

The Dawn of Gravitational Wave Cosmology

(Benasque Science Center, Apr 27 - May 17, 2025)

Inverse phase transitions

and where SUSY sucks...

IFT MADRID

Giulio Barni giulio.barni@ift.csic.es

based on JCAP 10 (2024) 042 and 2503.01951 with Simone Blasi and Miguel Vanvlasselaer

Inverse phase transitions

Outline

Introduction

- FOPT: direct and inverse
- Hydrodynamic description
 - Hydrodynamic equations
 - Steady-state solutions

Realistic model (where SUSY sucks ...)

Physical interpretation for *inverse* PTs

Sketch of an inverse PT

...

2/27

What?

FOPT: What? (from quantum field theory)

Let us consider a system described by the scalar potential $V(\phi)$

How?

FOPT: How?

 $\mathsf{FOPT} = \mathsf{tunneling} \mathsf{ transition} \mathsf{ between two minima separated by a barrier}$

In **favour** of the T = 0 vacuum energy

In **favour** of the T = 0 vacuum energy

Hydrodynamic description

Hydrodynamics equations

Coupled system of the scalar background and the plasma

$$T^{\mu\nu} = T^{\mu\nu}_{\phi} + T^{\mu\nu}_{p}, \qquad \begin{cases} T^{\mu\nu}_{\phi} = \partial^{\mu}\phi\partial^{\nu}\phi - g^{\mu\nu} \left[\frac{1}{2}(\partial\phi)^{2} - V(\phi)\right] \\ T^{\mu\nu}_{p} = (e+p)u^{\mu}u^{\nu} - p g^{\mu\nu} \end{cases}$$

Hydrodynamics equations

Coupled system of the scalar background and the plasma

$$\begin{split} T^{\mu\nu} &= T^{\mu\nu}_{\phi} + T^{\mu\nu}_{p}, \qquad \begin{cases} T^{\mu\nu}_{\phi} &= \partial^{\mu}\phi\partial^{\nu}\phi - g^{\mu\nu} \left[\frac{1}{2}(\partial\phi)^{2} - V(\phi)\right] \\ T^{\mu\nu}_{p} &= (e+p)u^{\mu}u^{\nu} - p\,g^{\mu\nu} \end{cases} \\ \end{split}$$

Energy conservation:
$$\nabla_{\mu}T^{\mu\nu} &= 0 \qquad \rightarrow \qquad \begin{cases} \text{Continuity eq.} \\ \text{Euler eq.} \end{cases} \text{ (for continuous waves)} \end{split}$$

Hydrodynamics equations

Coupled system of the scalar background and the plasma

$$\begin{split} T^{\mu\nu} &= T^{\mu\nu}_{\phi} + T^{\mu\nu}_{p}, \qquad \begin{cases} T^{\mu\nu}_{\phi} &= \partial^{\mu}\phi\partial^{\nu}\phi - g^{\mu\nu} \left[\frac{1}{2}(\partial\phi)^{2} - V(\phi)\right] \\ T^{\mu\nu}_{p} &= (e+p)u^{\mu}u^{\nu} - p\,g^{\mu\nu} \end{cases} \\ \end{split}$$

Energy conservation: $\nabla_{\mu}T^{\mu\nu} = 0 \quad \rightarrow \quad \begin{cases} \text{Continuity eq.} \\ \text{Euler eq.} \end{cases}$ (for continuous waves)

matching conditions across discontinuities $(\pm \text{ bubble wall frame})$

$$\begin{split} & w_+\gamma_+^2 v_+ = w_-\gamma_-^2 v_- \\ & w_+\gamma_+^2 v_+^2 + p_+ = w_-\gamma_-^2 v_-^2 + p_- \\ & \text{where } w = e+p = \text{enthalpy} \end{split}$$

Once the microphysics is specified (i.e., a model is chosen), we can compute the free energy, related to the pressure via:

$$p = -\mathcal{F} = -V_{\text{eff}} = -(V_0 + V_{1\text{-loop}} + V_T)$$

From the pressure, other thermodynamic quantities follow:

$$w = T \frac{\partial p}{\partial T},$$
 $e = w - p,$ $c_s^2 = \frac{\partial p}{\partial e}$

