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What?



FOPT: What? (from quantum field theory)

Let us consider a system described by the scalar potential V' (¢)
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SE computed on the sol. of the EOMs
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FOPT: How?
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FOPT: direct and inverse

’ FOPT = tunneling transition between two minima separated by a barrier
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FOPT: direct and inverse

’ FOPT = tunneling transition between two minima separated by a barrier
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FOPT: direct and inverse

’ FOPT = tunneling transition between two minima separated by a barrier

Direct PT Inverse PT
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Hydrodynamic description



Hydrodynamics equations

Coupled system of the scalar background and the plasma

117 = 0469 - g [ 3007 -V o)
" = (e+putu” —pg"”

v v 4
T/V—T¢ +T1£V7



Hydrodynamics equations

Coupled system of the scalar background and the plasma

Ty" = 00" ¢ — g™ [;(%)2 - V(¢)}
" = (e + p)uu” —pg"”

W v L
T = T+ T

Continuity eq.
Y (for continuous waves)

Energy conservation: V,T*" =0 —
Euler eq.



Hydrodynamics equations

Coupled system of the scalar background and the plasma

1
By vy _upv | 2
Ty = (e +putu” —pg"”

Continuity eq.

(for continuous waves)
Euler eq.

Energy conservation: V,T*" =0 — {
Hydrodynamical flows can develop . matching conditions across discontinuities
discontinuities such as shocks or reaction fronts (£ bubble wall frame)

ity

discontd

2 2
et = W
WYV +pp = w_yZvZ +po

where w = e + p = enthalpy



Thermodynamic quantities



Thermodynamic Quantities

Once the microphysics is specified (i.e., a model is chosen), we can compute the free energy, related to
the pressure via:

p= —F =- eff = _<%+V1—100p+VT>
From the pressure, other thermodynamic quantities follow:
Ip

0
w:Ta—T, e=w-—0p, A= P



Thermodynamic Quantities

Once the microphysics is specified (i.e., a model is chosen), we can compute the free energy, related to
the pressure via:
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From the pressure, other thermodynamic quantities follow:
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Thermodynamic Quantities

Once the microphysics is specified (i.e., a model is chosen), we can compute the free energy, related to
the pressure via:

p:_]::_ eH:_<%+V1—loop+VT>

From the pressure, other thermodynamic quantities follow:

Op 2 Op
= T* = — =
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Different levels of approximation can be used:
2 4 - 2 1
@ Bag EOS:  pi = ciaiT; — ey with constant ¢ = 3

Q@ pv-model:  pi =c a Ty — ey, where vy =1+ 1/031 and v_ = pu, vy = .



Thermodynamic Quantities

Once the microphysics is specified (i.e., a model is chosen), we can compute the free energy, related to
the pressure via:

p:_]::_ eH:_<%+V1—loop+VT>

From the pressure, other thermodynamic quantities follow:

0 0
w:Tﬁ—;, e=w-—0p, A= P

Different levels of approximation can be used:
2 4 ; 2 1
@ Bag EOS:  pi = ciaiT; — ey with constant ¢ = 3
Q@ pv-model:  pL = cg_’iaiTii — €4, Where vy =1+ 1/031 and v_ = pu, vy = .

@ Full model:  py = —F(¢4), with ¢, 1. (T') derived from the full free energy.



Solving hydrodynamics equations:
steady—state solutions

Note : + — bubble wall frame

&, f(§) — center of the bubble frame




Steady—state solutions

Steady-state solutions
(depend only on the self-similar variable £ = r/t)

0T d 2
(€= 0" g = ¢ =20l
0:T
=76 )0,

E—v
1—¢v

where (€, v) =



Steady—state solutions

Steady—state solutions
(depend only on the self-similar variable £ = r/t)

OcT de 2
(€= 0" g = ¢ =20l
0T
57 = 7€, v)d¢v,
where (€, v) = f:;v

I Direct PTs IIT Direct Droplet collapse
IT Inverse PTs IV Inverse Droplet collapse
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Steady—state solutions

Steady—state solutions
(depend only on the self-similar variable £ = r/t)

O¢T de 2
(€= 0) " gp = =7 -,
0T
67 = 721§, v)d¢v,
where p(&,v) = f:;v

I Direct PTs IIT Direct Droplet collapse

II Inverse PTs IV Inverse Droplet collapse
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Steady—state solutions

Deflagration
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Steady—state solutions

Deflagration Hybrid Detonation
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@ Why start in a minimum away from the origin?

