{E}_T(x,\xi,t) \right\} U(P) + \text{ht},$

Calculation challenges

- Standard definition of GPDs in symmetric frame separate calculations at each t
- Statistical noise increases with P₃, t
 Projection:
 billions of core-hours for physical point at P₃ = 3 GeV

C. Other methods

See next slide

★ Hadronic tensor

Auxiliary scalar quark Fictitious heavy quark Auxiliary scalar quark Higher moments Quasi-distributions (LaMET) Compton amplitude and OPE Pseudo-distributions Good lattice cross sections PDFs without Wilson line Moments of PDFs of any order

[K.F. Liu, S.J. Dong, PRL 72 (1994) 1790, K.F. Liu, PoS(LATTICE 2015) 115]
[U. Aglietti et al., Phys. Lett. B441, 371 (1998), arXiv:hep-ph/9806277]
[W. Detmold, C. J. D, Lin, Phys. Rev. D73, 014501 (2006)]
[V. Braun & D. Mueller, Eur. Phys. J. C55, 349 (2008), arXiv:0709.1348]
[Z. Davoudi, M. Savage, Phys. Rev. D86, 054505 (2012)]
[X. Ji, PRL 110 (2013) 262002, arXiv:1305.1539; Sci. China PPMA. 57, 1407 (2014)]
[A. Chambers et al. (QCDSF), PRL 118, 242001 (2017), arXiv:1703.01153]
[A. Radyushkin, Phys. Rev. D 96, 034025 (2017), arXiv:1705.01488]
[Y-Q Ma & J. Qiu, Phys. Rev. Lett. 120, 022003 (2018), arXiv:1709.03018]
[Y. Zhao Phys.Rev.D 109 (2024) 9, 094506, arXiv:2306.14960]
[A. Shindler, Phys.Rev.D 110 (2024) 5, L051503, arXiv:2311.18704]

Hadronic tensor
 Auxiliary scalar quark
 Fictitious heavy quark

Auxiliary scalar quark Higher moments Quasi-distributions (LaMET) Compton amplitude and OPE Pseudo-distributions Good lattice cross sections PDFs without Wilson line Moments of PDFs of any order

[K.F. Liu, S.J. Dong, PRL 72 (1994) 1790, K.F. Liu, PoS(LATTICE 2015) 115] [U. Aglietti et al., Phys. Lett. B441, 371 (1998), arXiv:hep-ph/9806277] [W. Detmold, C. J. D, Lin, Phys. Rev. D73, 014501 (2006)] [V. Braun & D. Mueller, Eur. Phys. J. C55, 349 (2008), arXiv:0709.1348] [Z. Davoudi, M. Savage, Phys. Rev. D86, 054505 (2012)] [X. Ji, PRL 110 (2013) 262002, arXiv:1305.1539; Sci. China PPMA. 57, 1407 (2014)] [A. Chambers et al. (QCDSF), PRL 118, 242001 (2017), arXiv:1703.01153] [A. Radyushkin, Phys. Rev. D 96, 034025 (2017), arXiv:1705.01488] [Y-Q Ma & J. Qiu, Phys. Rev. Lett. 120, 022003 (2018), arXiv:1709.03018] [Y. Zhao Phys.Rev.D 109 (2024) 9, 094506, arXiv:2306.14960] [A. Shindler, Phys.Rev.D 110 (2024) 5, L051503, arXiv:2311.18704]

★ Reviews of methods and applications

- A guide to light-cone PDFs from Lattice QCD: an overview of approaches, techniques and results K. Cichy & M. Constantinou (invited review) Advances in HEP 2019, 3036904, arXiv:1811.07248
- Large Momentum Effective Theory X. Ji, Y.-S. Liu, Y. Liu, J.-H. Zhang, and Y. Zhao (2020), 2004.03543
- The x-dependence of hadronic parton distributions: A review on the progress of lattice QCD
 M. Constantinou (invited review) Eur. Phys. J. A 57 (2021) 2, 77, arXiv:2010.02445

T

(Euclidean) Matrix elements of non-local operators with boosted hadrons

 $\mathscr{M}(P_f, P_i, z) = \langle N(P_f) | \bar{\Psi}(z) \Gamma \mathscr{W}(z, 0) \Psi(0) | N(P_i) \rangle_{\mu}$

(Euclidean) Matrix elements of non-local operators with boosted hadrons

$$\mathscr{M}(P_f, P_i, z) = \langle N(P_f) | \bar{\Psi}(z) \Gamma \mathscr{W}(z, 0) \Psi(0) | N(P_i) \rangle_{\mu}$$

(Euclidean) Matrix elements of non-local operators with boosted hadrons

$$\mathcal{M}(P_{f}, P_{i}, z) = \langle N(P_{f}) | \Psi(z) \Gamma \mathcal{W}(z, 0) \Psi(0) | N(P_{i}) \rangle_{\mu}$$

Ji, Phys. Rev. Lett. 110 (2013) 262002] quasi-PDFs pseudo-ITD [A. Radyushkin, PRD 96, 034025 (2017)]

$$\tilde{q}_{\Gamma}^{\text{GPD}}(x, t, \xi, P_{3}, \mu) = \int \frac{dz}{4\pi} e^{-ixP_{3}z} \mathcal{M}(P_{f}, P_{i}, z)$$

$$\mathbb{M}(v, \xi, t; z_{3}^{2}) \equiv \frac{\mathcal{M}(v, \xi, t; z_{3}^{2})}{\mathcal{M}(0, 0, 0; z^{2})} \quad (v = z \cdot p)$$
Matching in momentum space (Large Momentum Effective Theory)
Light-cone PDFs & GPDs
$$\mathcal{M}(v, \xi, t; z_{3}^{2}) \equiv \frac{\mathcal{M}(v, \xi, t; z_{3}^{2})}{\int_{-1}^{1} dx e^{ivx}q(x, \mu^{2})}$$

[X. [X.

(Euclidean) Matrix elements of non-local operators with boosted hadrons

$$\mathcal{M}(P_{f}, P_{i}, z) = \langle N(P_{f}) | \bar{\Psi}(z) \Gamma \mathcal{W}(z, 0) \Psi(0) | N(P_{i}) \rangle_{\mu}$$
[X. Ji, Phys. Rev. Lett. 110 (2013) 262002]
[X. Ji, Sci. China Phys. M.A. 57 (2014) 1407]

Matching resembles
factorization:
 $\sigma_{\text{DIS}}(x, Q^{2}) = \sum_{i} [H_{\text{DIS}}^{i} \otimes f_{i}](x, Q^{2})$

 $\tilde{q}_{\Gamma}^{\text{GPD}}(x, t, \xi, P_{3}, \mu) = \int \frac{dz}{4\pi} e^{-ixP_{3}z} \mathcal{M}(P_{f}, P_{i}, z)$

Matching in momentum space
(Large Momentum
Effective Theory)

Matching in momentum space
(Large Momentum
Effective Theory)

Light-cone PDFs & GPDs

 $\mathcal{M}(v, \xi, t; z_{3}^{2}) \equiv \frac{\mathcal{M}(v, \xi, t; z_{3}^{2})}{\mathcal{M}(0, 0, 0; z^{2})}$
 $(v = z \cdot p)$

"ון

(Euclidean) Matrix elements of non-local operators with boosted hadrons

$$\mathcal{M}(P_{f}, P_{i}, z) = \langle N(P_{f}) | \bar{\Psi}(z) \Gamma \mathcal{W}(z, 0) \Psi(0) | N(P_{i}) \rangle_{\mu}$$

[X. Ji, Sci. China Phys. M.A. 57 (2014) 1407]

Quasi-PDFs

gamma data for every state of the second state of the second

Quasi-GPDs: contact with light-cone quantities

- Non-local operators with Wilson line fully renormalizable to all orders
 [T. Ishikawa et al., Phys. Rev. D 96, no. 9 (2017) 094019]
 [X. Ji et al., Phys. Rev. Lett. 120, no. 11 (2018) 112001]
- ★ Quasi- & light-cone distributions share the same infrared structure
- ★ Differences in UV region (perturbatively calculable, LaMET)

Quasi-GPDs: contact with light-cone quantities

- Non-local operators with Wilson line fully renormalizable to all orders
 [T. Ishikawa et al., Phys. Rev. D 96, no. 9 (2017) 094019]
 [X. Ji et al., Phys. Rev. Lett. 120, no. 11 (2018) 112001]
- ★ Quasi- & light-cone distributions share the same infrared structure
- ★ Differences in UV region (perturbatively calculable, LaMET)

Lattice Calculations of GPDs

Collection of results for unpolarized PDF

[M. Constantinou et al. (2020 PDFLattice Report), Prog.Part.Nucl.Phys. 121 (2021) 103908]

- **★** Several improvements:
 - More calculations at physical quark masses
 - Ensembles at various lattice spacings
 - Addressing systematic uncertainties due to methodologies

Disclaimer

The field of GPDs is still developing and sources of systematic uncertainties have not been fully addressed

Disclaimer

The field of GPDs is still developing and sources of systematic uncertainties have not been fully addressed

- Discretization effects
- physical pion mass
- volume effects
- inverse problem
- matching formalism
- connection to light-cone
- higher twist contaminations

leading twist

GPDs on the lattice: the unpolarized case

$\bigstar \quad \text{Off-forward matrix elements of non-local light-cone operators} \\ F^{[\gamma^+]}(x,\Delta;\lambda,\lambda') = \frac{1}{2} \int \frac{dz^-}{2\pi} e^{ik \cdot z} \langle p';\lambda' | \bar{\psi}(-\frac{z}{2}) \gamma^+ \mathcal{W}(-\frac{z}{2},\frac{z}{2}) \psi(\frac{z}{2}) | p;\lambda \rangle \Big|_{z^+=0,\vec{z}_\perp=\vec{0}_\perp}$

★ Parametrization in two leading twist GPDs

$$F^{[\gamma^+]}(x,\Delta;\lambda,\lambda') = \frac{1}{2P^+} \bar{u}(p',\lambda') \left[\gamma^+ H(x,\xi,t) + \frac{i\sigma^{+\mu}\Delta_{\mu}}{2M} E(x,\xi,t) \right] u(p,\lambda)$$

GPDs on the lattice: the unpolarized case

$\bigstar \quad \text{Off-forward matrix elements of non-local light-cone operators} \\ F^{[\gamma^+]}(x,\Delta;\lambda,\lambda') = \frac{1}{2} \int \frac{dz^-}{2\pi} e^{ik \cdot z} \langle p';\lambda' | \bar{\psi}(-\frac{z}{2}) \gamma^+ \mathcal{W}(-\frac{z}{2},\frac{z}{2}) \psi(\frac{z}{2}) | p;\lambda \rangle \Big|_{z^+=0,\vec{z}_\perp=\vec{0}_\perp}$

★ Parametrization in two leading twist GPDs

$$F^{[\gamma^+]}(x,\Delta;\lambda,\lambda') = \frac{1}{2P^+} \bar{u}(p',\lambda') \left[\gamma^+ H(x,\xi,t) + \frac{i\sigma^{+\mu}\Delta_{\mu}}{2M} E(x,\xi,t) \right] u(p,\lambda)$$

How can one define GPDs on a Euclidean lattice?

