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Gravitational-wave echo from the Big Bang

[National Astronomical Observatory of Japan, gwpo.nao.ac.jp]

Primordial gravitational waves (GWs): Chance to peek behind the veil of the CMB
• Probe cosmology of the primordial Universe at very early times
• Probe particle physics at extremely high energies → New physics!?
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Beyond-the-Standard-Model (BSM) options

➊ Inflationary tensor perturbations

➋ Cosmological phase transition

• Accelerated expansion before the Hot Big Bang
• Complementarity: GWs + CMB observations

• First-order transition in the QFT vacuum structure
• Complementarity: GWs + EW / QCD / dark sector

➌ Enhanced scalar perturbations ➍ Cosmic defects
• Overdensities that emit GWs and collapse to PBHs
• Complementarity: GWs + primordial black holes

• Phase transition remnants preserving the old vacuum
• Complementarity: GWs + grand unified theories

Abbrevations: GW: gravitational wave; CMB: cosmic microwave background; QFT: quantum field theory;
EW: electroweak; QCD: quantum chromodynamics; PBH: primordial black hole; GUT: grand unified theory
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Outline

GWs from cosmic strings

Low-scale cosmic strings

From VOS to BOS

Conclusions
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Magnetic domains in a ferromagnet

[wikimedia.org]

Magnetization in a ferromagnet

• Phase transition at the Curie temperature: paramagnet → ferromagnet
• Magnetic dipoles align spontaneously due to exchange interaction
• Translation and rotation invariance spontaneously broken
• Magnetic domains, regions of uniform magnetization, separated by domain walls
• Domain walls are stable, unless an external force (magnetic field) is applied

Similar phenomenology after phase transitions in the early Universe!
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Topological defects in the early Universe

[Viatcheslav Mukhanov: Physical Foundations of Cosmology, Cambridge University Press (2005)]

Consider spontaneous symmetry breaking in an N-dimensional scalar field space:

V (Φ) = λ

4
(

Φ2 − v2)2
, Φ = 1

√
N

(ϕ1, ϕ2, · · · , ϕN)T

• Scalar fields transform under SO(N) global or local gauge symmetry
• Z2 → domain walls; U(1), SO(2) → cosmic strings; SU(2), SO(3) → monopoles
• Solitonic solutions of classical equations of motion for the gauge and Higgs fields
• Formal description in terms of topology of vacuum manifold M (Φ) → stability
• In addition, whole zoo of composite defects, non-topological defects, etc.
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Cosmic strings

[Ringeval: 1005.4842]

• Topological defects after spontaneous
symmetry breaking, s.t. π1 (M) nontrivial

• For instance, breaking of global / local
U(1); symmetry restored at string cores

• Condensed matter: Magnetic field vortices
(quantum vortices) in a superconductor

Relevant parameters

• Gµ: String tension = energy per unit length, in units of G = 1/M2
P

• α: Size of string loops at time of formation, in units of the horizon dh ∼ t ∼ H−1
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Cosmic strings in grand unified theories

Cosmic-string tension: Controlled by energy scale of spontaneous symmetry breaking

µ ∼ 2πv2 , Gµ ∼ 4× 10−8
( v

1015 GeV

)2

Interesting possibilities

v ∼ ΛGUT ∼ 1015···16 GeV , v ∼ Λintermediate ∼ 109···10 GeV
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Gravitational waves from cosmic strings

[Allen, Martins, Shellard: ctc.cam.ac.uk/outreach] [Gouttenoire, Servant, Simakachorn: 1912.02569]

Infinitely long strings and string loops;
scaling regime: ρcs ∝ ρcrit ∝ H2

Gravitational waves from
• Cusps
• Kinks
• Kink–kink collisions

• Nambu–Goto strings: Infinitely thin, particle emission irrelevant at late times
• Abelian-Higgs strings: Short-lived loops, decay into massive particles

[Vachaspati, Vilenkin: PRD 31 (1985) 3052] [LISA Cosmology Working Group, Auclair et al.: 1909.00819]
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GW spectrum

[S. Blasi, V. Brdar, KS: 2009.06607]
Gµ = 6× 10−11

Broadband signal
• Reflects scaling regime, GW emission during radiation and matter domination
• Interesting target for future GW experiments. Source of the PTA signal?
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2023 PTA results

[NANOGrav: 2306.16219]
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[NANOGrav: 2306.16213]

Recent PTA results
• Evidence for nHz GWB signal
• Stable cosmic strings do not yield

a good fit (spectrum too flat)
• Alternatives doing a better job:

metastable strings, superstrings
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Upper limits

PTA upper limit on the tension of stable Nambu–Goto strings

Gµ ≲ 10−10 ←→ v ≲ 5× 1013 GeV
[NANOGrav: 2306.16219]