@ Can an inverse PT naturally occurs within the
standard cosmological cooling of the Universe?
(with no need to (re)heat the Universe?)




Possible directions? @ﬂ

@ Why start in a minimum away from the origin?

@ Can an inverse PT naturally occurs within the
standard cosmological cooling of the Universe?
(with no need to (re)heat the Universe?)

Yes!



Where SUSY sucks (literally)



Proof of principle: the O'Raifeartaigh model @U

SUSY breaking hidden sector featuring a strong FOPT.

Model: SUSY breaking field X + ®; 2 and @1’2 mediator fields
W =—FX + X0 0y + m(D D) + PoDy)

where V/F SUSY breaking scale. The model has a U(1) R—symmetry.



Proof of principle: the O'Raifeartaigh model @E

SUSY breaking hidden sector featuring a strong FOPT.

Model: SUSY breaking field X + ®; 2 and @1’2 mediator fields
W =—FX + X0 0y + m(D D) + PoDy)
where V/F SUSY breaking scale. The model has a U(1) R—symmetry.
Veg = ‘F—A¢1<Z;2’2+‘)\Xq32+mq§1‘2—1—’/\X¢1+m¢2’2+‘m¢1’2+‘mégyz+loops + thermal corrections

where X = z/V/2.



Thermal history (for m/vF =2 and A\ = 1.67)

T/NF=15
@ For T'>> T, origin is a S

global minimum.

Vet / F2

10 |

15

20




Thermal history (for m/vF =2 and A\ = 1.67)

@ For T'>> T, origin is a

T/VF =0.95

global minimum.
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Thermal history (for m/vF =2 and A\ = 1.67)

@ For T'>> T, origin is a
global minimum.

Q T./VF ~0.82

Vet / F2

T/VF =0.82
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Thermal history (for m/vF =2 and A\ = 1.67)

T/VF =0.67

@ For T'>> T, origin is a
global minimum.

Q 7T./VF ~0.82

@ 1st (inverse) PT at

T, /VF ~ 0.67.
(R—symmetry breaking)
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Thermal history (for m/vF =2 and A\ = 1.67)

@ For T'>> T, origin is a
global minimum.

Q 7T./VF ~0.82
@ 1st (inverse) PT at

T, /VF ~ 0.67.
(R—symmetry breaking)

© Barrier disappears
© Barrier reappears
O 2nd (direct) PT at

Tpn2/VF ~ 0.59
(R—symmetry restoring)
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Thermal history (for m/vF =2 and A\ = 1.67)

@ For T'>> T, origin is a
global minimum.

Q 7T./VF ~0.82

@ 1st (inverse) PT at
T, /VF ~ 0.67.
(R—symmetry breaking)

© Barrier disappears

© Barrier reappears

O 2nd (direct) PT at
Tp2/VF ~ 0.59
(R—symmetry restoring)

@ For T'= 0 origin is a
global minimum.

Ve / F?

T/NF =04




Inverse PTs parameter space for m/\/F =2

R—symmetry breaking PT

Pseudo-trace (6): i
1 ) 0.741 ! 1
o= ———— (De(Ty) — Dp(T}) /2 ) |
3wy (Ty) o2k i ]
@ ’ 7 S Direct e
10 2 i g
~_ 0.70f | Té 1
Generalised pseudo-trace (19): = 16
1 de 0.68[ Inverse) ~ 1
e N ) De(Ty) - @(T+7T7)DP(T+) 1o barrier E
0.661 ! 1
Direct/Inverse: ay 20 1.60 1.62 1.64 1.66 1.68 1.70
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Physical interpretation of Inverse PTs @U

Latent Heat (L) characterizes the energetic nature of a phase transition
L= Tc(sold - Snew) = Wold — Wnew

where T is the critical temperature, s is the entropy density and w the enthalpy.



Physical interpretation of Inverse PTs @U

Latent Heat (L) characterizes the energetic nature of a phase transition

L= Tc(sold - Snew) = Wold — Wnew

where T is the critical temperature, s is the entropy density and w the enthalpy.

Exothermic Transitions (L > 0)

Endothermic Transitions (L < 0)

Energy is released during the transition.

Energy is absorbed during the
transition.

The system transitions to a "more

ordered" state.

The system transitions to a "less
ordered" state.

Example: Liquid — Solid.

Example: Solid — Liquid.