$\bigstar \quad \text{Off-forward matrix elements of non-local light-cone operators} \\ F^{[\gamma^+]}(x,\Delta;\lambda,\lambda') = \frac{1}{2} \int \frac{dz^-}{2\pi} e^{ik \cdot z} \langle p';\lambda' | \bar{\psi}(-\frac{z}{2}) \gamma^+ \mathcal{W}(-\frac{z}{2},\frac{z}{2}) \psi(\frac{z}{2}) | p;\lambda \rangle \Big|_{z^+=0,\vec{z}_\perp=\vec{0}_\perp}$

★ Parametrization in two leading twist GPDs

$$F^{[\gamma^+]}(x,\Delta;\lambda,\lambda') = \frac{1}{2P^+} \bar{u}(p',\lambda') \left[\gamma^+ H(x,\xi,t) + \frac{i\sigma^{+\mu}\Delta_{\mu}}{2M} E(x,\xi,t) \right] u(p,\lambda)$$

How can one define GPDs on a Euclidean lattice?

\star Potential parametrization (γ^+ inspired)

$$F^{[\gamma^3]}(x,\Delta;\lambda,\lambda';P^3) = \frac{1}{2P^0} \bar{u}(p',\lambda') \left[\gamma^3 H_{Q(0)}(x,\xi,t;P^3) + \frac{i\sigma^{3\mu}\Delta_{\mu}}{2M} E_{Q(0)}(x,\xi,t;P^3) \right] u(p,\lambda)$$

$$F^{[\gamma^0]}(x,\Delta;\lambda,\lambda';P^3) = \frac{1}{2P^0} \bar{u}(p',\lambda') \left[\gamma^0 H_{Q(0)}(x,\xi,t;P^3) + \frac{i\sigma^{0\mu}\Delta_{\mu}}{2M} E_{Q(0)}(x,\xi,t;P^3) \right] u(p,\lambda)$$

$\bigstar \quad \text{Off-forward matrix elements of non-local light-cone operators} \\ F^{[\gamma^+]}(x,\Delta;\lambda,\lambda') = \frac{1}{2} \int \frac{dz^-}{2\pi} e^{ik \cdot z} \langle p';\lambda' | \bar{\psi}(-\frac{z}{2}) \gamma^+ \mathcal{W}(-\frac{z}{2},\frac{z}{2}) \psi(\frac{z}{2}) | p;\lambda \rangle \Big|_{z^+=0,\vec{z}_\perp=\vec{0}_\perp}$

★ Parametrization in two leading twist GPDs

$$F^{[\gamma^+]}(x,\Delta;\lambda,\lambda') = \frac{1}{2P^+} \bar{u}(p',\lambda') \left[\gamma^+ H(x,\xi,t) + \frac{i\sigma^{+\mu}\Delta_{\mu}}{2M} E(x,\xi,t) \right] u(p,\lambda)$$

How can one define GPDs on a Euclidean lattice?

\star Potential parametrization (γ^+ inspired)

$$F^{[\gamma^0]}(x,\Delta;\lambda,\lambda';P^3) = \frac{1}{2P^0} \bar{u}(p',\lambda') \left[\gamma^0 H_{Q(0)}(x,\xi,t;P^3) + \frac{i\sigma^{0\mu}\Delta_{\mu}}{2M} E_{Q(0)}(x,\xi,t;P^3) \right] u(p,\lambda)$$

$\bigstar \quad \text{Off-forward matrix elements of non-local light-cone operators} \\ F^{[\gamma^+]}(x,\Delta;\lambda,\lambda') = \frac{1}{2} \int \frac{dz^-}{2\pi} e^{ik \cdot z} \langle p';\lambda' | \bar{\psi}(-\frac{z}{2}) \gamma^+ \mathcal{W}(-\frac{z}{2},\frac{z}{2}) \psi(\frac{z}{2}) | p;\lambda \rangle \Big|_{z^+=0,\vec{z}_\perp=\vec{0}_\perp}$

★ Parametrization in two leading twist GPDs

$$F^{[\gamma^+]}(x,\Delta;\lambda,\lambda') = \frac{1}{2P^+} \bar{u}(p',\lambda') \left[\gamma^+ H(x,\xi,t) + \frac{i\sigma^{+\mu}\Delta_{\mu}}{2M} E(x,\xi,t) \right] u(p,\lambda)$$

How can one define GPDs on a Euclidean lattice?

\star Potential parametrization (γ^+ inspired)

$$F^{[\gamma^3]}(x,\Delta;\lambda,\lambda';P^3) = \frac{1}{2P^0} \bar{u}(p',\lambda') \left[\frac{1}{2P^0} \bar{u}(p',\lambda') \left[\frac{1}{2P^0} \bar{u}(p',\lambda') + \frac{i\sigma^{3\mu}\Delta_{\mu}}{2M} E_{Q(0)}(x,\xi,t;P^3) \right] u(p,\lambda) \right]$$

finite mixing with scalar [Constantinou & Panagopoulos (2017)]

$$F^{[\gamma^0]}(x,\Delta;\lambda,\lambda';P^3) = \frac{1}{2P^0} \bar{u}(p',\lambda') \left[\gamma^0 H_{Q(0)}(x,\xi,t;P^3) + \frac{i\sigma^{0\mu}\Delta_{\mu}}{2M} E_{Q(0)}(x,\xi,t;P^3) \right] u(p,\lambda)$$

reduction of power corrections in fwd limit [Radyushkin, PLB 767, 314, 2017]

$\bigstar \quad \text{Off-forward matrix elements of non-local light-cone operators} \\ F^{[\gamma^+]}(x,\Delta;\lambda,\lambda') = \frac{1}{2} \int \frac{dz^-}{2\pi} e^{ik \cdot z} \langle p';\lambda' | \bar{\psi}(-\frac{z}{2}) \gamma^+ \mathcal{W}(-\frac{z}{2},\frac{z}{2}) \psi(\frac{z}{2}) | p;\lambda \rangle \Big|_{z^+=0,\vec{z}_\perp=\vec{0}_\perp}$

★ Parametrization in two leading twist GPDs

$$F^{[\gamma^+]}(x,\Delta;\lambda,\lambda') = \frac{1}{2P^+} \bar{u}(p',\lambda') \left[\gamma^+ H(x,\xi,t) + \frac{i\sigma^{+\mu}\Delta_{\mu}}{2M} E(x,\xi,t) \right] u(p,\lambda)$$

How can one define GPDs on a Euclidean lattice?

\star Potential parametrization (γ^+ inspired)

$$F^{[\gamma^{3}]}(x,\Delta;\lambda,\lambda';P^{3}) = \frac{1}{2P^{0}}\bar{u}(p',\lambda') \left[\left(\bigvee_{1} p',\lambda' \right) + \frac{i\sigma^{3\mu}\Delta_{\mu}}{2M} E_{Q(0)}(x,\xi,t;P^{3}) \right] u(p,\lambda) \longrightarrow \begin{array}{l} \text{finite mixing with scalar} \\ \text{[Constantinou \& Panagopoulos (2017)]} \end{array}$$

$$F^{[\gamma^{0}]}(x,\Delta;\lambda,\lambda';P^{3}) = \left(\bigvee_{1} p' H_{Q(0)}(x,\xi,t;P^{3}) + \frac{i\sigma^{0\mu}\Delta_{\mu}}{2M} E_{Q(0)}(x,\xi,t;P^{3}) \right] u(p,\lambda) \longrightarrow \begin{array}{l} \text{reduction of power} \\ \text{corrections in fwd limit} \\ \text{[Radyushkin, PLB 767, 314, 2017]} \end{array}$$

$\bigstar \quad \text{Off-forward matrix elements of non-local light-cone operators} \\ F^{[\gamma^+]}(x,\Delta;\lambda,\lambda') = \frac{1}{2} \int \frac{dz^-}{2\pi} e^{ik \cdot z} \langle p';\lambda' | \bar{\psi}(-\frac{z}{2}) \gamma^+ \mathcal{W}(-\frac{z}{2},\frac{z}{2}) \psi(\frac{z}{2}) | p;\lambda \rangle \Big|_{z^+=0,\vec{z}_\perp=\vec{0}_\perp}$

★ Parametrization in two leading twist GPDs

$$F^{[\gamma^+]}(x,\Delta;\lambda,\lambda') = \frac{1}{2P^+} \bar{u}(p',\lambda') \left[\gamma^+ H(x,\xi,t) + \frac{i\sigma^{+\mu}\Delta_{\mu}}{2M} E(x,\xi,t) \right] u(p,\lambda)$$

How can one define GPDs on a Euclidean lattice?