Once the microphysics is specified (i.e., a model is chosen), we can compute the free energy, related to the pressure via:

$$p = -\mathcal{F} = -V_{\text{eff}} = -(V_0 + V_{1\text{-loop}} + V_T)$$

From the pressure, other thermodynamic quantities follow:

$$w = T \frac{\partial p}{\partial T},$$
 $e = w - p,$ $c_s^2 = \frac{\partial p}{\partial e}$

Different levels of approximation can be used:

Bag EOS:
$$p_{\pm} = c_s^2 a_{\pm} T_{\pm}^4 - \epsilon_{\pm}$$
 with constant $c_s^2 = \frac{1}{3}$.

Once the microphysics is specified (i.e., a model is chosen), we can compute the free energy, related to the pressure via:

$$p = -\mathcal{F} = -V_{\text{eff}} = -(V_0 + V_{1\text{-loop}} + V_T)$$

From the pressure, other thermodynamic quantities follow:

$$w = T \frac{\partial p}{\partial T},$$
 $e = w - p,$ $c_s^2 = \frac{\partial p}{\partial e}$

Different levels of approximation can be used:

Bag EOS:
$$p_{\pm} = c_s^2 a_{\pm} T_{\pm}^4 - \epsilon_{\pm}$$
 with constant $c_s^2 = \frac{1}{3}$

 $\textcircled{ } \mu\nu \text{-model: } \quad p_{\pm}=c_{s,\pm}^2a_{\pm}T_{\pm}^{\nu_{\pm}}-\epsilon_{\pm} \text{, where } \nu_{\pm}=1+1/c_{s,\pm}^2 \text{ and } \nu_{-}=\mu \text{, } \nu_{+}=\nu.$

Once the microphysics is specified (i.e., a model is chosen), we can compute the free energy, related to the pressure via:

$$p = -\mathcal{F} = -V_{\text{eff}} = -(V_0 + V_{1\text{-loop}} + V_T)$$

From the pressure, other thermodynamic quantities follow:

$$w = T \frac{\partial p}{\partial T},$$
 $e = w - p,$ $c_s^2 = \frac{\partial p}{\partial e}$

Different levels of approximation can be used:

9 Bag EOS:
$$p_{\pm} = c_s^2 a_{\pm} T_{\pm}^4 - \epsilon_{\pm}$$
 with constant $c_s^2 = \frac{1}{3}$

 $\label{eq:phi} \ensuremath{ \bullet } \ensuremath{ \bullet } \mu \nu \text{-model:} \quad p_{\pm} = c_{s,\pm}^2 a_{\pm} T_{\pm}^{\nu_{\pm}} - \epsilon_{\pm} \text{, where } \nu_{\pm} = 1 + 1/c_{s,\pm}^2 \text{ and } \nu_{-} = \mu \text{, } \nu_{+} = \nu.$

• Full model: $p_{\pm} = -\mathcal{F}(\phi_{\pm})$, with $c_{s,\pm}(T)$ derived from the full free energy.

Solving hydrodynamics equations: steady-state solutions

Note : $\pm \rightarrow$ bubble wall frame

 $\xi, f(\xi) \rightarrow$ center of the bubble frame

Steady-state solutions

(depend only on the self-similar variable $\xi = r/t$)

$$(\xi - v)\frac{\partial_{\xi}T}{w}\frac{de}{dT} = \frac{2v}{\xi} + [1 - \gamma^2 v(\xi - v)]\partial_{\xi}v,$$
$$\frac{\partial_{\xi}T}{T} = \gamma^2 \mu(\xi, v)\partial_{\xi}v,$$

where
$$\mu(\xi, v) = \frac{\xi - v}{1 - \xi v}$$

Steady–state solutions (depend only on the *self-similar* variable $\xi = r/t$)

$$\begin{split} (\xi - v) \frac{\partial_{\xi} T}{w} \frac{de}{dT} &= \frac{2v}{\xi} + [1 - \gamma^2 v(\xi - v)] \partial_{\xi} v \\ \frac{\partial_{\xi} T}{T} &= \gamma^2 \mu(\xi, v) \partial_{\xi} v \,, \\ \end{split}$$
 where $\mu(\xi, v) = \frac{\xi - v}{1 - \xi v}$