−11.0 −10.5 −10.0 −9.5
log10 Gµ

A

stable-c

stable-k

stable-m

stable-n

−13 −12 −11 −10
log10 Gµ

A

stable-c + smbhb

stable-k + smbhb

stable-m + smbhb

stable-n + smbhb

Different models
• GW emission dominated by cusps (c), kinks (k), fundamental mode (m); numerical result (n)
• GWs from cosmic strings only or in combination with GWs from supermassive BH binaries
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Prospects for LISA

[LISA Cosmology Working Group: 2405.03740]

Expected sensitivity: Gµ ∼ 10−(16···17) ←→ v ∼ few× 1010 GeV
• GW signal from cosmic strings competes with galactic and extragalactic foregrounds
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Outline

GWs from cosmic strings

Low-scale cosmic strings

From VOS to BOS

Conclusions
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Phenomenology at low string tension

Two facts about string loops

• Shrink because of GW emission

dℓ

dt
= −ΓGµ , Γ ≃ 50

• Characteristic length at birth

ℓ∗ = 2αt∗ , α ≃ 0.05

ta
ini

t0

tb
ini

t0

µa

µb = µa
2

Loop length decreases linearly in time between birth and today

ℓ (t0) = ℓ∗ − ΓGµ (t0 − t∗) , t∗ ∈ [tini, t0]

Computation of GW signal only valid starting from some early initial time tini

Observation: For late tini and small enough Gµ, no loop ever reaches zero length!
Shortest loops = earliest loops today. Length: ℓmin = ℓ∗ (tini)− ΓGµ (t0 − tini)

14



Phenomenology at low string tension

Two facts about string loops

• Shrink because of GW emission

dℓ

dt
= −ΓGµ , Γ ≃ 50

• Characteristic length at birth

ℓ∗ = 2αt∗ , α ≃ 0.05

ta
ini

t0

tb
ini

t0

µa

µb = µa
2

Loop length decreases linearly in time between birth and today

ℓ (t0) = ℓ∗ − ΓGµ (t0 − t∗) , t∗ ∈ [tini, t0]

Computation of GW signal only valid starting from some early initial time tini

Observation: For late tini and small enough Gµ, no loop ever reaches zero length!
Shortest loops = earliest loops today. Length: ℓmin = ℓ∗ (tini)− ΓGµ (t0 − tini)

14



Phenomenology at low string tension

Two facts about string loops

• Shrink because of GW emission

dℓ

dt
= −ΓGµ , Γ ≃ 50

• Characteristic length at birth

ℓ∗ = 2αt∗ , α ≃ 0.05

ta
ini

t0

tb
ini

t0

µa

µb = µa
2

Loop length decreases linearly in time between birth and today

ℓ (t0) = ℓ∗ − ΓGµ (t0 − t∗) , t∗ ∈ [tini, t0]

Computation of GW signal only valid starting from some early initial time tini

Observation: For late tini and small enough Gµ, no loop ever reaches zero length!
Shortest loops = earliest loops today. Length: ℓmin = ℓ∗ (tini)− ΓGµ (t0 − tini)

14



Sharp cutoff frequency

Present-day frequencies of GWs emitted by strings

f = a (t)
a0

2k
ℓ (t)

2k/ℓ(t) Frequency at emission
ℓ(t) Loop length at emission
k Mode number (k = 1, 2, · · · )

a (t) /a0 Cosmological redshift factor

Minimal length ℓmin implies frequency cutoff
• Focus on fundamental mode (k = 1) for now
• Shortest loops today: minimal length, minimal

redshift → highest possible frequency

fcut = 2
ℓmin

= 2
2αtini − ΓGµ (t0 − tini)

Gµ = 10−13

Gµ = 10−19
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Initial loop length

Cutoff frequency is positive and finite if: 2α tini > ΓGµ (t0 − tini) ≈ ΓGµ t0

tini > tcut ≡
ΓGµ

2α
t0 ≃ 2.2 s

( Gµ

10−20

)
, Tini < Tcut ≃ 330 keV

(10−20

Gµ

)1/2

Problem: tini is model-dependent and typically not well known

Four reasonable options

➊ tini = tform Network formation ρtot = 3H2M2
Pl ∼ µ2

➋ tini = tfric End of friction regime βT 3/µ ∼ 2H

➌ tini = tkink Particles from kinks subdominant Pkink ∼ Nk µ1/2

ℓ
∼ ΓGµ2

➍ tini = tcusp Particles from cusps subdominant Pcusp ∼ Nc µ3/4

ℓ1/2 ∼ ΓGµ2
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Parameter space

[KS, Schröder: 2405.10937]

• Gµ and Tini values resulting in a cutoff frequency in the k = 1 GWB spectrum

• Hierarchy of temperature scales for Gµ ∼ 10−20: Tcusp ≪ Tfric ≪ Tkink ≪ Tform
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Earlier results in the literature

[1709.02434]

What’s new?