\star Potential parametrization (γ^+ inspired)

$$F^{[\gamma^{3}]}(x,\Delta;\lambda,\lambda';P^{3}) = \frac{1}{2P^{0}}\bar{u}(p',\lambda') \left[\left(\begin{array}{c} \varphi \\ \varphi \\ \varphi \end{array} \right) + \frac{i\sigma^{3\mu}\Delta_{\mu}}{2M} E_{Q(0)}(x,\xi,t;P^{3}) \right] u(p,\lambda) \rightarrow \begin{array}{c} \text{finite mixing with scalar} \\ \text{[Constantinou & Panagopoulos (2017)]} \end{array}$$

$$F^{[\gamma^{0}]}(x,\Delta;\lambda,\lambda';P^{3}) = \left(\begin{array}{c} \varphi \\ \varphi \\ \varphi \end{array} \right) \left[\gamma^{0}H_{Q(0)}(x,\xi,t;P^{3}) + \left(\begin{array}{c} \varphi \\ \varphi \\ \varphi \end{array} \right) + \left(\begin{array}{c} \varphi \\ \varphi \\ \varphi \end{array} \right) \right] u(p,\lambda) \rightarrow \begin{array}{c} \text{reduction of power} \\ \text{corrections in fwd limit} \\ \text{[Radyushkin, PLB 767, 314, 2017]} \end{array}$$

$$\gamma^{0} \text{ ideal for PDFs} \qquad \gamma^{0} \text{ parametrization is prohibitively expensive}$$

$\bigstar \quad \text{Off-forward matrix elements of non-local light-cone operators} \\ F^{[\gamma^+]}(x,\Delta;\lambda,\lambda') = \frac{1}{2} \int \frac{dz^-}{2\pi} e^{ik \cdot z} \langle p';\lambda' | \bar{\psi}(-\frac{z}{2}) \gamma^+ \mathcal{W}(-\frac{z}{2},\frac{z}{2}) \psi(\frac{z}{2}) | p;\lambda \rangle \Big|_{z^+=0,\vec{z}_\perp=\vec{0}_\perp}$

★ Parametrization in two leading twist GPDs

$$F^{[\gamma^+]}(x,\Delta;\lambda,\lambda') = \frac{1}{2P^+} \bar{u}(p',\lambda') \left[\gamma^+ H(x,\xi,t) + \frac{i\sigma^{+\mu}\Delta_{\mu}}{2M} E(x,\xi,t) \right] u(p,\lambda)$$

How can one define GPDs on a Euclidean lattice?

\star Potential parametrization (γ^+ inspired)

$$F^{[\gamma^{3}]}(x,\Delta;\lambda,\lambda';P^{3}) = \frac{1}{2P^{0}}\bar{u}(p',\lambda') \Big[\left(\begin{array}{c} \varphi \\ \varphi \\ \varphi \end{array} \right) + \frac{i\sigma^{3\mu}\Delta_{\mu}}{2M} E_{Q(0)}(x,\xi,t;P^{3}) \Big] u(p,\lambda) \longrightarrow \begin{array}{c} \text{finite mixing with scalar} \\ \text{[Constantinou & Panagopoulos (2017)]} \end{array}$$

$$F^{[\gamma^{0}]}(x,\Delta;\lambda,\lambda';P^{3}) = \left(\begin{array}{c} \varphi \\ \varphi \\ \varphi \end{array} \right) \Big[\gamma^{0} H_{Q(0)}(x,\xi,t;P^{3}) + \left(\begin{array}{c} \varphi \\ \varphi \\ \varphi \end{array} \right) + \left(\begin{array}{c} \varphi \\ \varphi \\ \varphi \end{array} \right) \Big] u(p,\lambda) \longrightarrow \begin{array}{c} \text{reduction of power} \\ \text{corrections in fwd limit} \\ \text{[Radyushkin, PLB 767, 314, 2017]} \end{array}$$

$$\gamma^{0} \text{ ideal for PDFs} \qquad \gamma^{0} \text{ parametrization is prohibitively expensive}$$

Let's rethink calculation of GPDs !

A Parametrization of matrix elements in Lorentz invariant amplitudes

Vector

$$F_{\lambda,\lambda'}^{\mu} = \bar{u}(p',\lambda') \left[\frac{P^{\mu}}{M} A_{1} + z^{\mu} M A_{2} + \frac{\Delta^{\mu}}{M} A_{3} + i\sigma^{\mu z} M A_{4} + \frac{i\sigma^{\mu \Delta}}{M} A_{5} + \frac{P^{\mu} i\sigma^{z\Delta}}{M} A_{6} + \frac{z^{\mu} i\sigma^{z\Delta}}{M} A_{7} + \frac{\Delta^{\mu} i\sigma^{z\Delta}}{M} A_{8} \right] u(p,\lambda)$$
Axial
[S. Bhattacharya et al., PRD 109 (2024) 3, 034508]

[S. Bhattacharya et al., PRD 109 (2024) 3, 034508]

$$\widetilde{F}^{\mu} = \bar{u}(p_{f},\lambda') \left[\frac{i\epsilon^{\mu P z\Delta}}{m} \widetilde{A}_{1} + \gamma^{\mu} \gamma_{5} \widetilde{A}_{2} + \gamma_{5} \left(\frac{P^{\mu}}{m} \widetilde{A}_{3} + m z^{\mu} \widetilde{A}_{4} + \frac{\Delta^{\mu}}{m} \widetilde{A}_{5} \right) + m \not z \gamma_{5} \left(\frac{P^{\mu}}{m} \widetilde{A}_{6} + m z^{\mu} \widetilde{A}_{7} + \frac{\Delta^{\mu}}{m} \widetilde{A}_{8} \right) \right] u(p_{i},\lambda)$$

$\Rightarrow Parametrization of matrix elements in Lorentz invariant amplitudes$ [S. Bhattacharya et al., PRD 106 (2022) 11, 114512] $F^{\mu}_{\lambda,\lambda'} = \bar{u}(p',\lambda') \left[\frac{P^{\mu}}{M} A_1 + z^{\mu} M A_2 + \frac{\Delta^{\mu}}{M} A_3 + i\sigma^{\mu z} M A_4 + \frac{i\sigma^{\mu \Delta}}{M} A_5 + \frac{P^{\mu}i\sigma^{z\Delta}}{M} A_6 + \frac{z^{\mu}i\sigma^{z\Delta}}{M} A_7 + \frac{\Delta^{\mu}i\sigma^{z\Delta}}{M} A_8 \right] u(p,\lambda)$ [S. Bhattacharya et al., PRD 109 (2024) 3, 034508]

$$\widetilde{F}^{\mu} = \bar{u}(p_{f},\lambda') \bigg[\frac{i\epsilon^{\mu P z \Delta}}{m} \widetilde{A}_{1} + \gamma^{\mu} \gamma_{5} \widetilde{A}_{2} + \gamma_{5} \bigg(\frac{P^{\mu}}{m} \widetilde{A}_{3} + m z^{\mu} \widetilde{A}_{4} + \frac{\Delta^{\mu}}{m} \widetilde{A}_{5} \bigg) + m \not z \gamma_{5} \bigg(\frac{P^{\mu}}{m} \widetilde{A}_{6} + m z^{\mu} \widetilde{A}_{7} + \frac{\Delta^{\mu}}{m} \widetilde{A}_{8} \bigg) \bigg] u(p_{i},\lambda)$$

$$\widetilde{F}^{\mu} = \bar{u}(p_{f},\lambda') \left[\frac{i\epsilon^{\mu P z\Delta}}{m} \widetilde{A}_{1} + \gamma^{\mu} \gamma_{5} \widetilde{A}_{2} + \gamma_{5} \left(\frac{P^{\mu}}{m} \widetilde{A}_{3} + m z^{\mu} \widetilde{A}_{4} + \frac{\Delta^{\mu}}{m} \widetilde{A}_{5} \right) + m \not z \gamma_{5} \left(\frac{P^{\mu}}{m} \widetilde{A}_{6} + m z^{\mu} \widetilde{A}_{7} + \frac{\Delta^{\mu}}{m} \widetilde{A}_{8} \right) \right] u(p_{i},\lambda)$$

Advantages

- Applicable to any kinematic frame and have definite symmetries
- Lorentz invariant amplitudes A_i can be related to the standard GPDs
- Quasi GPDs may be redefined (Lorentz covariant) to eliminate $1/P_3$ contributions

$\bigstar Parametrization of matrix elements in Lorentz invariant amplitudes$ [S. Bhattacharya et al., PRD 106 (2022) 11, 114512][S. Bhattacharya et al., PRD 106 (2022) 11, 114512] $[F^{\mu}_{\lambda,\lambda'} = \bar{u}(p',\lambda') \left[\frac{P^{\mu}}{M} A_1 + z^{\mu} M A_2 + \frac{\Delta^{\mu}}{M} A_3 + i\sigma^{\mu z} M A_4 + \frac{i\sigma^{\mu \Delta}}{M} A_5 + \frac{P^{\mu}i\sigma^{z\Delta}}{M} A_6 + \frac{z^{\mu}i\sigma^{z\Delta}}{M} A_7 + \frac{\Delta^{\mu}i\sigma^{z\Delta}}{M} A_8 \right] u(p,\lambda)$ Axial [S. Bhattacharya et al., PRD 109 (2024) 3, 034508]

$$\widetilde{F}^{\mu} = \bar{u}(p_{f},\lambda') \left[\frac{i\epsilon^{\mu P z\Delta}}{m} \widetilde{A}_{1} + \gamma^{\mu}\gamma_{5}\widetilde{A}_{2} + \gamma_{5} \left(\frac{P^{\mu}}{m} \widetilde{A}_{3} + mz^{\mu}\widetilde{A}_{4} + \frac{\Delta^{\mu}}{m} \widetilde{A}_{5} \right) + m \not z \gamma_{5} \left(\frac{P^{\mu}}{m} \widetilde{A}_{6} + mz^{\mu} \widetilde{A}_{7} + \frac{\Delta^{\mu}}{m} \widetilde{A}_{8} \right) \right] u(p_{i},\lambda)$$