I Direct PTs III Direct Droplet collapse II Inverse PTs IV Inverse Droplet collapse

Steady–state solutions (depend only on the *self-similar* variable $\xi = r/t$)

$$\begin{split} (\xi - v) \frac{\partial_{\xi} T}{w} \frac{de}{dT} &= \frac{2v}{\xi} + [1 - \gamma^2 v(\xi - v)] \partial_{\xi} v \\ \frac{\partial_{\xi} T}{T} &= \gamma^2 \mu(\xi, v) \partial_{\xi} v , \\ \end{split}$$
 where $\mu(\xi, v) &= \frac{\xi - v}{1 - \xi v}$

I Direct PTs III Direct Droplet collapse II Inverse PTs IV Inverse Droplet collapse

Possible directions?

- Why start in a minimum away from the origin?
- Can an *inverse* PT naturally occurs within the standard cosmological cooling of the Universe? (with no need to (re)heat the Universe?)

- Why start in a minimum away from the origin?
- Can an *inverse* PT naturally occurs within the standard cosmological cooling of the Universe? (with no need to (re)heat the Universe?)

Where SUSY sucks (literally)

SUSY breaking hidden sector featuring a strong FOPT.

Model: SUSY breaking field $X + \Phi_{1,2}$ and $\tilde{\Phi}_{1,2}$ mediator fields

$$W = -FX + \lambda X \Phi_1 \tilde{\Phi}_2 + m(\Phi_1 \tilde{\Phi}_1 + \Phi_2 \tilde{\Phi}_2)$$

where \sqrt{F} SUSY breaking scale. The model has a U(1) $R-{\rm symmetry.}$

SUSY breaking hidden sector featuring a strong FOPT.

Model: SUSY breaking field X + $\Phi_{1,2}$ and $\tilde{\Phi}_{1,2}$ mediator fields

$$W = -FX + \lambda X \Phi_1 \tilde{\Phi}_2 + m(\Phi_1 \tilde{\Phi}_1 + \Phi_2 \tilde{\Phi}_2)$$

where \sqrt{F} SUSY breaking scale. The model has a $U(1)\ R-{\rm symmetry}.$

 $V_{\text{eff}} = \left|F - \lambda \phi_1 \tilde{\phi}_2\right|^2 + \left|\lambda X \tilde{\phi}_2 + m \tilde{\phi}_1\right|^2 + \left|\lambda X \phi_1 + m \phi_2\right|^2 + \left|m \phi_1\right|^2 + \left|m \tilde{\phi}_2\right|^2 + \text{loops + thermal corrections}$ where $X = x/\sqrt{2}$. Thermal history (for $m/\sqrt{F} = 2$ and $\lambda = 1.67$)

 $T/\sqrt{F} = 1.5$ • For $T \gg T_c$ origin is a global minimum. $V_{\rm eff}/F^2$ 50 101520 x/\sqrt{F}

Thermal history (for $m/\sqrt{F} = 2$ and $\lambda = 1.67$)

20/27

global minimum. $T_c/\sqrt{F} \sim 0.82$

- For $T \gg T_c$ origin is a global minimum.
- $\ \, @ \ \, T_c/\sqrt{F} \sim 0.82$
- 1st (inverse) PT at $T_n/\sqrt{F} \sim 0.67.$ (*R*-symmetry breaking)

- For $T \gg T_c$ origin is a global minimum.
- $\textcircled{O} \ T_c/\sqrt{F} \sim 0.82$
- 1st (inverse) PT at $T_n/\sqrt{F} \sim 0.67.$ (*R*-symmetry breaking)
- Barrier disappears
- Barrier reappears
- 2nd (direct) PT at $T_{n,2}/\sqrt{F} \sim 0.59 \label{eq:transform} (R-\text{symmetry restoring})$

- For $T \gg T_c$ origin is a global minimum.
- $\textcircled{O} \ T_c/\sqrt{F} \sim 0.82$
- 1st (inverse) PT at $T_n/\sqrt{F} \sim 0.67$. (*R*-symmetry breaking)
- Barrier disappears
- Barrier reappears
- 2nd (direct) PT at $T_{n,2}/\sqrt{F} \sim 0.59$ (*R*-symmetry restoring)
- For T = 0 origin is a global minimum.