Latent Heat in the Bag Model @E

a ¥ A

In the bag model, the latent heat coincides with the vacuum energy difference between the phases:

L Ae

= = = ay
SU)+ (T+) G+Ti

L=Aw=4Ae¢=4(ey —c_), ar,

where €4 are the vacuum energy densities of the old and new phases, respectively.

Within the Bag Model:
@ Ae > 0: Direct PT, driven by vacuum energy.
@ Ae < 0: Inverse PT, against vacuum energy.




General model @E

We defined the difference of the generalised pseudo-trace as

de

DY = De(T) ~ 5
P

(T}, T)Dp(T})

but it can be rewritten, using e = w — p, as

&(T+,T)> Dp(T: )

DY = Dw(Ty) — (1 5

Realising that DY(T,.) = L = Aw, then D¥ is nothing but the generalisation of the latent heat

away from T, so

Inverse PTs < Endothermic CosmoPTs



Conclusions

@ We introduced direct and inverse PTs and found the respective steady state (self-similar) solutions.

@ In direct PTs the wall pushes the plasma and (part of ) the vacuum energy is converted in
kinetic energy.

© In inverse PTs the bubble sucks the plasma into it consequently pushing the wall. The initial
thermal energy is converted in vacuum and kinetic energy.

@ We have shown a concrete model where inverse PTs occur during the cooling of the Universe.

© We fully characterized the inverse PTs in terms of the generalised pesudo-trace and established its
1-to—1 correspondence with endothermic PTs.

Outlooks:

@ Distinguish Direct/Inverse PTs from GWs spectra using SoundShellModel (see Mark Hindmarsh
talk)

@ Non-SUSY realisations?
@ (Controlled) Superheated Inverse PTs



Thanks for

your attention!
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Sprectrum of the SUSY model

A= 167, m/VF -2

LIS 67 — o | '—
Vigee © V31000
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0 20 40 60 20 b



More on thermal history

Ver
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Matching conditions and possible solutions

A=167, m/VF =2
1.0 T
t : S
% %, o‘&@o‘q;-“\ox
Py —p- vy e_+Dpy 2 \% SAS
V4V = — —_— = 0.8F Y % ¥
er —e_ v_ et +p-— I : & &
0 g i
[ 2
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| 4 0.55
e [ Qi‘@& 0.5
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Full numerical fluid profiles

Inverse Detonation Inverse Hybrid Inverse Deflagration
0.00 T 0.00 T 0.00 T T
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Overlap in the hybrid corner

=167, m/VF =2
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Self-similar solutions (dynamical evolution)

v(x u(€) v(r),
20.0 () ( )
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Thanks to Isak Stomberg!
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BAG Equation of State (EoS)

Free energy (direct PT)

%,
,
2
NG
V&
\’f
‘s
‘s
(111,[11
cooling phase
€L =€, €_ =

0

Free energy (inverse PT)

heating phase

T

e =0, e =¢€



Toy model for inverse PT (from 2305.09712)

N T, =,
2 A A e
— /Py
Vi(¢) = i(Tz —T3)¢* — T¢* + = ¢* = 01 i
2 3 4! < P T T =08 NN
) =
Reheating toy model: o2 )
e (only) reheaton x with p, anf T, i i
@ Choosing H; we decide when it starts to -
decay 1073 1072 0.1 1 10 107
@ decay to a DS Hit
@ via portal interaction reheats the SM Px: reh.ea'Fon energy dens!ty
pr: radiation energy density

T.: critical temperature
Timax: maximal temperature



Energy budget & efficiency



Energy budget of PTs

w(€) = w(&) exp l / " (1 N 1) P (@)(E(),v) dv]

(&) \G

3
Energy budget (direct): %"e + Z/ngd{ :/7202w§2d§+ Z/wadé
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vacuum energy jnitial thermal energy fluid motion final thermal energy




Energy budget of PTs

w(€) = w(&) exp l / " (1 N 1) P (@)(E(),v) dv]

(&) \G

3
Energy budget (direct): E—“’e + §/wN§2d£ :/7202w§2d£+ Z/wadé

3 4
~—
vacuum energy jnitial thermal energy fluid motion final thermal energy
. 3 2 g?u 2,2 2 3 2
Energy budget (inverse): 1 wy&dE = 3 € + [ v vrwétdE + 1 w&dE
~—~—
initial thermal energy =~ Vacuum energy fluid motion final thermal energy

Initial energy will be in part converted in kinetic bulk motion!