Nothing! Our ΩGW is standard, but we do not integrate from tini = 0

ΩGW (f ) = 8π

3H2
0

(Gµ)2
kmax∑
k=1

Γ
Hq

kmax

1
kq

2k
f

∫ t0

tini

dt
(a (t)

a0

)5
n

(2k
f

a (t)
a0

, t
)
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Example spectra

Numerical spectra based on VOS loop
number densities [KS, Schröder: 2405.10937]

log10 (Gµ) log10 (Tini/GeV)

1 −20.0 −5.1 (Tcusp)

2 −19.0 −3.9 (Tcusp)

3 −23.4 −3.3 (Tfric)

4 −22.4 −2.3 (Tfric)

• No fine-tuning required
• Sweet spot where signal even

observable by BBO and DECIGO
• Power-law behavior can be

understood analytically

Challenge: Subtraction of galactic and
extragalactic foregrounds. Impossible?
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Summation of oscillation modes

Total GWB spectrum

ΩGW (f ) =
kmax∑
k=1

Ω(1)
GW (f /k)
Hq

kmax
kq

can be written in terms of Ω(1)
GW, i.e.,

spectrum from the fundamental mode

Simple approximation for Ω(1)
GW

Ω(1)
GW ≈ Θ (fcut − f )A f 3/2

Power-law behavior of the total GWB spectrum at low and high frequencies

h2Ωlow ∝ f 3/2 , h2Ωhigh ∝
1

q + 1/2

( fcut

f

)q−1
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Features in the GW spectrum

[KS, Schröder: 2405.10937]

Novel features in the spectrum: Series of peaks and dips at integer multiples of fcut
on top of a broken power law (f 3/2 → f −1/3) → Clear target for GW experiments

21



Loop number and energy densities

Assumption: Gµ is so low that no loop has fully decayed yet because of GW emission

Consequence: All loops produced since tini still exist in our present Universe

Present-day loop number density

N (t0) ≈
∫ ∞

0
dℓ nRM (ℓ, t0) ∼ 50

kpc3

(102 s
tini

)3/2

Present-day loop energy density

h2Ω (t0) ≈ 1
ρcrit

∫ ∞

0
dℓ µ ℓ nRM (ℓ, t) ≃ 10−13

( Gµ

10−19

) (102 s
tini

)1/2

• Cosmologically harmless
• Signatures from nearby loops? Microlensing, GW bursts?
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Outline

GWs from cosmic strings

Low-scale cosmic strings

From VOS to BOS
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Distribution of initial loop lengths

[1309.6637]

Sharp spectral features follow from the assumption of a unique initial loop length,
ℓ∗ ≃ 2α t∗ with α ≃ 0.05. But initial loop length deviates from perfect delta peak.
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New number densitities

Loop number density in terms of the loop production function

n (ℓ, t) =
∫ t

tini

dt′ f (ℓ′, t′)
(a (t′)

a (t)

)3
, ℓ′ = ℓ + ΓGµ

(
t − t′

)
Standard choice in the velocity-dependent one-scale (VOS) model

f (ℓ, t) = FCr

2αt4 δ (ℓ− 2αt) , α ≃ 0.05

Numerical simulations by Blanco-Pillado, Olum, and Shlaer (BOS) better described by

f (ℓ, t) = Ar√
2π σℓ5 t5/2

exp
[
−

1
2σ2

(
ln

(
ℓ

2t

)
− ν

)2
]

, ν ≃ −3.0 , σ ≃ 0.14

New loop number densities providing a better description of the BOS results

nRR (ℓ, t) ≈ Ar (erftini − erft) /2
t3/2 (ℓ + ΓGµt)5/2 , nRM (ℓ, t) ≈

( aeq

a (t)

)3 Ar
(

erftini − erfteq

)
/2

t3/2
eq (ℓ + ΓGµt)5/2
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Smeared GW spectrum

[KS, Schröder: 2405.10937]

Series of peaks and dips washed out for broader distributions of initial loop lengths
Still, even for broad distributions, oscillations in the index nt may remain detectable
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Summary and outlook

Low-scale cosmic strings

Gµ ∼ 10−33 · · · 10−19 ←→ v ∼ 102 GeV · · · 109 GeV

Initial time tini ̸= 0: Loop production no longer impeded by thermal friction, GW
emission from loops no longer subdominant to particle emission from cusps and kinks,

ΩGW = 16π

3H2
0

(Gµ)2
kmax∑
k=1

kPk
f

∫ t0

tini

dt [· · · ]

• No loop produced at t ≥ tini ever shrinks to zero length → microlensing, bursts?
• Sharp frequency cutoff in k = 1 GWB spectrum, series of peaks and dips in ΩGW

Next steps
• Nonscaling models where particle emission occurs whenever ℓ ≤ ℓcrit

• Model building: Cosmic strings v ∼ 109 GeV, GWs from phase transition?

Stay tuned! Thanks a lot for your attention
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