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Strong CP problem
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The coupling to QCD gives the axion a mass AZ pep = —
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Axion Dark Matter

AXxion can realize the correct DM abundance

Misalignment Mechanism
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AXxion rotation

[Co, Harigaya (2020) ]



Why rotation?

Angular motion: PQ explicit breaking terms

Pﬂ
Mg

Higher dimensional operators give a mass to the axion: quality problem.
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Angular motion: PQ explicit breaking terms

qﬂ
...— -l-—"ic

M‘o -4

Higher dimensional operators give a mass to the axion: quality problem.
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Usual solution: Power n large enough so that IS suppressed.
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PQ charge

The axion has a shift symmetry, A —» A + ZW.FQ
npo = IPP* — iP*P

nPQ — pzé Af\jU‘Of momen"um

» Npg Is conserved atter the onset of oscillations

e |ts Initial value determines the final Dark Matter abundance.



This work

* \We use the set-up of inflation at the pole in order to provide the
initial conditions for the axion velocity.

* In contrast to previous work relying on a small non-minimal coupling,
we exploit conformality.

[M. Fairbairn, R. Hogan and D. J. E. Marsh, ‘14]
[K. Nakayama and M. Takimoto, ’19]
[G. Ballesteros, J. Redondo, A. Ringwald and C. Tamarit, ‘16]



Pole inflation

a-attractor properties arise from a non-minimal coupling to gravity,
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Pole inflation

2
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Inflation happens for a vanishing Jordan frame potential
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Inflation happens at the
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Models for PQ inflation and KMM.

Model content and charges under the U(1)p,,

KSVZ DFSZ
SM Fermions Not charged Charged
Higgses One doublet, not charged HlT H,DF, 91 — 9> = P4y
Extra quarks O, O — qy!2

QCD anomaly

5=Q¢
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Models for PQ inflation and KMM.

Model content and charges under the U(1)p,,

KSVZ DFSZ

SM Fermions Not charged Charged

Only type lland Y
allow for QCD
anomalies.

Higgses One doublet, not charged HlTH2
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PQ at the pole
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PQ at the pole

1
= — ~MpQ(®)R(g)) + 0, ” — QD) V(D) -
ﬁ

Cbn‘formal couplings

1
Q(®) = 1 | D |

Vi(®) = Vj +}

PQ conserving terms

The PQ terms drive inflation and are responsible for the SSB of the U(I)PQ
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PQ at the pole

|
= = M QAOIR() +10,01 ~ Q(D)VK(®)

'Cbnformal couplings
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I ED ||
3M3

o P g i~3
V(@) = Vo + 2 [ = mg | @ H

The PQ violating terms are crucial for the axion non-zero velocity,

but are constrained by the axion quality problem.

PQ violating terms
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Bounds: inflation

2
Vpo = iﬂqp [6M}2) tanh? (\;bg ) —fg]

CMB normalization =15 = 1.1 x 107!

Oanon cal axion

CMB normalization =3"f, = 1.0 X 1019
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Bounds: Axion Quality

After the QCD phase transition, we get the contribution AV, = — A‘(SCD cos(

l
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V.ia) = — Ay COS (6’ + 5£> + M, ( . ) | o x| cos( (I —2k) |
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In order to solve the strong CP problem we need

£, = 10'%(10%) GeV requires [ > 13(8)
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Bounds: axion velocity

Asking for P@ terms to be subdominant during inflation leads to

n > 10(5) for f, = 10'2(106) Gev ~ and  3"*|¢| S 1071

The non-zero velocity is given dynamically at the end of inflation

\/2€,H

< H
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Bounds: axion velocity

Asking for P@ terms to be subdominant during inflation leads to

n > 10(5) for £, = 10'2(106) Gev ~ and = 3"%|¢ | S 107

— |6, | $0.9"%x6.107'M,

end

The non-zero velocity is given dynamically at the end of inflation

\/2€,H

< H
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Delayed reheating?

e If Pp(ary) > 3/, we have early matter domination
3/4
ny(Igy) = 1 7 8 (Tri) T
o RE end 45 VE(¢end)

* |f reneating is delayed

nQ(TRH) — n@,end (
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(M4(0) (meV)
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Restoration of the PQ symmetry for large 7.,

Condition for kinetic misalignment

O(T.) > 6H(T,, )O(T:) > 6H(T.)

SC

For too low /__,, extra fields NOT decoupled



Symmetry restoration?

7’77 75(0 7'«7;9@




Domain walls

NS °s_°¢
~ p T
walls t O.1sec

 The PQ violating potential gives rise to a nonzero pressure AV = cAgCD x 10710

02

Mp

[ 4
M
C=‘CO,l,k‘< fa ) (A - ) x 1019
\/EQCI)MP QCD

« foro ~ AéCD, there is no domain wall problem as long as ¢ > 1071

. Domain walls never become dominant if AV 2
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Iscocurvature

» The power spectrum of the isocurvature perturbation depends only on ¥ ..

2 2 2 2
1 oY 4 Ya i | 1 Oey« Y. in
Pk = ——2) (662) = [—( 22 ) 4+ 9’ . (062)
Ya 66’* Q* Ya 4 69,* 06* Ya

(8057 ) = L (ﬂ)zwith Joetr = \/6 |sinh -
Geff \ 2T | \/ 6Mp

* The large effective decay constant suppresses isocurvature perturbations.
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Summary

e \We built a consistent framework that unifies PQ inflation with kinetic
misalignment.

* We predict domain walls in DFSZ models, but they never dominate.
Signatures?

* |f reneating is delayed further, we may enter a kination era. More
sighatures?
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