Advantages

- Applicable to any kinematic frame and have definite symmetries
- Lorentz invariant amplitudes A_i can be related to the standard GPDs
- Quasi GPDs may be redefined (Lorentz covariant) to eliminate $1/P_3$ contributions

Goals

- **★** Extraction of standard GPDs using A_i obtained from any frame
- quasi-GPDs may be redefined (Lorentz covariant) inspired by light-cone

$\bigstar Parametrization of matrix elements in Lorentz invariant amplitudes$ [S. Bhattacharya et al., PRD 106 (2022) 11, 114512][S. Bhattacharya et al., PRD 106 (2022) 11, 114512] $[F^{\mu}_{\lambda,\lambda'} = \bar{u}(p',\lambda') \left[\frac{P^{\mu}}{M} A_1 + z^{\mu} M A_2 + \frac{\Delta^{\mu}}{M} A_3 + i\sigma^{\mu z} M A_4 + \frac{i\sigma^{\mu \Delta}}{M} A_5 + \frac{P^{\mu}i\sigma^{z\Delta}}{M} A_6 + \frac{z^{\mu}i\sigma^{z\Delta}}{M} A_7 + \frac{\Delta^{\mu}i\sigma^{z\Delta}}{M} A_8 \right] u(p,\lambda)$ Axial [S. Bhattacharya et al., PRD 109 (2024) 3, 034508]

$$\widetilde{F}^{\mu} = \bar{u}(p_{f},\lambda') \bigg[\frac{i\epsilon^{\mu P z\Delta}}{m} \widetilde{A}_{1} + \gamma^{\mu} \gamma_{5} \widetilde{A}_{2} + \gamma_{5} \bigg(\frac{P^{\mu}}{m} \widetilde{A}_{3} + m z^{\mu} \widetilde{A}_{4} + \frac{\Delta^{\mu}}{m} \widetilde{A}_{5} \bigg) + m \not z \gamma_{5} \bigg(\frac{P^{\mu}}{m} \widetilde{A}_{6} + m z^{\mu} \widetilde{A}_{7} + \frac{\Delta^{\mu}}{m} \widetilde{A}_{8} \bigg) \bigg] u(p_{i},\lambda)$$

Advantages

- Applicable to any kinematic frame and have definite symmetries
- Lorentz invariant amplitudes A_i can be related to the standard GPDs
- Quasi GPDs may be redefined (Lorentz covariant) to eliminate $1/P_3$ contributions

Goals

- **★** Extraction of standard GPDs using A_i obtained from any frame
- quasi-GPDs may be redefined (Lorentz covariant) inspired by light-cone

Light-cone GPDs using lattice correlators in non-symmetric frames

Proof of Concept Calculation

Twisted-mass fermions & clover

 $a \, [\mathrm{fm}]$

0.093

 M_{π}

 $260 {
m MeV}$

 $m_{\pi}L$

4

 $L^3 \times T$

 N_{f}

1.726 $u, d, s, c \quad 32^3 \times 64$

β

Name

cA211.32

	Test	t at	zero	sk	kewness
--	------	------	------	----	----------------

- symmetric frame: $\vec{p}_f^s = \vec{P} + \vec{Q}/2$, $\vec{p}_i^s = \vec{P} \vec{Q}/2$ $-t^s = \vec{Q}^2 = 0.69 \, GeV^2$
- asymmetric frame: $\vec{p}_f^a = \vec{P}$, $\vec{p}_i^a = \vec{P} \vec{Q}$ $t^a = -\vec{Q}^2 + (E_f E_i)^2 = 0.65 \, GeV^2$

Proof of Concept Calculation

Twisted-mass fermions & clover

Name	β	N_{f}	$L^3 \times T$	$a~[{ m fm}]$	M_{π}	$m_{\pi}L$
cA211.32	1.726	u,d,s,c	$32^3 \times 64$	0.093	$260 { m MeV}$	4

Test at zero skewness

- $\vec{p}_f^s = \vec{P} + \vec{Q}/2, \qquad \vec{p}_i^s = \vec{P} \vec{Q}/2 \qquad -t^s = \vec{Q}^2 = 0.69 \, GeV^2$ - symmetric frame:
- asymmetric frame:

 $\vec{p}_f^a = \vec{P}$, $\vec{p}_i^a = \vec{P} - \vec{Q}$ $t^a = -\vec{Q}^2 + (E_f - E_i)^2 = 0.65 \, GeV^2$

Proof of Concept Calculation

Twisted-mass fermions & clover

Name	β	N_{f}	$L^3 \times T$	$a~[{ m fm}]$	M_{π}	$m_{\pi}L$
cA211.32	1.726	u,d,s,c	$32^3 \times 64$	0.093	$260 { m MeV}$	4

Test at zero skewness

- $\vec{p}_f^s = \vec{P} + \vec{Q}/2, \quad \vec{p}_i^s = \vec{P} \vec{Q}/2 \quad -t^s = \vec{Q}^2 = 0.69 \, GeV^2$ - symmetric frame:
- asymmetric frame:

"וני

 $\vec{p}_f^a = \vec{P}$, $\vec{p}_i^a = \vec{P} - \vec{Q}$ $t^a = -\vec{Q}^2 + (E_f - E_i)^2 = 0.65 \, GeV^2$

Indeed frame independence

Beyond Exploration

★ Symm. frame: separate calculation for each \vec{Q}

Asymm. frame: Two classes of \vec{Q} : $(Q_x, 0, 0), (Q_x, Q_y, 0)$

frame	$P_3 \; [{ m GeV}]$	$\mathbf{\Delta}\left[rac{2\pi}{L} ight]$	$-t \; [{\rm GeV}^2]$	ξ	N_{ME}	$N_{ m confs}$	$N_{ m src}$	$N_{ m tot}$
N/A	± 1.25	(0,0,0)	0	0	2	731	16	23392
symm	± 0.83	$(\pm 2,0,0), (0,\pm 2,0)$	0.69	0	8	67	8	4288
symm	± 1.25	$(\pm 2,0,0), (0,\pm 2,0)$	0.69	0	8	249	8	15936
symm	± 1.67	$(\pm 2,0,0), (0,\pm 2,0)$	0.69	0	8	294	32	75264
symm	± 1.25	$(\pm 2,\pm 2,0)$	1.39	0	16	224	8	28672
symm	± 1.25	$(\pm 4,0,0), (0,\pm 4,0)$	2.76	0	8	329	32	84224
asymm	± 1.25	$(\pm 1,0,0), (0,\pm 1,0)$	0.17	0	8	429	8	27456
asymm	± 1.25	$(\pm 1,\pm 1,0)$	0.33	0	16	194	8	12416
asymm	± 1.25	$(\pm 2,0,0), (0,\pm 2,0)$	0.64	0	8	429	8	27456
asymm	± 1.25	$(\pm 1,\pm 2,0), (\pm 2,\pm 1,0)$	0.80	0	16	194	8	12416
asymm	± 1.25	$(\pm 2,\pm 2,0)$	1.16	0	16	194	8	24832
asymm	± 1.25	$(\pm 3,0,0), (0,\pm 3,0)$	1.37	0	8	429	8	27456
asymm	± 1.25	$(\pm 1, \pm 3, 0), (\pm 3, \pm 1, 0)$	1.50	0	16	194	8	12416
asymm	± 1.25	$(\pm 4,0,0), (0,\pm 4,0)$	2.26	0	8	429	8	27456

Momentum transfer range is very optimistic (some values have enhanced systematic uncertainties)

Beyond Exploration

k Symm. frame: separate calculation for each \overrightarrow{Q}

Asymm. frame: Two classes of \vec{Q} : $(Q_x, 0, 0), (Q_x, Q_y, 0)$

frame	$P_3 \; [{ m GeV}]$	$\mathbf{\Delta}\left[rac{2\pi}{L} ight]$	$-t \; [{\rm GeV}^2]$	ξ	$N_{ m ME}$	$N_{ m confs}$	$N_{ m src}$	$N_{ m tot}$
N/A	± 1.25	(0,0,0)	0	0	2	731	16	23392
symm	± 0.83	$(\pm 2,0,0), (0,\pm 2,0)$	0.69	0	8	67	8	4288
symm	± 1.25	$(\pm 2,0,0), (0,\pm 2,0)$	0.69	0	8	249	8	15936
symm	± 1.67	$(\pm 2,0,0), (0,\pm 2,0)$	0.69	0	8	294	32	75264
symm	± 1.25	$(\pm 2,\pm 2,0)$	1.39	0	16	224	8	28672
symm	± 1.25	$(\pm 4,0,0), (0,\pm 4,0)$	2.76	0	8	329	32	84224
asymm	± 1.25	$(\pm 1,0,0), (0,\pm 1,0)$	0.17	0	8	429	8	27456
asymm	± 1.25	$(\pm 1,\pm 1,0)$	0.33	0	16	194	8	12416
asymm	± 1.25	$(\pm 2,0,0), (0,\pm 2,0)$	0.64	0	8	429	8	27456
asymm	± 1.25	$(\pm 1,\pm 2,0), (\pm 2,\pm 1,0)$	0.80	0	16	194	8	12416
asymm	± 1.25	$(\pm 2,\pm 2,0)$	1.16	0	16	194	8	24832
asymm	± 1.25	$(\pm 3,0,0), (0,\pm 3,0)$	1.37	0	8	429	8	27456
asymm	± 1.25	$(\pm 1,\pm 3,0), (\pm 3,\pm 1,0)$	1.50	0	16	194	8	12416
asymm	± 1.25	$(\pm 4,0,0), (0,\pm 4,0)$	2.26	0	8	429	8	27456

asymmetric frame

Momentum transfer range is very optimistic \star In (some values have enhanced systematic uncertainties)