Inverse PTs parameter space for $m/\sqrt{F} = 2$

 $Df = f_{+}(T_{+}) - f_{-}(T_{+})$ $\delta f = f_{-}(T_{+}) - f_{-}(T_{-}).$

Physical interpretation of Inverse PTs

Physical interpretation of Inverse PTs

Latent Heat (L) characterizes the energetic nature of a phase transition

$$L = T_c(s_{\text{old}} - s_{\text{new}}) = w_{\text{old}} - w_{\text{new}},$$

where T_c is the critical temperature, s is the entropy density and w the enthalpy.

Physical interpretation of Inverse PTs

Latent Heat (L) characterizes the energetic nature of a phase transition

$$L = T_c(s_{\text{old}} - s_{\text{new}}) = w_{\text{old}} - w_{\text{new}},$$

where T_c is the critical temperature, s is the entropy density and w the enthalpy.

Exothermic Transitions ($L > 0$)	Endothermic Transitions ($L < 0$)
Energy is released during the transition.	Energy is absorbed during the transition.
The system transitions to a "more ordered" state.	The system transitions to a "less ordered" state.
Example: Liquid \rightarrow Solid.	Example: Solid \rightarrow Liquid.

In the **bag model**, the latent heat coincides with the vacuum energy difference between the phases:

$$L = \Delta w = 4\Delta \epsilon = 4(\epsilon_+ - \epsilon_-), \qquad \alpha_L = \frac{L}{3w_+(T_+)} = \frac{\Delta \epsilon}{a_+T_+^4} \equiv \alpha_+$$

where ϵ_{\pm} are the vacuum energy densities of the old and new phases, respectively.

Within the Bag Model:

- $\Delta \epsilon > 0$: Direct PT, driven by vacuum energy.
- $\Delta \epsilon < 0$: Inverse PT, against vacuum energy.

We defined the difference of the generalised pseudo-trace as

$$D\vartheta = De(T_+) - \frac{\delta e}{\delta p}(T_+, T_-)Dp(T_+)$$

but it can be rewritten, using e = w - p, as

$$D\vartheta = Dw(T_{+}) - \left(1 + \frac{\delta e}{\delta p}(T_{+}, T_{-})\right) Dp(T_{+})$$

Realising that $D\vartheta(T_c) = L = \Delta w$, then $D\vartheta$ is nothing but the generalisation of the latent heat away from T_c , so

Inverse PTs \iff Endothermic CosmoPTs

Conclusions

- We introduced *direct* and *inverse* PTs and found the respective steady state (self-similar) solutions.
- In *direct* PTs the wall pushes the plasma and (part of) the vacuum energy is converted in kinetic energy.
- In *inverse* PTs the bubble sucks the plasma into it consequently pushing the wall. The initial thermal energy is converted in vacuum and kinetic energy.
- We have shown a concrete model where *inverse* PTs occur during the cooling of the Universe.
- We fully characterized the *inverse* PTs in terms of the generalised pesudo-trace and established its 1-to-1 correspondence with **endothermic** PTs.

Outlooks:

- Distinguish Direct/Inverse PTs from GWs spectra using SoundShellModel (see Mark Hindmarsh talk)
- Non–SUSY realisations?
- (Controlled) Superheated Inverse PTs

Backup

Sprectrum of the SUSY model

More on thermal history

Matching conditions and possible solutions

Full numerical fluid profiles

Overlap in the hybrid corner

Self-similar solutions (dynamical evolution)

BAG Equation of State (EoS)

Toy model for inverse PT (from 2305.09712)

$$V(\phi) = \frac{\mu^2}{2} (T^2 - T_0^2) \phi^2 - \frac{A}{3} T \phi^3 + \frac{\lambda}{4!} \phi^4$$

Reheating toy model:

- (only) reheaton χ with ρ_{χ} anf Γ_{χ}
- Choosing H_i we decide when it starts to decay
- $\bullet\,$ decay to a DS
- via portal interaction reheats the SM

