Exact WKB Formulation: Quantization and Particle Production (Preliminary Results)

Motoo Suzuki SISSA

In collaboration with Ryo Namba (RIKEN, iTHEMS) (see also Ryo's talk slides on Tuesday, April 29th) (arXiv:2505.XXXXX!!!)

@Benasque (2025)

My Research Journey

Created by ChatGPT

High energy theory (unified theory)

Advancements in

- Physics including gravity
- QFT
- Mathematics: **Exact WKB Analysis**

Low energy theory

What is Exact WKB?

Exact WKB: treats *divergent WKB* solutions and gives non-perturvaive information *quantitatively*

"Divergent WKB" means:

$$\psi(x) \sim \exp\left[\frac{i}{\hbar} \int^x p(x')dx'\right] \times \text{(series in }\hbar\text{)}$$

- (Formal) expansion in \hbar does not converge in general
- Non-perturbative parts include particle production information

"Quantitatively" means:

$$\Psi(x) \sim \int_0^\infty \exp(-\eta \zeta) [B\psi](\zeta) d\zeta$$

- Borel resummation gives a corresponding analytic function
- Non-perturbative information is encoded in the singularities

Exact WKB Analysis~
Analysis of singularities (of the Borel transformed series)

Where We're Going vs Where We Are

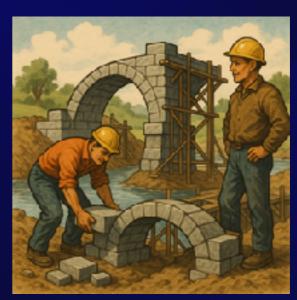
"a glimpse of what might be possible"

We are aiming for

- Offering new insights into particle production
- e.g. preheating, particle production from oscillaring scalar field background, gravitational particle production, etc.
- Enabling (semi-)analytic solutions to problems where numerical methods fall short

Our current situation is

- We are developing foundational building blocks
- Verifying the consistency of our analysis through comparisons with previous results



Created by ChatGPT

We are laying the foundation for the future, and the possibilities ahead are limitless

Today's Goal

We will eventually focus on a specific potential:

$$\[-\frac{d^2}{dx^2} - \eta^2 V(x) \] \psi(x) = 0$$

$$V(x) = -E + \frac{x^2}{4} \quad (E > 0)$$

- This potential has been studied well in the context of particle production
- Previous analyses rely on asymptotic expansions of special functions: parabolic cylinder functions

What we do today:

- Use resummed WKB soltuions for quantization
- Derive the Bogoliubov coefficients "without" relying on parabolic functions

Why this matters:

- Clarifies how non-perturbative physics emerges
- A step toward applying exact WKB to broader cosmological settings

The Starting Point: Formal WKB Solution

V

1-d Schrodinger-like equation:

$$\left(-\frac{d^2}{dx^2} - \eta^2 V(x)\right)\psi(x,\eta) = 0$$

 $\eta \equiv 1/\hbar$: small hbar = large η expansion

V

Formal WKB solutions:

$$\psi_{\pm}(x) = \frac{1}{\sqrt{S_{\text{odd}}(x)}} \exp\left(\pm \int_{x_0}^x S_{\text{odd}}(\tilde{x}) d\tilde{x}\right)$$

$$S_{\text{odd}} \equiv \sum_{j>0} S_{2j-1} \eta^{1-2j}$$

$$S_{-1}^{2} = -V, \ 2S_{-1}S_{j} = -\left(\sum_{k+l=j-1\&k, l\geq 0} S_{k}S_{l} + \frac{\partial S_{j-1}}{\partial x}\right)$$

Formal solution is divergent in general

From Divergence to Meaning: **Borel Transform and Borel Sum**

Original formal series: divergent series of η:

$$\psi(\eta, x) = \sum_{n=0}^{\infty} f_n(x)\eta^{-n}$$

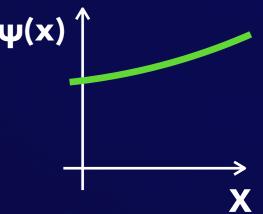
Borel transformation: a well-behaved series of ζ:

$$\psi_B(\zeta, x) = \sum_{n=0}^{\infty} \frac{f_n(x)}{(n-1)!} \zeta^{n-1}$$

Borel sum: Laplace integration (from ζ to η)

$$\Psi(\eta, x) = \int_0^\infty \exp(-\eta \zeta) \psi_B(\zeta, x) d\zeta$$

Integration in Borel plane ζ



Giving Analytic Function for divergent series

What's the Magic Behind Borel Resummation?

$$\psi(\eta, x) = \sum_{n=0}^{\infty} f_n(x)\eta^{-n} = \sum_{n=0}^{\infty} \frac{f_n(x)}{n!} \int_0^{\infty} \exp(-\eta\zeta)\zeta^{n-1}d\zeta$$

$$\Psi(\eta, x) = \int_0^{\infty} \exp(-\eta\zeta) \left[\sum_{n=0}^{\infty} \frac{f_n(x)}{n!} \zeta^{n-1}\right] d\zeta$$

