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* Machine Learning (ML) and Artificial Intelligence (Al)

* Overview of the Hellings-Downs (HD) curve & its extensions
* Astrometry, GAIA & the stochastic GW background (SGWB)

* Two applications:

— A comparison (Bayesian & ML) of extended HD models
— Neural Network (NN) constraints on the SGWB

* Conclusions
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CHAPTER 1
Al & MACHINE LEARNING



AI Nobel prize controversy!

< KUNGL.
VETENSKAPS-
AKADEMIEN

THE ROYAL SWEDISH ACADEMY OF SCIENCES

8 October 2024

The Royal Swedish Academy of Sciences has decided to award the Nobel Prize in Physics

2024 to

Created the Hopfield network, a type of artificial network made
John J. Hopfield — > oof binary neurons that can be 'on' or 'off'. He extended his formalism
Princeton University, NJ, USA to continuous activation functions.
Geoffrey E. H1nton> A Boltzmann machine, is a spin-glass model with an external field,

University of Toronto, Canada that is a stochastic Ising model. It is also classified as a Markov random
field and can learn to recognize characteristic elements in a given type of data.

“for foundational discoveries and inventions that enable machine learning with artificial neural
networks”

They trained artificial neural networks using
physics



Physics has always been evolving...




What 1s Machine Learning?

Article  Talk Read Edit View history | Search Wikipedia Q

TR Machine learning

The Free Encyclopedia L )
From Wikipedia, the free encyclopedia
Main page For the journal, see Machine Learning (journal).
Contents "Statistical learning” redirects here. For statistical learning in linguistics, see statistical learning in language acquisition.
Current events ] ] . ] s
Random article Machine learning (ML) is the study of computer algorithms that improve e
About Wikipedia automatically through experience.[!! It is seen as a subset of artificial intelligence. Machine learning




What 1s Machine Learning?
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What 1s Machine Learning?

Meaningid Xructure Imagt -
Combres N 5 omer Retention
ompre xovery Classificg

Dimensionality eature Idenity Fraud

S : Classification Diagnostics
Reduction licitation Detection

Interesting for astronomy:
Classification of
spectra, galaxies, models etc

Interesting for cosmology: )/
Dark Energy properties etc

Advertising Popularity
Prediction

Learning Learning Weather

Forecasting
*
M ac h I n e Population

Growth
Prediction

Recommender Unsupervised Supervised

Systems

Clustering Regression
Targetted

Marketing

Market
Forecasting

Customer

Segmentation L e a_ r n i n g

Estimating
life expectancy

\J

Focus on particular
Machine Learning approach,

the Genetic Algorithms Real-time decisions Game Al

Reinforcement
Learning

Robot Navigation Skill Acquisition

Learning Tasks



Neural Networks (NNs)

< KUNGL.
VETENSKAPS-
AKADEMIEN

THE ROYAL SWEDISH ACADEMY OF SCIENCES

8 October 2024

The Royal Swedish Academy of Sciences has decided to award the Nobel Prize in Physics

2024 to

Created the Hopfield network, a type of artificial network made
John J. Hopfield — > oof binary neurons that can be 'on' or 'off'. He extended his formalism
Princeton University, NJ, USA to continuous activation functions.
Geoffrey E. H1nton> A Boltzmann machine, is a spin-glass model with an external field,

University of Toronto, Canada that is a stochastic Ising model. It is also classified as a Markov random
field and can learn to recognize characteristic elements in a given type of data.

“for foundational discoveries and inventions that enable machine learning with artificial neural
networks”

They trained artificial neural networks using
physics



Neural Networks (NNs)

In PULS (eg pixels or data points)

Carleo, Cirrac, et al. 1903.10563
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Neural Networks (NNs)

e
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Sigmoid Leaky ReL) J
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e
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NN as universal function approximators

In PULS (eg pixels or data points)
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NN as universal function approximators