Energy budget & efficiency

Energy budget of PTs

$$w(\xi) = w(\xi_0) \exp\left[\int_{v(\xi_0)}^{v(\xi)} \left(\frac{1}{c_s^2} + 1\right) \gamma^2(v) \mu(\xi(v), v) \, dv\right]$$

Energy budget (direct): $\underbrace{\frac{\xi_w^3}{3}\epsilon}_{vacuum \, energy} + \underbrace{\frac{3}{4} \int w_N \xi^2 d\xi}_{initial \, thermal \, energy} = \underbrace{\int \gamma^2 v^2 w \xi^2 d\xi}_{\text{fluid motion}} + \underbrace{\frac{3}{4} \int w \xi^2 d\xi}_{\text{final thermal energy}}$

Energy budget of PTs

Initial energy will be in part converted in kinetic bulk motion!

Efficiency factors

Types of solitions (detailed)

Types of discontinuities for cosmological <i>direct</i> phase transitions		
	Detonations	Deflagrations
	$p_+ < p, v_+ > v$	$p_+ > p, v_+ < v$
Weak	$v_+ > c_s, v > c_s$ Physical	$v_+ < c_s, v < c_s$ Physical
Chapman-Jouguet	$v_+ > c_s, v = c_s$ Physical	$v_+ < c_s, v = c_s$ Physical
Strong	$v_+ > c_s, v < c_s$ Forbidden	$v_+ < c_s, v > c_s$ Unstable

Types of discontinuities for cosmological <i>inverse</i> phase transitions		
	Inverse Detonations	Inverse Deflagrations
	$(p_+ < p, v_+ > v)$	$(p_+ > p, v_+ < v)$
Weak	$v_+ < c_s, v < c_s$ Physical	$v_+ > c_s, v > c_s$ Physical
Chapman-Jouguet	$v_+ = c_s, v < c_s$ Physical	$v_+ = c_s, v > c_s$ Physical
Strong	$v_+ > c_s, v < c_s$ Forbidden	$v_+ < c_s, v > c_s$ Unstable

Impossibility of strong solutions

• Strong detonations: velocity has to be zero at the centre of the bubble and very far away from the wall, and having v > 0 translates into

$$\frac{\mu^2}{c_s^2} - 1 > 0 , \qquad v_- > c_s$$

so detonations with $v_{-} < c_{s}$ are fordibben.

• Strong deflagration:

- unstable wrt perturbations
- entropy decreases

Evolution of quantities across the wall (direct)

Evolution of quantities across the wall (inverse)

Hydrodynamic description

Consider a collection of \boldsymbol{N} particles

 $\mathcal{R} = \lambda_{DB} / \ell_{\mathrm{mfp}}$

 λ_{DB} : De Broglie wavelenght , ℓ_{mfp} = mean free path

Hydrodynamic description

Consider a collection of \boldsymbol{N} particles

 $\mathcal{R} = \lambda_{DB} / \ell_{\mathrm{mfp}}$

 $\lambda_{DB}: {\sf De} \; {\sf Broglie} \; {\sf wavelenght} \;, \; \; \ell_{mfp} = {\sf mean} \; {\sf free} \; {\sf path}$

but if $N \gg 1$ (while $\mathcal{R} \ll 1$) then **Kinetic theory** \Rightarrow distr. function $f(t, \vec{x}, \vec{u})$

Evolution eq. : Boltzmann eq. for $f(t, \vec{x}, \vec{u})$

Hydrodynamic description

Consider a collection of \boldsymbol{N} particles

 $\mathcal{R} = \lambda_{DB} / \ell_{\mathrm{mfp}}$

 $\lambda_{DB}: {\sf De} \ {\sf Broglie} \ {\sf wavelenght} \ , \ \ \ell_{\rm mfp} = {\sf mean} \ {\sf free} \ {\sf path}$

but if $N \gg 1$ (while $\mathcal{R} \ll 1$) then **Kinetic theory** \Rightarrow distr. function $f(t, \vec{x}, \vec{u})$