Efficiency factors
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Types of solitions (detailed)

Types of discontinuities for cosmological direct phase transitions

Detonations
P+ < p_,vp >V

Deflagrations
P+ > p—, vy <V

Weak vy > g, U— > cg Physical vy < g, U— < cg Physical
Chapman-Jouguet vy > ¢, U_ = cs Physical vy < Cg,U_ = ¢s Physical
Strong vy > ¢, U_ < cs Forbidden vy < €, U_ > cs Unstable
Types of discontinuities for cosmological inverse phase transitions

Inverse Detonations Inverse Deflagrations

(P <p— vy >w_) (p+ >p— vy <wo)
Weak vy < cg,U_ < cg Physical vy > cg,U_ > cg Physical
Chapman-Jouguet vy = cg,U_ < cg Physical vy = g, U_ > cg Physical
Strong vy > ¢, U_ < cs Forbidden vy < €, U_ > cs Unstable




Impossibility of strong solutions

@ Strong detonations: velocity has to be zero
at the centre of the bubble and very far away
from the wall, and having v > 0 translates
into

—1>0,

2
1%
oY V- > Cg
s

so detonations with v_ < ¢, are fordibben.

o Strong deflagration:

e unstable wrt perturbations
e entropy decreases

Standard PT: ay > 0

1.0 7 ST
N- T strong o= LRt
7% 1
0.2" /—‘ S=s
PRae strong
O deflagrations deflagrations
QK mmmemim peremem pmimimmgmee; -
0.0 0.2 0.4 0.6 0.8 1.0

v



Evolution of quantities across the wall (direct)

ay =0.1 ay =0.5

— —— — T
deflagration hybrid detonation deflagration hybrid det.

1.0p 11.0¢

0.61

0.4r

0.21

0.0




Evolution of quantities across the wall (inverse)

ay = —0.05 ay = —0.1 ay =—0.5
iu‘\'(‘rs(‘ i ' d ill\'l‘l‘“ﬁ(‘ ' inv. ' S iu\‘r, ' ' '
detonation 1y bri eflagrati detonation hybrid deflagration detonation
1.5 2.0
15 -
1.0 —
— &
1o — ay/an
0.5 105 /—
045/
0.0 0.0 0.0=———1 ‘ ; ‘
0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0 0.1 0.2 0.3 0.4

Sw Sw Sw



Hydrodynamic description

Consider a collection of N particles

R = ADB/émfp

App : De Broglie wavelenght , £.,s, = mean free path

R<1

R>1

X {2
P _{E




Hydrodynamic description

Consider a collection of N particles

R = ADB/émfp R 1
<

App : De Broglie wavelenght , £.,s, = mean free path

X {2
P _{E

RZz1
but if N > 1 (while R < 1) then Kinetic theory = distr. function f(¢,Z, @)

Evolution eq. : Boltzmann eq. for f(t,Z, @)



Hydrodynamic description

Consider a collection of N particles

R = ADB/émfp R 1
<

App : De Broglie wavelenght , £.,s, = mean free path

X {2
P _{E

RZz1
but if N > 1 (while R < 1) then Kinetic theory = distr. function f(¢,Z, @)

Evolution eq. : Boltzmann eq. for f(t,Z, @)

but if N >> 1 such that L > {5, with L: length scale of the system (so that R <« 1), then

Thermalisation Local Thermal

ey — Continuum fluid J
occurs fast Equilibrium



Microscopic physics

@ Specify the model

ex.: LD |Dﬂ¢|2 - V;ree((yb) - Zyz((bd;LwR + hC) +..



Microscopic physics

@ Specify the model

ex.: LD |Dﬂ¢|2 - V;ree((b) - Zyz(¢1/;L¢R + hC) +..

AViree (9)

@ EOM: 06+ = 7o

—igA"d,p —ig(- A)p+ " A%+ > yibripr =0



Microscopic physics

@ Specify the model

ex.: LD |Dﬂ¢|2 - V;ree((b) - Zyz(¢1/;L¢R + hC) +..