1 Layers 2 Layers 3 Layers
MSE: 0.1748 MSE: 0.0748 MSE: 0.0689
1.00¢F —— True Function 1.00f —— True Function 1.00} —— True Function
0.75} mas NWALyers) L gael === NN (2layers) oo - NN (3 layers)
0.50F 0.50F 0.50
0.25} 0.25} / 025}
0.00F 0.00F 0.00 /
-0.25F -0.25} -0.25}
-0.50F —-0.50} -0.50
-0.75F} -0.75} -0.75}
-1.00} . J it 0110 . . . =100} . . .
0 2 4 6 0 2 4 6 0 2 4 6
4 Layers 5 Layers
MSE: 0.0477 MSE: 0.0528
1.00¢ — True Function 1.001 = True Function
0.75 —=== NN (4 layers) 0.75} === NN (5 layers)
0.50 0.50} Deeper networks
0.25 D25 generally perform
| 0.00¢ better, but the
-0.25F -0.25} .
improvements need
—0.50} -0.50} be bal d!
| | to be balanced!
-1.00} -1.00}
0 2 4 6 0 2 4 6




The Genetic Algorithms (GA)

The GA 1s a stochastic (1.e. random) optimization and symbolic

regression method, not very different from an MCMC: John Holland, (1975)
Adaptation in Natural

: & Artificial Systems.
68%

Set of parameters that
maximizes the agreement
between the model and the data.

Xz Xe Xz

Walker
L]

X : X1 = X
MCMCs do a random walk in parameter space (X1, X2 ...), while the GA

does a random walk in an abstract functional space!

) f(x) = x +2%x"3 * (I+e”x) etc

sinx

sin2x sin3x COSX



The Genetic Algorithms (GA)

The GA 1s a stochastic (1.e. random) optimization and symbolic

regression method, not very different from an MCMC: John Holland, (1975)
Adaptation in Natural
& Artificial Systems.

# Sel of parameters that

maximizes the agreement
between the model and the data.
Xz . Xz
Walker *
X1 X1 X1

MCMCs do a random walk in parameter space (X1, X2 ...), while the GA

does a random walk in an abstract functional space! In a nutshell:

1.0

MCMC GA -
parameters — analytic functions : 0.0 (D
best fit (point) — Dbest fit (function) 35‘20_5 .
confidence contours — error regions S| S




Genetic Algorithms: Outhine

Group of initial random
generation =0 ¢, 0.t 2 population / guesses, (aka the “grammar”).

of chromosomes

y

Determine

——3> the fithess of 4—  Measure of
each individual how well it
\ >100 generations fits the data
next
generation Jr
Select next
generation Display
Best-fit function that
v Results ~ q ibes the data!
. escripes tne data.
Perform reproduction
using crossover
) f(x) = x + 2*x3 * (1+ex) etc
Perform ] _
mutation Grammar type Functions
Polynomials o, x, 14+ @
Fractions . TJ__
S. Nesseris et al, arXiv: 0903.2805, Trigonometric sin(xz), cos(x), tan(x)
s T T : F 14
1205.0364, 1910.01529, 2001.11420, Exponentials  e”, 7, (1 + )
Logarithms In(z), In(1 + =)

2106.00428 etc.



The Genetic Algorithms (GA)

Ideal for emulators: eg emulate the sound horizon at the drag redshift

EH 44.51n (%) Aizpuru, Arjona, Nesseris:
2 T (24) =~ “m 7 Mpc, arXiv: 2106.00428
e 3/4
1 [® c2) 1410 ]
rslz) =g | moyE &
0 Jzq (Z)/ 0 GA (2a) 1 "
~0.003% e a1wy® + azwm + aswy®wm P

a1 = 0.00785436, az = 0.177084, a3 = 0.00912388,
a4 = 0.618711, a5 = 11.9611, ag = 2.81343,
a7 = 0.784719.

EH expression biases BAO analyses by ~0.5c!

m— N UM.

107

0.088 0.16 0.232 954 101 107

Wm,o rs,qh



The Genetic Algorithms (GA)

Ideal for null tests: eg test the duality/Etherington relation e LI

=11m GR
= )
el = da()(1 + 2)? # 1 if number of photons not conserved

or not a metric theory of gravity.

Use Snla to get di(z) and BAO to get da(z)

1204 Pantheon Snla
— GA SDSS etc BAO

1.10 1
<« No/minimal

F 100 pemmrmmmm e s s s s s e e e assumptions on
curvature, DM, DE!