Impressive signal quality

T

Beyond Exploration

Momentum transfer range is very optimistic Impressive signal quality \star X (some values have enhanced systematic uncertainties) T

asymmetric frame

 $-t = 0.17 \ GeV^2$ $-t = 0.33 \ GeV^2$

 $-t = 0.64 \ GeV^2$ $-t = 0.80 \ GeV^2$

 $t = 1.16 \, GeV^2$ $-t = 1.37 \ GeV^2$

 $-t = 1.50 \ GeV^2$

 $-t = 2.26 \ GeV^2$

16

18

14

14

z/a

16

18

Alternative approach: pseudo-ITD

[Battacharya et al., PRD 110 (2024) 5, 054502]

Different steps between approaches:

- renormalization
- x-dependence reconstruction
- matching formalism

Alternative approach: pseudo-ITD

T

[Battacharya et al., PRD 110 (2024) 5, 054502]

Different steps between approaches:

- renormalization
- x-dependence reconstruction
- matching formalism

Comparison between methods helps assess systematic effects

★ Leading-twist factorization formula

$$\mathcal{M}(z, P, \Delta) \equiv \frac{\mathcal{F}(z, P, \Delta)}{\mathcal{F}(z, P = 0, \Delta = 0)} = \sum_{n=0}^{\infty} \frac{(-izP)^n}{n!} \frac{C_n^{\overline{\text{MS}}}(\mu^2 z^2)}{C_0^{\overline{\text{MS}}}(\mu^2 z^2)} \langle x^n \rangle + \mathcal{O}(\Lambda_{\text{QCD}}^2 z^2)$$

Avoid power-divergent mixing of multi-derivative operators

- ★ Wilson coefficients known to NLO (or NNLO)
- Both isovector and isoscalar (ignores disconnected; found to be tiny) [C. Alexandrou et al., PRD 104 (2021) 5, 054503]

★ Leading-twist factorization formula

$$\mathcal{M}(z, P, \Delta) \equiv \frac{\mathcal{F}(z, P, \Delta)}{\mathcal{F}(z, P = 0, \Delta = 0)} = \sum_{n=0}^{\infty} \frac{(-izP)^n}{n!} \frac{C_n^{\overline{\text{MS}}}(\mu^2 z^2)}{C_0^{\overline{\text{MS}}}(\mu^2 z^2)} \langle x^n \rangle + \mathcal{O}(\Lambda_{\text{QCD}}^2 z^2)$$

Avoid power-divergent mixing of multi-derivative operators

- ★ Wilson coefficients known to NLO (or NNLO)
- Both isovector and isoscalar (ignores disconnected; found to be tiny) [C. Alexandrou et al., PRD 104 (2021) 5, 054503]

"כר

Leading-twist factorization formula

$$\mathcal{M}(z,P,\Delta) \equiv \frac{\mathcal{F}(z,P,\Delta)}{\mathcal{F}(z,P=0,\Delta=0)} = \sum_{n=0}^{\infty} \frac{(-izP)^n}{n!} \frac{C_n^{\overline{\mathrm{MS}}}(\mu^2 z^2)}{C_0^{\overline{\mathrm{MS}}}(\mu^2 z^2)} \langle x^n \rangle + \mathcal{O}(\Lambda_{\mathrm{QCD}}^2 z^2)$$

Avoid power-divergent mixing of multi-derivative operators

- Wilson coefficients known to NLO (or NNLO)
- Both isovector and isoscalar (ignores disconnected; found to be tiny) [C. Álexandrou et al., PRD 104 (2021) 5, 054503]

★ Leading-twist factorization formula

$$\mathcal{M}(z,P,\Delta) \equiv \frac{\mathcal{F}(z,P,\Delta)}{\mathcal{F}(z,P=0,\Delta=0)} = \sum_{n=0}^{\infty} \frac{(-izP)^n}{n!} \frac{C_n^{\overline{\mathrm{MS}}}(\mu^2 z^2)}{C_0^{\overline{\mathrm{MS}}}(\mu^2 z^2)} \langle x^n \rangle + \mathcal{O}(\Lambda_{\mathrm{QCD}}^2 z^2)$$

Avoid power-divergent mixing of multi-derivative operators

Wilson coefficients known to NLO (or NNLO)

★ Leading-twist factorization formula

$$\mathcal{M}(z,P,\Delta) \equiv \frac{\mathcal{F}(z,P,\Delta)}{\mathcal{F}(z,P=0,\Delta=0)} = \sum_{n=0}^{\infty} \frac{(-izP)^n}{n!} \frac{C_n^{\overline{\mathrm{MS}}}(\mu^2 z^2)}{C_0^{\overline{\mathrm{MS}}}(\mu^2 z^2)} \langle x^n \rangle + \mathcal{O}(\Lambda_{\mathrm{QCD}}^2 z^2)$$

Avoid power-divergent mixing of multi-derivative operators

Wilson coefficients known to NLO (or NNLO)

★ Leading-twist factorization formula

$$\mathcal{M}(z,P,\Delta) \equiv \frac{\mathcal{F}(z,P,\Delta)}{\mathcal{F}(z,P=0,\Delta=0)} = \sum_{n=0}^{\infty} \frac{(-izP)^n}{n!} \frac{C_n^{\overline{\mathrm{MS}}}(\mu^2 z^2)}{C_0^{\overline{\mathrm{MS}}}(\mu^2 z^2)} \langle x^n \rangle + \mathcal{O}(\Lambda_{\mathrm{QCD}}^2 z^2)$$

Avoid power-divergent mixing of multi-derivative operators

Wilson coefficients known to NLO (or NNLO)

Leading-twist factorization formula $\mathscr{M}(z,P,\Delta) \equiv \frac{\mathscr{F}(z,P,\Delta)}{\mathscr{F}(z,P=0,\Delta=0)} = \sum_{n=0}^{\infty} \frac{(-izP)^n}{n!} \frac{C_n^{\mathrm{MS}}(\mu^2 z^2)}{C_0^{\overline{\mathrm{MS}}}(\mu^2 z^2)} \langle x^n \rangle + \mathcal{O}(\Lambda_{\mathrm{QCD}}^2 z^2)$ Access to Avoid power-divergent mixing of multi-derivative operators Mellin moments beyond local operators Wilson coefficients known to NLO (or NNLO)

beyond leading twist

Twist-classification of PDFs, GPDs, TMDs $f_i = f_i^{(0)} + \frac{f_i^{(1)}}{O} + \frac{f_i^{(2)}}{O^2} \cdots$

Twist: The order in Q^{-1} entering factorization \star

(Selected) Twist-3 $(f_i^{(1)})$

Twist-classification of PDFs, GPDs, TMDs

- **Twist-2**: probabilistic densities a wealth of information exists (mostly on PDFs)
- Twist-3: poorly known, but very important and have physical interpretation:
 as sizable as twist-2
 - contain information about quark-gluon correlations inside hadrons
 - appear in QCD factorization theorems for various observables (e.g. g_2)

Twist-classification of PDFs, GPDs, TMDs

- **Twist-2**: probabilistic densities a wealth of information exists (mostly on PDFs)
- Twist-3: poorly known, but very important and have physical interpretation:
 as sizable as twist-2
 - contain information about quark-gluon correlations inside hadrons
 - appear in QCD factorization theorems for various observables (e.g. $g_{\rm 2}$)

The extraction of twist-3 is very challenges both experimentally and theoretically

Disclaimer

- **Formalism does not consider mixing with q-g-q correlators**
- ★ Matching formalism with mixing is available

[V. Braun et al., JHEP 05 (2021) 086; JHEP 10 (2021) 087]

★ Nf=2+1+1 twisted mass fermions with a clover term

Name	eta	N_{f}	$L^3 \times T$	$a~[{ m fm}]$	M_π	$m_{\pi}L$
cA211.32	1.726	u,d,s,c	$32^3 \times 64$	0.093	260 MeV	4

Theoretical setup

★ Correlation functions in coordinate space

$$F^{[\Gamma]}(x,\Delta;P^3) = \frac{1}{2} \int \frac{dz^3}{2\pi} e^{ik \cdot z} \langle p_f, \lambda' | \bar{\psi}(-\frac{z}{2}) \Gamma \mathcal{W}(-\frac{z}{2},\frac{z}{2}) \psi(\frac{z}{2}) | p_i, \lambda \rangle \Big|_{z^0 = 0, \vec{z}_\perp = \vec{0}_\perp}$$

Parametrization of coordinate-space correlation functions
 [D. Kiptily and M. Polyakov, Eur. Phys. J. C37 (2004) 105]
 [F. Aslan et a., Phys. Rev. D 98, 014038 (2018)]

$$\begin{split} F^{[\gamma^{\mu}\gamma_{5}]}(x,\Delta;P^{3}) &= \frac{1}{2P^{3}}\bar{u}(p_{f},\lambda') \bigg[P^{\mu} \frac{\gamma^{3}\gamma_{5}}{P^{0}} F_{\widetilde{H}}(x,\xi,t;P^{3}) + P^{\mu} \frac{\Delta^{3}\gamma_{5}}{2mP^{0}} F_{\widetilde{E}}(x,\xi,t;P^{3}) \\ &+ \Delta^{\mu}_{\perp} \frac{\gamma_{5}}{2m} F_{\widetilde{E}+\widetilde{G}_{1}}(x,\xi,t;P^{3}) + \gamma^{\mu}_{\perp}\gamma_{5} F_{\widetilde{H}+\widetilde{G}_{2}}(x,\xi,t;P^{3}) \\ &+ \Delta^{\mu}_{\perp} \frac{\gamma^{3}\gamma_{5}}{P^{3}} F_{\widetilde{G}_{3}}(x,\xi,t;P^{3}) + i\varepsilon^{\mu\nu}_{\perp} \Delta_{\nu} \frac{\gamma^{3}}{P^{3}} F_{\widetilde{G}_{4}}(x,\xi,t;P^{3}) \bigg] u(p_{i},\lambda) \end{split}$$