AViree(d)
do*
@ Shift fields ¢ = ¢¢1 + I, ... and consider the thermal average (...), such that (6¢) = (A*) =0

@ EOM: O¢ + — igA" 9, —ig(d - A)p + g2 A%h + Y yibribp =0



Microscopic physics

@ Specify the model

ex: LD Dol = Viree(d) = D 4i(@rtor + hoc) +

AViree(d)

g l
@ Shift fields ¢ = ¢¢1 + I, ... and consider the thermal average (...), such that (6¢) = (A*) =0
@ Using, in WKB approximation, that

(A2 A2V‘C+Z/ ) ;E flkz),  (Dryr)= wwmﬁZ/' Ph )

@ EOM: O + —igA" 9,0 —ig(0- A)+ 9> A%G + Y yibrir =0




Microscopic physics

@ Specify the model

ex: LD Dol = Viree(d) = D 4i(@rtor + hoc) +

AViree(d)

g l
@ Shift fields ¢ = ¢¢1 + I, ... and consider the thermal average (...), such that (6¢) = (A*) =0
@ Using, in WKB approximation, that

(A2 A2V‘C+Z/ ) ;E flkz),  (Dryr)= wwme/' Ph )

@ EOM: O + —igA" 9,0 —ig(0- A)+ 9> A%G + Y yibrir =0

@ Combining all together we arrive at

(¢a) [ d’k
D¢ + V4 (¢a1) +Z d%l / Gy fi(b ) =0




Friction

dm2(, Bk
D¢>d+V0’(¢c1)+Z ””Z;d ) / g, k) =0




Friction

(ba) [ dk
D(bcl"'_vb (bcl +Z d¢cl 1 /(27T)3E1f1(k7x):0

outside

Integrating the EoM wrt / dz 0,¢. we can (arbitrarily) define

inside



Friction

(pa1) d3k _
O¢a + Vg (¢a) + Z d¢c1 / G E, filk,z) =0

outside

Integrating the EoM wrt / dz 0,¢. we can (arbitrarily) define

inside

D. : FVW. m
@ Vacuum force: Fyacuum = /dz 000 Vg (del) = €4 — € { irect : Fyacuum > 0

Inverse : Fyacuum < 0



Friction

(pa1) d3k _
O¢a + Vg (¢a) + Z d¢c1 / G E, filk,z) =0

outside

Integrating the EoM wrt / dz 0,¢. we can (arbitrarily) define

inside

@ Vacuum force: Fypcuum = /dz 0,00 Vi (da1) = €4 — €

Direct : Fvacuul’n >0
Inverse : Fliacuum < 0

c >k
@ Plasma force: Pplasma = /dz 0. 0a Z d¢ : ! / ) E (fcq +6f) = Pure + Paissipative

5'
where Prrg = /dZ 0200 Vp(¢a, T) = —AVp +/ 0. ¢al



Friction

(pa1) d3k _
O¢a + Vg (¢a) + Z d¢c1 / G E, filk,z) =0

outside

Integrating the EoM wrt / dz 0,¢. we can (arbitrarily) define

inside

D. : FVW. m
@ Vacuum force: Fyacuum = /dz 000 Vg (del) = €4 — € { irect : Fyacuum > 0

Inverse : Fyacuum < 0

c >k
@ Plasma force: Pplasma = /dz 5Z¢clz dqb : 1 / T (fcq +8f) = PrrE + Pdissipative

5'
where Prrg = /dZ 0:0a Vi(pa, T) = —AVp +/ 0,0a

Total force: Fiacuum — Pplasma = €+ — €— + AVp — / dz—— qucl Plissipative




Runaway(?)
Ultrarelativistic walls — neglect collisions among particles

fi (p7 T) = foutside (p7 TN)



Runaway(?)
Ultrarelativistic walls — neglect collisions among particles
fi (p7 T) = foutside (p7 TN)

then in the limit v, — oo

B dmi(¢) Pp
Pplasma = - /dzaz¢zi:gz d(ﬁ / (27T)32E1 fl(p,z,T)

A 2T2
JFZ%%%, Direct PT

AT
- Zcigi%cefﬂi, Inverse PT

2

where
1 if mi"<T,
Cn(m?™/T) ~ {12 <m

1/2
—-mS"t /T out
(@m)3/? TN> e it my" >T.



Runaway(?)

Runaway pOSSible if Fvacuurn - Pplasma >0
Yw —> OO0
Am?|T?
Direct € > cigi% need PT strong enough
Am2 T2
Inverse € < offi (mS™ /T)cig 1| 24' not impossible, but hard to get

@ Disclaimer: we did not consider dissipative contribution nor splitting 1 — 2, etc. @
) )




Theory of discontinuities



Stability of solutions wrt perturbations