0.90

0.80 -

00 02 04 06 08 10 12 14
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CHAPTER 2
THE HELLINGS-DOWNS
CURVE



The Hellings-Downs (HD) curve

Searching for correlated signatures in the pulsar arrival times on Earth,

we get hints for the stochastic gravitational wave background (SGWB):




The Hellings-Downs (HD) curve

The SGWB 1s similar to the acoustic noise 1n a bar:

Jenet & Romano,

There are several point sources and the correlations arXiv:1412.1142

can be measured!)

@ microphone B

)
u
microphone C @, T T |

NS

microphone A

X
= Re {G2 i d2QlA( |:1 o eik'XB _ e—ik-XC . eik-(xB—xc)]}

4 S2

X(¢) =T'1p(w)

~ G2




The Hellings-Downs (HD) curve

The SGWB produces a distinctive GW signature:

A quadrupolar & higher multipolar spatial correlation between arrival

times of pulses, that depends only on the angular separation in the sky.

T [




The Hellings-Downs (HD) curve

The signal from the SGWB will be correlated across the sightlines of

pulsar pairs, while that from the other noise processes will not.

In GR with standard matter content (baryons + CDM) — the HD curve
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Jenet & Romano,
arXiv:1412.1142

Hellings & Downs, Astrophys. J. ,
vol. 265, pp. L39-L42, 1983



The Hellings-Downs (HD) curve

NANOGrav 15-year data set results (arXiv:2306.16213)

I I | | I I | | I I | I I I | I | I 1 I 1 I I

0.8

g
@)
/
&

—
I
|
[
|
|
i
|
I
1
IllIIIIlIIIIlIlI-

ot
S

Correlation Strength
-
o
_lllllllllllllllllllllll_
ol
|
I
\
H
\
i

o o
>

~ ?T ¢ A
s_[___I
EREEEFEENENE aws kN aE e s

0 30 60 00 120 150 180
Separation Angle Between Pulsars [degrees]

-Illllll




The Hellings-Downs (HD) curve

Some “popular” extensions:

A. Ultralight vector dark matter (Omiya, Nomura & Soda, PRD108, 104006, 2023):
Coherent oscillation of an ultralight bosonic field — fluctuations in the
gravitational potential — affect the timing residuals of pulsars.

Paw (p/m)

FEE('E:I.”‘) — '@GW(#’};W:} + '@DM

[PHD{g] + @Gi?i‘f ) FDM{g]] 10726V < p < 10723V

B. Spin-2 ultralight dark matter (Armaleo, Nacir, Urban, arXiv: 2005.03731):
Based on bimetric theory with a massive spin-2 field that is free of the

Boulware-Deser ghost

. ‘I'Gw(mfzﬂ)
Le (€, m, a) =B (m/2m) + (I)DM(G)FHD(‘-E)‘I'

'I'DM(CU)
Dew (m/2m) + @DM(Q)FDM@)

- -5 [15yr
$ 97) ~ 1% 10722 Q(L) ®
cw(m/2m) ~ 1x 107y ( {5y Tobe

)



The Hellings-Downs (HD) curve

C. Massive Gravity (Liang & Trodden, PRD 104, 084052, 2021):
Additional polarizations (tensor, vector, and scalar) must be considered

FEH(EJ A: QJ — FT(‘E: A} —I_Q ] FV(g:' AJ +Q‘FS(‘51 A}:

A= B =|kP+m?

D. Non-Gaussian component to SGWB (higher-order correlations

between pulsars), see Jiang & Piao, arXiv:2401.16950
r (cub} o

; 4B
"*;K[SE dn{{1+ﬁ“'ﬁ:}(1+ﬁb'ﬁ)

4o [LELEAELEY + 3 (EAELELEL + ELAELELED)]
(14 n,-n0)(1+ 0 -0)

A aA ad e
E; = el iy i)



Comparison of HD extensions

A Bayesian analysis of the models given the NANOGrav data
(just playing with the theory!)