★ Correlation functions in coordinate space

$$F^{[\Gamma]}(x,\Delta;P^3) = \frac{1}{2} \int \frac{dz^3}{2\pi} e^{ik \cdot z} \langle p_f, \lambda' | \bar{\psi}(-\frac{z}{2}) \Gamma \mathcal{W}(-\frac{z}{2},\frac{z}{2}) \psi(\frac{z}{2}) | p_i, \lambda \rangle \Big|_{z^0 = 0, \vec{z}_\perp = \vec{0}_\perp}$$

Parametrization of coordinate-space correlation functions
 [D. Kiptily and M. Polyakov, Eur. Phys. J. C37 (2004) 105]
 [F. Aslan et a., Phys. Rev. D 98, 014038 (2018)]

$$\begin{split} F^{[\gamma^{\mu}\gamma_{5}]}(x,\Delta;P^{3}) &= \frac{1}{2P^{3}} \bar{u}(p_{f},\lambda') \bigg[P^{\mu} \frac{\gamma^{3}\gamma_{5}}{P^{0}} F_{\widetilde{H}}(x,\xi,t;P^{3}) + P^{\mu} \frac{\Delta^{3}\gamma_{5}}{2mP^{0}} F_{\widetilde{E}}(x,\xi,t;P^{3}) \\ &+ \Delta^{\mu}_{\perp} \frac{\gamma_{5}}{2m} F_{\widetilde{E}+\widetilde{G}_{1}}(x,\xi,t;P^{3}) + \gamma^{\mu}_{\perp}\gamma_{5} F_{\widetilde{H}+\widetilde{G}_{2}}(x,\xi,t;P^{3}) \\ &+ \Delta^{\mu}_{\perp} \frac{\gamma^{3}\gamma_{5}}{P^{3}} F_{\widetilde{G}_{3}}(x,\xi,t;P^{3}) + i\varepsilon^{\mu\nu}_{\perp} \Delta_{\nu} \frac{\gamma^{3}}{P^{3}} F_{\widetilde{G}_{4}}(x,\xi,t;P^{3}) \bigg] u(p_{i},\lambda) \end{split}$$

★ Correlation functions in coordinate space

$$F^{[\Gamma]}(x,\Delta;P^3) = \frac{1}{2} \int \frac{dz^3}{2\pi} e^{ik \cdot z} \langle p_f, \lambda' | \bar{\psi}(-\frac{z}{2}) \Gamma \mathcal{W}(-\frac{z}{2},\frac{z}{2}) \psi(\frac{z}{2}) | p_i, \lambda \rangle \Big|_{z^0 = 0, \vec{z}_\perp = \vec{0}_\perp}$$

Parametrization of coordinate-space correlation functions
 [D. Kiptily and M. Polyakov, Eur. Phys. J. C37 (2004) 105]
 [F. Aslan et a., Phys. Rev. D 98, 014038 (2018)]

$$\begin{split} F^{[\gamma^{\mu}\gamma_{5}]}(x,\Delta;P^{3}) &= \frac{1}{2P^{3}}\bar{u}(p_{f},\lambda') \bigg[P^{\mu}\frac{\gamma^{3}\gamma_{5}}{P^{0}}F_{\widetilde{H}}(x,\xi,t;P^{3}) + P^{\mu}\frac{\Delta^{3}\gamma_{5}}{2mP^{0}}F_{\widetilde{E}}(x,\xi,t;P^{3}) \\ &+ \Delta^{\mu}_{\perp}\frac{\gamma_{5}}{2m}F_{\widetilde{E}+\widetilde{G}_{1}}(x,\xi,t;P^{3}) + \gamma^{\mu}_{\perp}\gamma_{5}F_{\widetilde{H}+\widetilde{G}_{2}}(x,\xi,t;P^{3}) \\ &+ \Delta^{\mu}_{\perp}\frac{\gamma^{3}\gamma_{5}}{P^{3}}F_{\widetilde{G}_{3}}(x,\xi,t;P^{3}) + i\varepsilon^{\mu\nu}_{\perp}\Delta_{\nu}\frac{\gamma^{3}}{P^{3}}F_{\widetilde{G}_{4}}(x,\xi,t;P^{3}) \bigg] u(p_{i},\lambda) \end{split}$$

Twist-3 contributions to helicity GPDs: $\gamma^{1,2}\gamma_5$

Correlation functions in coordinate space \star

$$F^{[\Gamma]}(x,\Delta;P^3) = \frac{1}{2} \int \frac{dz^3}{2\pi} e^{ik \cdot z} \langle p_f, \lambda' | \bar{\psi}(-\frac{z}{2}) \Gamma \mathcal{W}(-\frac{z}{2},\frac{z}{2}) \psi(\frac{z}{2}) | p_i, \lambda \rangle \Big|_{z^0 = 0, \vec{z}_\perp = \vec{0}_\perp}$$

★ Parametrization of coordinate-space correlation functions [D. Kiptily and M. Polyakov, Eur. Phys. J. C37 (2004) 105] [F. Aslan et a., Phys. Rev. D 98, 014038 (2018)]

$$\begin{split} F^{[\gamma^{\mu}\gamma_{5}]}(x,\Delta;P^{3}) &= \frac{1}{2P^{3}} \bar{u}(p_{f},\lambda') \bigg[P^{\mu} \frac{\gamma^{3}\gamma_{5}}{P^{0}} F_{\widetilde{H}}(x,\xi,t;P^{3}) + P^{\mu} \frac{\Delta^{3}\gamma_{5}}{2mP^{0}} F_{\widetilde{E}}(x,\xi,t;P^{3}) \\ &+ \Delta^{\mu}_{\perp} \frac{\gamma_{5}}{2m} F_{\widetilde{E}+\widetilde{G}_{1}}(x,\xi,t;P^{3}) + \gamma^{\mu}_{\perp}\gamma_{5} F_{\widetilde{H}+\widetilde{G}_{2}}(x,\xi,t;P^{3}) \\ &+ \Delta^{\mu}_{\perp} \frac{\gamma^{3}\gamma_{5}}{P^{3}} F_{\widetilde{G}_{3}}(x,\xi,t;P^{3}) + i\varepsilon^{\mu\nu}_{\perp} \Delta_{\nu} \frac{\gamma^{3}}{P^{3}} F_{\widetilde{G}_{4}}(x,\xi,t;P^{3}) \bigg] u(p_{i},\lambda) \end{split}$$

Twist-3 contributions to helicity GPDs: $\gamma^{1,2}\gamma_5$

★ Correlation functions in coordinate space

$$F^{[\Gamma]}(x,\Delta;P^3) = \frac{1}{2} \int \frac{dz^3}{2\pi} e^{ik \cdot z} \langle p_f, \lambda' | \bar{\psi}(-\frac{z}{2}) \Gamma \mathcal{W}(-\frac{z}{2},\frac{z}{2}) \psi(\frac{z}{2}) | p_i, \lambda \rangle \Big|_{z^0 = 0, \vec{z}_\perp = \vec{0}_\perp}$$

Parametrization of coordinate-space correlation functions
 [D. Kiptily and M. Polyakov, Eur. Phys. J. C37 (2004) 105]
 [F. Aslan et a., Phys. Rev. D 98, 014038 (2018)]

$$\begin{split} F^{[\gamma^{\mu}\gamma_{5}]}(x,\Delta;P^{3}) &= \frac{1}{2P^{3}}\bar{u}(p_{f},\lambda') \bigg[P^{\mu}\frac{\gamma^{3}\gamma_{5}}{P^{0}}F_{\widetilde{H}}(x,\xi,t;P^{3}) + P^{\mu}\frac{\Delta^{3}\gamma_{5}}{2mP^{0}}F_{\widetilde{E}}(x,\xi,t;P^{3}) \\ &+ \Delta^{\mu}_{\perp}\frac{\gamma_{5}}{2m}F_{\widetilde{E}+\widetilde{G}_{1}}(x,\xi,t;P^{3}) + \gamma^{\mu}_{\perp}\gamma_{5}F_{\widetilde{H}+\widetilde{G}_{2}}(x,\xi,t;P^{3}) \\ &+ \Delta^{\mu}_{\perp}\frac{\gamma^{3}\gamma_{5}}{P^{3}}F_{\widetilde{G}_{3}}(x,\xi,t;P^{3}) + i\varepsilon^{\mu\nu}_{\perp}\Delta_{\nu}\frac{\gamma^{3}}{P^{3}}F_{\widetilde{G}_{4}}(x,\xi,t;P^{3}) \bigg] u(p_{i},\lambda) \end{split}$$

★ Twist-3 contributions to helicity GPDs: $\gamma^{1,2}\gamma_5$

 Kinematic twist-3 contributions to pseudo- and quasi-GPDs to restore translation invariance
 [V. Braun et al., JHEP 10 (2023) 134]