Evolution eq. : Boltzmann eq. for $f(t, \vec{x}, \vec{u})$

but if $N \gg 1$ such that $L \gg \ell_{\rm mfp}$ with L: length scale of the system (so that $\mathcal{R} \ll 1$), then

$$\begin{array}{cccc} \text{Thermalisation} & & \text{Local Thermal} \\ \text{occurs fast} & \rightarrow & \text{Equilibrium} & \rightarrow & \text{Continuum fluid} \checkmark \end{array}$$

Specify the model

$$\underline{\mathbf{ex.}}: \mathcal{L} \supset |D_{\mu}\phi|^2 - V_{\text{tree}}(\phi) - \sum_{i} y_i(\phi\bar{\psi}_L\psi_R + h.c.) + \dots$$

Specify the model

$$\underline{\operatorname{ex.}}: \ \mathcal{L} \supset |D_{\mu}\phi|^2 - V_{\operatorname{tree}}(\phi) - \sum_{i} y_i(\phi\bar{\psi}_L\psi_R + h.c.) + \dots$$

e EOM:

$$\Box \phi + \frac{dV_{\text{tree}}(\phi)}{d\phi^*} - igA^{\mu}\partial_{\mu}\phi - ig(\partial \cdot A)\phi + g^2A^2\phi + \sum_i y_i\bar{\psi}_R\psi_L = 0$$

Specify the model

$$\underline{\mathsf{ex.}}: \ \mathcal{L} \supset |D_{\mu}\phi|^2 - V_{\mathrm{tree}}(\phi) - \sum_{i} y_i(\phi\bar{\psi}_L\psi_R + h.c.) + \dots$$

• EOM:
$$\Box \phi + \frac{dV_{\text{tree}}(\phi)}{d\phi^*} - igA^{\mu}\partial_{\mu}\phi - ig(\partial \cdot A)\phi + g^2A^2\phi + \sum_i y_i\bar{\psi}_R\psi_L = 0$$

• Shift fields $\phi = \phi_{cl} + \delta \phi$, ... and consider the thermal average $\langle \dots \rangle$, such that $\langle \delta \phi \rangle = \langle A^{\mu} \rangle = 0$

• Specify the model

$$\underline{\mathsf{ex.}}: \ \mathcal{L} \supset |D_{\mu}\phi|^2 - V_{\text{tree}}(\phi) - \sum_{i} y_i(\phi\bar{\psi}_L\psi_R + h.c.) + \dots$$

$$\bullet \text{ EOM:} \qquad \qquad \Box \phi + \frac{dV_{\text{tree}}(\phi)}{d\phi^*} - igA^{\mu}\partial_{\mu}\phi - ig(\partial \cdot A)\phi + g^2A^2\phi + \sum_i y_i\bar{\psi}_R\psi_L = 0$$

• Shift fields $\phi = \phi_{cl} + \delta \phi$, ... and consider the thermal average $\langle ... \rangle$, such that $\langle \delta \phi \rangle = \langle A^{\mu} \rangle = 0$ • Using, in WKB approximation, that

$$\langle A^2 \rangle = \langle A^2 \rangle_{\rm vac} + \sum \int \frac{d^3k}{(2\pi)^3 E} f(k,x) , \qquad \langle \bar{\psi}_R \psi_L \rangle = \frac{1}{2} \langle \bar{\psi} \psi \rangle_{\rm vac} + \sum \int \frac{d^3k}{(2\pi)^3} \frac{m}{2E} f(k,x)$$
Microscopic physics

• Specify the model

$$\underline{\mathsf{ex.}}: \ \mathcal{L} \supset |D_{\mu}\phi|^2 - V_{\text{tree}}(\phi) - \sum_{i} y_i(\phi\bar{\psi}_L\psi_R + h.c.) + \dots$$

$$\bullet \text{ EOM:} \qquad \qquad \Box \phi + \frac{dV_{\text{tree}}(\phi)}{d\phi^*} - igA^{\mu}\partial_{\mu}\phi - ig(\partial \cdot A)\phi + g^2A^2\phi + \sum_i y_i\bar{\psi}_R\psi_L = 0$$