ﬂ.B-— — Hellings Downs curve . _-
! — GA j
06k — Spin-2 ULDM )
I — Vector ULDM ]
04l z — Massive Gravity P
ot ‘ Non Gaussianity l ]
0.2 . . I -
0.0 ! L
' ¢ |
.-—l-"""_'__‘.d#
02 1
-04

1 1 1 1 1 1 1 1 1 1 1 1
a0 100 150
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Comparison of HD extensions

Bayesian model comparison (via the Savage-Dickey formula)

) (C)_l—l 1 —cos( +§ 1 —cos( In 1 —cos(
B - Ey " Thesimpler model (HD) X&) =75 4( 5 ) 2( 5 ) ( 5 )
A bigger (nested) model B 1 (1058 = 0) LD wins
B <1 (logB <0) HD loses
I 2 1/2 ALY
In B ~ _E (Imin - Imjn) + In |Fpp| + In —(E‘J'[']F'-"'E B, In B, —r—
< 2.5 < 1.1 Comparable
< 20 <3 Weak
< 150 < D Moderate
Models B [In(B)] %2 >0 >F S
Hellings-Diowns - - [ 10.25
Genetic Algorithms - - |23} GAbeatsall
Ultralight vector DM 0.20]-1.24 | 6.39 But no Bayes...

Spin-2 ultralight DM 0.80| -0.22 | 5.43

Massive gravity 1.51] 0.41 | 6.01 / Barely weak support!
Non-Gaussianity of SGWEB |0.06] -2.85 | 3.17




CHAPTER 3
ASTROMETRY & GWs



Astrometry & GAIA

GAIA: 2 billion of the brightest stars, each star gets measured on
average 75 times every five years plus proper motions.

SKY-SCANNING COMPLETE FOR @ esa
ESA'S MILKY WAY MAPPER GAIA .

From 24 July 2014 to 15 January 2025, Gaia made 580 MILLION o « 13 000 ==

more than three trillion observations of two billion Accesses of Gaia catalogue so far Refereed scientific publications so far
stars and other objects, which revolutionised the view

of our home galaxy and cosmic neighbourhood.
2 e N 2.8 MILLION
3 TRILLION ; ‘\, ; 2 < E '_ -y 45 3 ' Commands sent to spacecraft

Observations

Downlinked data (compressed)

2BILLION & P j o

Stars & other objects observed

o Y 4 500 T8
938 MILLION =« I \’_‘ " Bk 5 g Volume of data release &

Camera pixels on board P : 4 B i (5.5 years of observations)

15 300
Spacecraft ‘pirouettes’
55 KG [ 3827 W 50 000 HOURS

Cold nitrogen gas consumed Days in science operations Ground station time used




Astrometry & GAIA

GWs 1n the vicinity of Earth induce correlated distortions in the

apparent positions and proper motions of distant sources.




Astrometry & GAIA

The detection (or not) of a coherent behavior in astrometric data
enables the measurement of the SGWB in 10M{-16} <{/Hz < 10"{-9}




Astrometry & GAIA

Assuming an isotropic, unpolarised, stationary SGWB:

d
Uow() = 23

and this can be related to the stars’ proper motion  u? = u? + p2 cosé*

2% =y e — 2 1) <

Qaw(f ~ 1078 Hz) < 0.4

where T 1s the total observing time and At the cadence (typical time

between successive position measurements).

fmin ¥ l/T
fma.x ~ I/Ai

Darling et al., Astrophysical
Journal, 861, 113



Astrometry & GAIA

Standard analysis constraints from GAIA DR3 S. Jaraba, J. Garcia-Bellido
et al., arXiv: 2304.06350

h2,Qcw <0.087  42x1078Hzg f51.1x1078 Hz

the quadrupole power P2

0.010 A r\
0.008 A

| |
—— Non-central x?2

— x2 (height rescaled)

>

-‘U:; = = 95% upper bound

= I

i |

2, 0.006 1 I

= I

Fo) |

® 0.004 - l

= i

o

& | GAIA may reach proper
0.002 motion of 200 uas/yr and N =

5 x 1075 thus — Qcw<10"-3

0000 B T T
0 100 200 300 400

P2 ((pas/yr)?)




Astrometric constramnts with NNs

Two architectures to measure QGw:

A graph NN (GNN)
Hidden layer
Input e

RelLU

Hidden layer

-

GNNss are used in protein folding,
social networks etc

Output
[ B
9
RelU .
—D-E]—.- P—— ¢ @
s ®
]
* 9
\ y,

designed to process graph-
structured data and capture
relationships between elements



Astrometric constraints with NNs

Two architectures to measure Qcw:
A graph NN (GNN) with mock GAIA data for various Qcw values

N.=1000, Th=0.224 rad N.=12000, Th=0.065 rad

Different radial thresholds (correlation lengths) and number of stars.