[S. Bhattacharya et al., PRD 102 (2020) 11] (Editors Highlight)

$$F^{[\gamma^{\mu}\gamma_{5}]}(x,\Delta;P^{3}) = \frac{1}{2P^{3}}\bar{u}(p_{f},\lambda') \left[P^{\mu}\frac{\gamma^{3}\gamma_{5}}{P^{0}}F_{\widetilde{H}}(x,\xi,t;P^{3}) + P^{\mu}\frac{\Delta^{3}\gamma_{5}}{2mP^{0}}F_{\widetilde{E}}(x,\xi,t;P^{3}) + A^{\mu}_{\perp}\frac{\gamma_{5}}{2mP^{0}}F_{\widetilde{E}}(x,\xi,t;P^{3}) + \gamma^{\mu}_{\perp}\gamma_{5}F_{\widetilde{H}+\widetilde{G}_{2}}(x,\xi,t;P^{3}) \right]$$

$$= \bar{u}(p_{f},\lambda') \left[\frac{i\epsilon^{\mu P z \Delta}}{m}\widetilde{A}_{1} + \gamma^{\mu}\gamma_{5}\widetilde{A}_{2} + \gamma_{5}\left(\frac{P^{\mu}}{m}\widetilde{A}_{3} + mz^{\mu}\widetilde{A}_{4} + \frac{\Delta^{\mu}}{m}\widetilde{A}_{5}\right) + \Delta^{\mu}_{\perp}\frac{\gamma^{3}\gamma_{5}}{P^{3}}F_{\widetilde{G}_{3}}(x,\xi,t;P^{3}) + i\epsilon^{\mu\nu}_{\perp}\Delta_{\nu}\frac{\gamma^{3}}{P^{3}}F_{\widetilde{G}_{4}}(x,\xi,t;P^{3}) \right] u(p_{i},\lambda)$$

$$= \bar{u}(p_{f},\lambda') \left[\frac{i\epsilon^{\mu P z \Delta}}{m}\widetilde{A}_{1} + \gamma^{\mu}\gamma_{5}\widetilde{A}_{2} + \gamma_{5}\left(\frac{P^{\mu}}{m}\widetilde{A}_{3} + mz^{\mu}\widetilde{A}_{4} + \frac{\Delta^{\mu}}{m}\widetilde{A}_{5}\right) + \Delta^{\mu}_{\perp}\frac{\gamma^{3}\gamma_{5}}{P^{3}}F_{\widetilde{G}_{3}}(x,\xi,t;P^{3}) + i\epsilon^{\mu\nu}_{\perp}\Delta_{\nu}\frac{\gamma^{3}}{P^{3}}F_{\widetilde{G}_{4}}(x,\xi,t;P^{3}) \right] u(p_{i},\lambda)$$

[D. Kiptily and M. Polyakov, Eur. Phys. J. C37 (2004) 105]

[S. Bhattacharya et al., 109 (2024) 3, 034508]

$$F^{[\gamma^{\mu}\gamma_{5}]}(x,\Delta;P^{3}) = \frac{1}{2P^{3}}\bar{u}(p_{f},\lambda') \left[P^{\mu}\frac{\gamma^{3}\gamma_{5}}{P^{0}}F_{\tilde{H}}(x,\xi,t;P^{3}) + P^{\mu}\frac{\Delta^{3}\gamma_{5}}{2mP^{0}}F_{\tilde{E}}(x,\xi,t;P^{3}) + A^{\mu}_{\perp}\frac{\gamma_{5}}{2mP^{0}}F_{\tilde{E}}(x,\xi,t;P^{3}) + \gamma^{\mu}_{\perp}\gamma_{5}F_{\tilde{H}+\tilde{G}_{2}}(x,\xi,t;P^{3}) + \gamma^{\mu}_{\perp}\gamma_{5}F_{\tilde{H}+\tilde{G}_{2}}(x,\xi,t;P^{3}) + A^{\mu}_{\perp}\frac{\gamma^{3}\gamma_{5}}{P^{3}}F_{\tilde{G}_{3}}(x,\xi,t;P^{3}) + \gamma^{\mu}_{\perp}\gamma_{5}F_{\tilde{H}+\tilde{G}_{2}}(x,\xi,t;P^{3}) \right] u(p_{i},\lambda)$$

$$F^{[\gamma^{\mu}\gamma_{5}]}(x,\Delta;P^{3}) = \frac{1}{2P^{3}}\bar{u}(p_{f},\lambda') \left[\frac{i\epsilon^{\mu}Pz\Delta}{m}\tilde{A}_{1} + \gamma^{\mu}\gamma_{5}\tilde{A}_{2} + \gamma_{5}\left(\frac{P^{\mu}}{m}\tilde{A}_{3} + mz^{\mu}\tilde{A}_{4} + \frac{\Delta^{\mu}}{m}\tilde{A}_{5}\right) + \Delta^{\mu}_{\perp}\frac{\gamma^{3}\gamma_{5}}{P^{3}}F_{\tilde{G}_{3}}(x,\xi,t;P^{3}) + i\epsilon^{\mu\nu}_{\perp}\Delta_{\nu}\frac{\gamma^{3}}{P^{3}}F_{\tilde{G}_{4}}(x,\xi,t;P^{3}) \right] u(p_{i},\lambda)$$

$$F^{[\mu}(z,P,\Delta) \equiv \langle p_{f};\lambda'|\bar{\psi}(-\frac{z}{2})\gamma^{\mu}\gamma_{5}\mathcal{W}(-\frac{z}{2},\frac{z}{2})\psi(\frac{z}{2})|p_{i};\lambda\rangle$$

$$= \bar{u}(p_{f},\lambda') \left[\frac{i\epsilon^{\mu}Pz\Delta}{m}\tilde{A}_{1} + \gamma^{\mu}\gamma_{5}\tilde{A}_{2} + \gamma_{5}\left(\frac{P^{\mu}}{m}\tilde{A}_{3} + mz^{\mu}\tilde{A}_{4} + \frac{\Delta^{\mu}}{m}\tilde{A}_{5}\right) + \Delta^{\mu}_{\perp}\frac{\gamma^{3}\gamma_{5}}{P^{3}}F_{\tilde{G}_{3}}(x,\xi,t;P^{3}) + i\epsilon^{\mu\nu}_{\perp}\Delta_{\nu}\frac{\gamma^{3}}{P^{3}}F_{\tilde{G}_{4}}(x,\xi,t;P^{3}) \right] u(p_{i},\lambda)$$

[D. Kiptily and M. Polyakov, Eur. Phys. J. C37 (2004) 105]

$$F_{\widetilde{E}+\widetilde{G}_{1}}^{s} = \frac{-2E^{2}}{P_{3}}z\tilde{A}_{1} + 2\tilde{A}_{5} \qquad F_{\widetilde{H}+\widetilde{G}_{2}}^{s} = \frac{-E^{2}(\Delta_{x}^{2} + \Delta_{y}^{2})}{2m^{2}P_{3}}z\tilde{A}_{1} + \tilde{A}_{2}$$

[S. Bhattacharya et al., 109 (2024) 3, 034508]

$$F_{\widetilde{G}_3}^s = zP_3\tilde{A}_8 \qquad F_{\widetilde{G}_4}^s = \frac{-EP_3}{m^2} \left(\frac{-E^2}{P_3} + P_3\right) z\tilde{A}_1$$

$$F^{[\gamma^{\mu}\gamma_{5}]}(x,\Delta;P^{3}) = \frac{1}{2P^{3}}\bar{u}(p_{f},\lambda') \left[P^{\mu}\frac{\gamma^{3}\gamma_{5}}{P^{0}}F_{\widetilde{H}}(x,\xi,t;P^{3}) + P^{\mu}\frac{\Delta^{3}\gamma_{5}}{2mP^{0}}F_{\widetilde{E}}(x,\xi,t;P^{3}) + \Delta^{\mu}\frac{\lambda^{3}\gamma_{5}}{2mP^{0}}F_{\widetilde{E}}(x,\xi,t;P^{3}) + \gamma^{\mu}_{\perp}\gamma_{5}F_{\widetilde{H}+\widetilde{G}_{2}}(x,\xi,t;P^{3}) + \tilde{F}^{\mu}_{\perp}\gamma_{5}F_{\widetilde{H}+\widetilde{G}_{2}}(x,\xi,t;P^{3}) + \tilde{F}^{\mu}_{\perp}\gamma_{5}F_{\widetilde{H}+\widetilde{G}_{2}}(x$$

[D. Kiptily and M. Polyakov, Eur. Phys. J. C37 (2004) 105]

$$F_{\widetilde{E}+\widetilde{G}_{1}}^{s} = \frac{-2E^{2}}{P_{3}}z\tilde{A}_{1} + 2\tilde{A}_{5} \qquad F_{\widetilde{H}+\widetilde{G}_{2}}^{s} = \frac{-E^{2}(\Delta_{x}^{2} + \Delta_{y}^{2})}{2m^{2}P_{3}}z\tilde{A}_{1} + \tilde{A}_{2}$$

[S. Bhattacharya et al., 109 (2024) 3, 034508]

$$F^{s}_{\widetilde{G}_{3}} = zP_{3}\widetilde{A}_{8} \qquad F^{s}_{\widetilde{G}_{4}} = \frac{-EP_{3}}{m^{2}} \left(\frac{-E^{2}}{P_{3}} + P_{3}\right) z\widetilde{A}_{1}$$

★ Parametrization of -t dependence

']['

$$GPD(x, -t, 0) = Ax^{\alpha_0 - \alpha_1 t} (1 - x)^{\beta_1}$$

Ademollo & Del Giudice Gatto & Preparata

★ Direct access to \widetilde{E} -GPD not possible for zero skewness $P^{\mu} \frac{\Delta^{3} \gamma_{5}}{2mP^{0}} F_{\widetilde{E}}(x,\xi,t;P^{3})$

\star Glimpse into \widetilde{E} -GPD through twist-3 :

$$\int_{-1}^{1} dx \, \widetilde{E}(x,\xi,t) = G_P(t)$$
$$\int_{-1}^{1} dx \, \widetilde{G}_i(x,\xi,t) = 0, \quad i = 1, 2, 3, 4$$

★ Direct access to E-GPD not possible for zero skewness $P^{\mu} \frac{\Delta^{3} \gamma_{5}}{2mP^{0}} F_{\widetilde{E}}(x,\xi,t;P^{3})$

★ Glimpse into \widetilde{E} -GPD through twist-3 :

$$\int_{-1}^{1} dx \, \widetilde{E}(x,\xi,t) = G_P(t) \ \int_{-1}^{1} dx \, \widetilde{G}_i(x,\xi,t) = 0 \,, \quad i = 1,2,3,4$$