Shift fields $\phi = \phi_{cl} + \delta \phi$, ... and consider the thermal average $\langle ... \rangle$, such that $\langle \delta \phi \rangle = \langle A^{\mu} \rangle = 0$ Using, in WKB approximation, that

$$\langle A^2 \rangle = \langle A^2 \rangle_{\rm vac} + \sum \int \frac{d^3k}{(2\pi)^3 E} f(k,x) \ , \qquad \langle \bar{\psi}_R \psi_L \rangle = \frac{1}{2} \langle \bar{\psi} \psi \rangle_{\rm vac} + \sum \int \frac{d^3k}{(2\pi)^3} \ \frac{m}{2E} f(k,x)$$

Combining all together we arrive at

$$\Box \phi_{\rm cl} + V_0'(\phi_{\rm cl}) + \sum_i \frac{dm_i^2(\phi_{\rm cl})}{d\phi_{\rm cl}} \int \frac{d^3k}{(2\pi)^3 E_i} f_i(k, x) = 0$$

$$\Box \phi_{\rm cl} + V_0'(\phi_{\rm cl}) + \sum_i \frac{dm_i^2(\phi_{\rm cl})}{d\phi_{\rm cl}} \int \frac{d^3k}{(2\pi)^3 E_i} f_i(k, x) = 0$$

$$\Box \phi_{\rm cl} + V_0'(\phi_{\rm cl}) + \sum_i \frac{dm_i^2(\phi_{\rm cl})}{d\phi_{\rm cl}} \int \frac{d^3k}{(2\pi)^3 E_i} f_i(k,x) = 0$$

Integrating the EoM wrt
$$\int_{\rm inside}^{\rm outside} dz \, \partial_z \phi_{\rm cl} \text{ we can (arbitrarily) define}$$

$$\Box \phi_{\rm cl} + V_0'(\phi_{\rm cl}) + \sum_i \frac{dm_i^2(\phi_{\rm cl})}{d\phi_{\rm cl}} \int \frac{d^3k}{(2\pi)^3 E_i} f_i(k, x) = 0$$
Integrating the EoM wrt $\int_{\rm inside}^{\rm outside} dz \, \partial_z \phi_{\rm cl}$ we can (arbitrarily) define
Vacuum force: $F_{\rm vacuum} \equiv \int dz \, \partial_z \phi_{\rm cl} \, V_0'(\phi_{\rm cl}) = \epsilon_+ - \epsilon_-$

$$\begin{cases} {\rm Direct} : F_{\rm vacuum} > 0 \\ {\rm Inverse} : F_{\rm vacuum} < 0 \end{cases}$$

h

$$\Box \phi_{cl} + V_0'(\phi_{cl}) + \sum_i \frac{dm_i^2(\phi_{cl})}{d\phi_{cl}} \int \frac{d^3k}{(2\pi)^3 E_i} f_i(k, x) = 0$$

$$\text{ntegrating the EoM wrt} \int_{\text{inside}}^{\text{outside}} dz \, \partial_z \phi_{cl} \text{ we can (arbitrarily) define}$$

$$\text{Vacuum force: } F_{\text{vacuum}} \equiv \int dz \, \partial_z \phi_{cl} V_0'(\phi_{cl}) = \epsilon_+ - \epsilon_- \qquad \begin{cases} \text{Direct : } F_{\text{vacuum}} > 0 \\ \text{Inverse : } F_{\text{vacuum}} < 0 \end{cases}$$

$$\text{Plasma force: } \mathcal{P}_{\text{plasma}} \equiv -\int dz \, \partial_z \phi_{cl} \sum_i \frac{dm_i^2(\phi_{cl})}{d\phi_{cl}} \int \frac{d^3k}{(2\pi)^3 E} (f_{\text{eq}} + \delta f) = \mathcal{P}_{\text{LTE}} + \mathcal{P}_{\text{dissipative}}$$

$$\text{where } \mathcal{P}_{\text{LTE}} = \int dz \, \partial_z \phi_{cl} V_T'(\phi_{cl}, T) = -\Delta V_T + \int dz \frac{\partial V_T}{\partial T} \partial_z \phi_{cl}$$