Astrometric constraints with NNs

Two architectures to measure Qcw:
A fully connected network (FCN)

r

1;“
\
Y

5

'i:."t?

4
g




Fredicted values

Astrometric constraints with NNs

Try to predict GW density param Qaew

Predictions on Qgw from FCN

10%
] N;=500

N:=1000
N,=2000
N.=6000
MN:=12000

107 4

6 FEETY
1077 y T - —r r -
10~ 102 10— 107! 10°

True values

Fredicted values

Predictions on Qg from GNN

109 -
] N.=500
MN.=1000
N,=2000
N,=6000
N.=12000
1071 - .
e L
. L
) . * v 't..f:: _:','.':-
-.' "': I‘.r.
1072 s o
104 103 102 10-1 10°
True values



Astrometric constramnts with NNs

Distributions of scatter

N.,=500

—-0.1 0.0 0.1 -0.05  0.00 0.05
N-=12000

—0.05 0.00 0.05 —0.05 000 0.05

True values - Predictions



Summary

Physics nowadays has three pillars:
theory, experiment & simulations/Al.

New fascinating ML-AI tools that can help with complex
(e.g. avoid specific modeling etc).

Constraints on extended HD models (early data, so nothing
concrete and no claims of discovery).

NN can help predict Qcw from GAIA observations (tests
with small samples, they work well!).

Lots of exciting work to do in the near future!






Backup slides



Genetic Algorithms: Selection

There are two possible “Selection” methods:
widely used method, but...

1)  Roulette wheel selection ( the selection / a suboptimal solution may
probability is proportional to the fitness ) dominate the mating pool

premature convergence...

easy to implement

(find best individual)

2) Tournament selection < in line with natural selection

premature convergence avoided



Model comparison and the data...

Main problems:

1) We can only test a limited number theories (e.g. Horndeski, {(R),
extra dims, etc) as there are practically infinite number of
possibilities. It’s impossible to test everything!

2) Model bias: interpretation of the results depends on the chosen
modelst+assumptions, e.g. using ACDM to find Qm=0.3151s a
model-dependent statement!

Is there any (good) solution?
1) Use an EFT or effective fluid approach... —  (top-down)
11) Use machine learning methods (e.g. the GA) — (bottom-up)



Genetic Algorthms: Reproduction

Reproduction can be done in two ways:

1) Crossover: i
00C00 - GOGO® pucs
paaa(z) = In(z) poaolz) =—l+z2427

(Feai(2),figas(2), fgas(z))
(ln(zz), —1+1In(z%), -1+ In(z))

pea(z) @ paaa(z)

l CO00® + @OOCO offspring
_}.

:

2) Mutation: ..... parent
ficas(z) = —1+in(z) = —1+In(z%) #

offspring
o 000



Genetic Algorithms: Error estimation

S. Nesseris et al, arXiv:

1) Define a likelihood similarly to parametric approach : 1205.0364,1210.7652

— Nex Q)/2
p (a )/ ) GA £=N\ exp (—Xz(f)/z)

By S IO
-5 (e42)

X ((Z) — Xmm - 4":35 a — Gy )J
2) Normalize the likelihood by integrating over all functions, i.e. do a

“path integral” (in a parametric approach one integrates over all parameters)

[orc= [1 Nexw(-2()/2) =1

\

/[,d&': /00 Nexp (—x*(a@)/2) da =
o GA of =TI\, df:

oo
N'e_X?"""/Zf e~ 1/2(a=amin)i Fij (“_“'""')-fdaudm...dLLM_1 =1 |:>

N = eXamin/2 | F|H? (277)=M/2 N = ((27()3\?}2 |C|1/2)

—1



Genetic Algorithms: Error estimation

3) Find the confidence interval by integrating around the best-fit 1o

for(z:)+of; 1 1 (g —f; 2
Cl(z;,0f;) = / dfiTeXp -3 ( )
Jog(xi)—0fi (2?’1’) (o] Ti

_ % (erf (ﬁi i f‘jﬁ(j) - }ri) +erf (ﬁi - fb\f@(? - yi)) = orf (1/v2)

4) 16 error region for fys(x) : for(x)=0f(x), for(x)+df(x)]
N
= D~ 7y — f(zy))

5) Generalize for correlated data:
1

£= G g o (X (D/2)

S. Nesseris et al, arXiv: 1205.0364
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