Impact parameter space $\widetilde{H} + \widetilde{G}_2$

x=0.6

\star GPDs in transverse plane

$$egin{aligned} q(x,\mathbf{b}_{\perp}) &= |\mathcal{N}|^2 \int rac{d^2 \mathbf{p}_{\perp}}{(2\pi)^2} \int rac{d^2 \mathbf{p}_{\perp}'}{(2\pi)^2} H_q(x,-\left(\mathbf{p}_{\perp}-\mathbf{p}_{\perp}'
ight)^2
ight) e^{i\mathbf{b}_{\perp}\cdot\left(\mathbf{p}_{\perp}-\mathbf{p}_{\perp}'
ight)} \ &= \int rac{d^2 \mathbf{\Delta}_{\perp}}{(2\pi)^2} H_q(x,-\mathbf{\Delta}_{\perp}^2) e^{-i\mathbf{b}_{\perp}\cdot\mathbf{\Delta}_{\perp}}, \end{aligned}$$

 b_{\perp} : transverse distance from the (transverse) center of momentum

x=0.8

Impact parameter space $E + G_1$

★ GPDs in transverse plane

$$egin{aligned} q(x,\mathbf{b}_{\perp}) &= \left|\mathcal{N}
ight|^2 \int rac{d^2 \mathbf{p}_{\perp}}{(2\pi)^2} \int rac{d^2 \mathbf{p}_{\perp}'}{(2\pi)^2} H_q(x,-\left(\mathbf{p}_{\perp}-\mathbf{p}_{\perp}'
ight)^2
ight) e^{i\mathbf{b}_{\perp}\cdot\left(\mathbf{p}_{\perp}-\mathbf{p}_{\perp}'
ight)} \ &= \int rac{d^2 \mathbf{\Delta}_{\perp}}{(2\pi)^2} H_q(x,-\mathbf{\Delta}_{\perp}^2) e^{-i\mathbf{b}_{\perp}\cdot\mathbf{\Delta}_{\perp}}, \end{aligned}$$

 b_{\parallel} : transverse distance from the (transverse) center of momentum

100

80 60

40

20 0

0.6

0.4

0.2

໌ 0.0

Synergy/Complementarity of lattice and phenomenology

Synergies: constraints & predictive power of lattice QCD

Incorporating lattice PDFs in global analyses

Synergy between lattice and phenomenology

 Lattice and experimental data sets data within the same global analysis (JAM framework)
 [J. Bringewatt et al., PRD 103 (2021) 016003, arXiv:2010.00548]

- Significant impact for helicity PDF

Incorporating lattice PDFs in global analyses

Synergy between lattice and phenomenology

 Lattice and experimental data sets data within the same global analysis (JAM framework)
 [J. Bringewatt et al., PRD 103 (2021) 016003, arXiv:2010.00548]

- Consistent picture with JAM for unpolarized PDF

- Significant impact for helicity PDF

Other efforts within NNPDF framework

[K. Cichy et al., JHEP 10 (2019) 137, arXiv:1907.06037] [L. Del Debbio et al., JHEP 02 (2021) 138, 2010.03996] ★ Interest in applying similar approach to quantities that are more challenging to extract experimentally (GPDs, twist-3 distributions, ...)

Toward synergy for GPDs

★ Forming ratios of GPDs seems to suppress systematic uncertainties

[K. Cichy et al., arXiv:2409.17955]

(a) As a function of ν for $|t| = 0.65 \text{ GeV}^2$.

 $\begin{aligned} \mathrm{DR}_{\mathrm{Re}}^{\hat{H}^{q}}(\nu,t) &= \frac{\mathrm{Re}\hat{H}^{q}(\nu,t)}{\mathrm{Re}\hat{H}^{q}(\nu,0)} \frac{\mathrm{Re}\hat{H}^{q}(0,0)}{\mathrm{Re}\hat{H}^{q}(0,t)} \,, \\ \mathrm{DR}_{\mathrm{Im}}^{\hat{H}^{q}}(\nu,t) &= \lim_{\nu' \to 0} \frac{\mathrm{Im}\hat{H}^{q}(\nu,t)}{\mathrm{Im}\hat{H}^{q}(\nu,0)} \frac{\mathrm{Im}\hat{H}^{q}(\nu',0)}{\mathrm{Im}\hat{H}^{q}(\nu,t)} \end{aligned}$

- GK (solid curve)
- VGG (dashed curve)
- Good agreement for up quark
- Reasonable agreement for down quark

M. Constantinou, LatticeNET 2025

Toward synergy for GPDs

★ Forming ratios of GPDs seems to suppress systematic uncertainties

T

 $\begin{aligned} \mathrm{DR}_{\mathrm{Re}}^{\hat{H}^{q}}(\nu,t) &= \frac{\mathrm{Re}\hat{H}^{q}(\nu,t)}{\mathrm{Re}\hat{H}^{q}(\nu,0)} \frac{\mathrm{Re}\hat{H}^{q}(0,0)}{\mathrm{Re}\hat{H}^{q}(0,t)} \,, \\ \mathrm{DR}_{\mathrm{Im}}^{\hat{H}^{q}}(\nu,t) &= \lim_{\nu' \to 0} \frac{\mathrm{Im}\hat{H}^{q}(\nu,t)}{\mathrm{Im}\hat{H}^{q}(\nu,0)} \frac{\mathrm{Im}\hat{H}^{q}(\nu',0)}{\mathrm{Im}\hat{H}^{q}(\nu,t)} \end{aligned}$

- GK (solid curve)
 - VGG (dashed curve)
 - Good agreement for up quark
 - Reasonable agreement for down quark
 - Further study
 needed on how to
 combine lattice
 results with data

M. Constantinou, LatticeNET 2025

Tomographic Images

T

★ Lattice data may be incorporated in global analysis of experimental data and may influence parametrization of t and ξ dependence

★ Lattice data may be incorporated in global analysis of experimental data and may influence parametrization of t and ξ dependence

- 1. Theoretical studies of high-momentum transfer processes using perturbative QCD methods and study of GPDs properties
- 2. Lattice QCD calculations of GPDs and related structures
- 3. Global analysis of GPDs based on experimental data using modern data analysis techniques for inference and uncertainty quantification

★ Lattice data may be incorporated in global analysis of experimental data and may influence parametrization of t and ξ dependence

- 1. Theoretical studies of high-momentum transfer processes using perturbative QCD methods and study of GPDs properties
- 2. Lattice QCD calculations of GPDs and related structures
- 3. Global analysis of GPDs based on experimental data using modern data analysis techniques for inference and uncertainty quantification

Other GPD global analysis efforts:

- Gepard [https://gepard.phy.hr/]
- PARTONS [https://partons.cea.fr]
- EXCLAIM [https://exclaimcollab.github.io/web.github.io/#/]

Concluding remarks

Concluding Remarks

- **New developments in several promising directions**
- **★** Extensive programs in GPDs
- ★ Access to higher-twist GPDs feasible from lattice QCD
- ★ Synergy with phenomenology has the potential to enhance the impact of lattice QCD data and complement data sets

Concluding Remarks

- ★ New developments in several promising directions
- ★ Extensive programs in GPDs
- ★ Access to higher-twist GPDs feasible from lattice QCD
- ★ Synergy with phenomenology has the potential to enhance the impact of lattice QCD data and complement data sets

DOE Early Career Award Grant No. DE-SC0020405 & Grant No. DE-SC0025218

ר'

Award Number: DE-SC0023646

Additional slides

- Non-local operators with Wilson line fully renormalizable to all orders
 [T. Ishikawa et al., Phys. Rev. D 96, no. 9 (2017) 094019]
 [X. Ji et al., Phys. Rev. Lett. 120, no. 11 (2018) 112001]
- ★ Quasi- & light-cone distributions share the same infrared structure
- ★ Differences in UV region (perturbatively calculable, LaMET)

- Non-local operators with Wilson line fully renormalizable to all orders
 [T. Ishikawa et al., Phys. Rev. D 96, no. 9 (2017) 094019]
 [X. Ji et al., Phys. Rev. Lett. 120, no. 11 (2018) 112001]
- ★ Quasi- & light-cone distributions share the same infrared structure
- ★ Differences in UV region (perturbatively calculable, LaMET)

- Non-local operators with Wilson line fully renormalizable to all orders
 [T. Ishikawa et al., Phys. Rev. D 96, no. 9 (2017) 094019]
 [X. Ji et al., Phys. Rev. Lett. 120, no. 11 (2018) 112001]
- ★ Quasi- & light-cone distributions share the same infrared structure
- ★ Differences in UV region (perturbatively calculable, LaMET)

- Non-local operators with Wilson line fully renormalizable to all orders
 [T. Ishikawa et al., Phys. Rev. D 96, no. 9 (2017) 094019]
 [X. Ji et al., Phys. Rev. Lett. 120, no. 11 (2018) 112001]
- ★ Quasi- & light-cone distributions share the same infrared structure
- ★ Differences in UV region (perturbatively calculable, LaMET)

- Non-local operators with Wilson line fully renormalizable to all orders
 [T. Ishikawa et al., Phys. Rev. D 96, no. 9 (2017) 094019]
 [X. Ji et al., Phys. Rev. Lett. 120, no. 11 (2018) 112001]
- ★ Quasi- & light-cone distributions share the same infrared structure
- ★ Differences in UV region (perturbatively calculable, LaMET)

- Non-local operators with Wilson line fully renormalizable to all orders
 [T. Ishikawa et al., Phys. Rev. D 96, no. 9 (2017) 094019]
 [X. Ji et al., Phys. Rev. Lett. 120, no. 11 (2018) 112001]
- ★ Quasi- & light-cone distributions share the same infrared structure
- ★ Differences in UV region (perturbatively calculable, LaMET)

- Non-local operators with Wilson line fully renormalizable to all orders
 [T. Ishikawa et al., Phys. Rev. D 96, no. 9 (2017) 094019]
 [X. Ji et al., Phys. Rev. Lett. 120, no. 11 (2018) 112001]
- ★ Quasi- & light-cone distributions share the same infrared structure
- ★ Differences in UV region (perturbatively calculable, LaMET)