$$\begin{split} \Box \phi_{\rm cl} + V_0'(\phi_{\rm cl}) + \sum_i \frac{dm_i^2(\phi_{\rm cl})}{d\phi_{\rm cl}} \int \frac{d^3k}{(2\pi)^3 E_i} f_i(k,x) &= 0 \end{split}$$
Integrating the EoM wrt $\int_{\rm inside}^{\rm outside} dz \, \partial_z \phi_{\rm cl}$ we can (arbitrarily) define
• Vacuum force: $F_{\rm vacuum} \equiv \int dz \, \partial_z \phi_{\rm cl} \, V_0'(\phi_{\rm cl}) = \epsilon_+ - \epsilon_- \qquad \begin{cases} {\rm Direct} : F_{\rm vacuum} > 0 \\ {\rm Inverse} : F_{\rm vacuum} < 0 \end{cases}$
• Plasma force: $\mathcal{P}_{\rm plasma} \equiv -\int dz \, \partial_z \phi_{\rm cl} \sum_i \frac{dm_i^2(\phi_{\rm cl})}{d\phi_{\rm cl}} \int \frac{d^3k}{(2\pi)^3 E} (f_{\rm eq} + \delta f) = \mathcal{P}_{\rm LTE} + \mathcal{P}_{\rm dissipative} \\ {\rm where} \ \mathcal{P}_{\rm LTE} = \int dz \, \partial_z \phi_{\rm cl} \, V_T'(\phi_{\rm cl}, T) = -\Delta V_T + \int dz \frac{\partial V_T}{\partial T} \partial_z \phi_{\rm cl} \\ \hline {\rm Total \ force:} \ F_{\rm vacuum} - \mathcal{P}_{\rm plasma} = \epsilon_+ - \epsilon_- + \Delta V_T - \int dz \frac{\partial V_T}{\partial T} \partial_z \phi_{\rm cl} - \mathcal{P}_{\rm dissipative} \end{cases}$

Runaway(?)

Ultrarelativistic walls \rightarrow neglect collisions among particles

 $f_i(p,T) = f_{\text{outside}}(p,T_N)$

Runaway(?)

Ultrarelativistic walls \rightarrow neglect collisions among particles

$$f_i(p,T) = f_{\text{outside}}(p,T_N)$$

then in the limit $\gamma_w \to \infty$

$$\begin{split} \mathcal{P}_{\text{plasma}} &= -\int dz \partial_z \phi \sum_i g_i \frac{dm_i^2(\phi)}{d\phi} \int \frac{d^3 \mathbf{p}}{(2\pi)^3 2E_i} f_i(p, z, T) \\ &= \begin{cases} +\sum_i c_i g_i \frac{|\Delta m^2| T_N^2}{24}, & \text{Direct PT} \\ -\sum_i c_i g_i \frac{|\Delta m^2| T_N^2}{24} C_{\text{eff},i}, & \text{Inverse PT} \end{cases} \end{split}$$

where

$$C_{\rm eff}(m_i^{\rm out}/T) \approx \begin{cases} 1 & \mbox{if} \quad m_i^{\rm out} \ll T \;, \\ \\ \frac{12}{(2\pi)^{3/2}} \left(\frac{m_i^{\rm out}}{T_N}\right)^{1/2} e^{-m_i^{\rm out}/T} & \mbox{if} \quad m_i^{\rm out} \gg T \;. \end{cases}$$

Runaway(?)

$$\begin{split} & \left. \begin{array}{l} \mathbf{Runaway \ possible \ if \ } F_{\mathrm{vacuum}} - \mathcal{P}_{\mathrm{plasma}} \right|_{\gamma_w \to \infty} > 0 \\ & \left. \begin{array}{l} \\ \mathsf{Direct} \quad \epsilon > \left| \sum_i c_i g_i \frac{|\Delta m_i^2| T^2}{24} \right| & \mathsf{need \ PT \ strong \ enough} \\ \\ \mathsf{Inverse} \quad \epsilon < \left| \sum_i C_{\mathrm{eff}, \mathrm{i}}(m_i^{\mathrm{out}}/T) c_i g_i \frac{|\Delta m_i^2| T^2}{24} \right| & \mathsf{not \ impossible, \ but \ hard \ to \ get} \end{array} \right. \end{split}$$

Disclaimer: we did not consider dissipative contribution nor splitting
$$1 \rightarrow 2$$
, etc.

Theory of discontinuities

Stability of solutions wrt perturbations