Borel resummation formally involves an exchange of summation and integration of the original series

$$\sum \leftrightarrow \int$$

This is a non-trivial mathematical step

Non-perturbative informaiton is encoded in singularities

Turning Points and Stokes Geometry: Keys to Non-perturbative Data

$$\left(-\frac{d^2}{dx^2} - \eta^2 V(x)\right)\psi(x,\eta) = 0$$

Turning points:

$$V(a) = 0$$

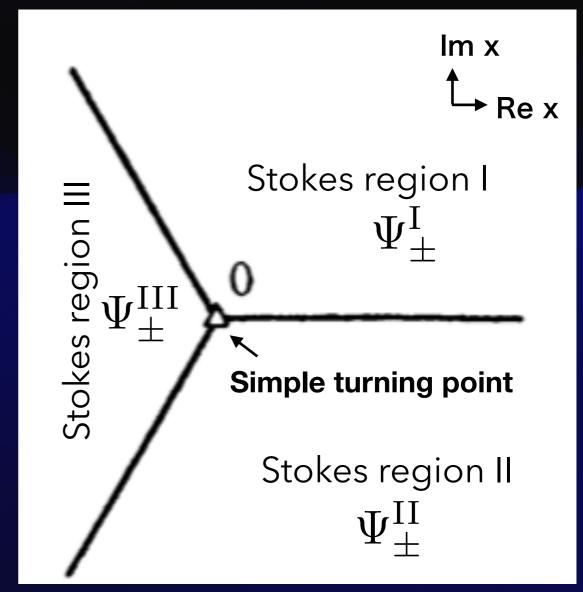
✓ Simple Turning points:

$$\left. \frac{dV}{dx} \right|_{x=a} \neq 0$$

✓ Stokes lines (curves):

$$\operatorname{Im} \int_{a}^{x} \sqrt{-V(\tilde{x})} d\tilde{x} = 0$$

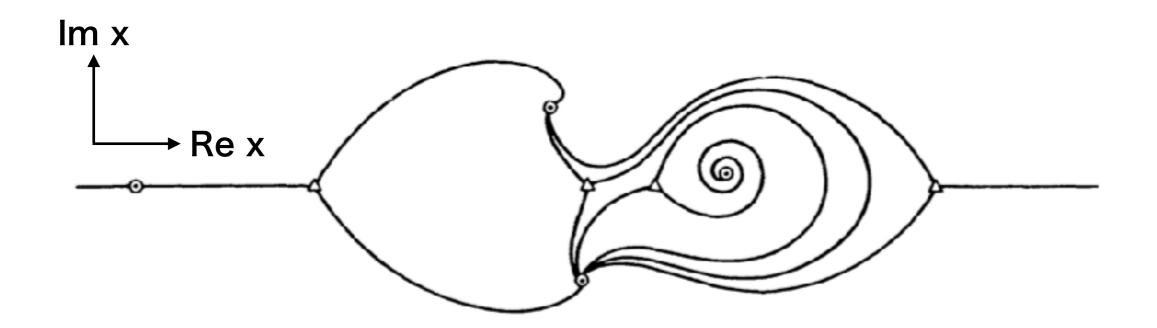
e.g. Airy function: V=-x



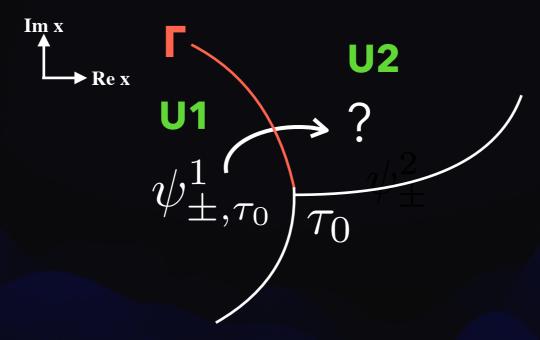
🗲 In Stokes regions, ψ is Borel summable

More complicated example

$$Q(x) = \frac{(x^2 - 9)(x^2 - 1/9)}{(x^3 - \exp(i\pi/8))^2}.$$



What happens if you cross the Stokes line?

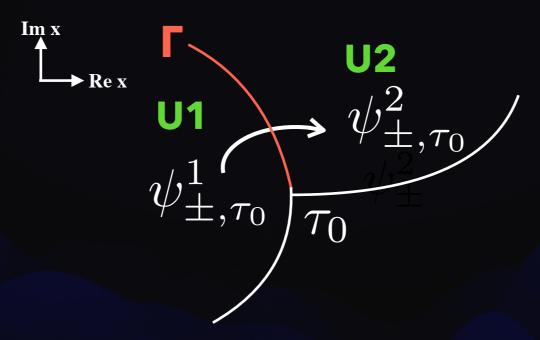


Suppose **U1** and **U2** are Stokes regions having a Stokes curve **r** as a common boundary

WKB solutions normalized at a turning point

$$\psi_{\pm,\tau_0} = \frac{1}{\sqrt{S_{\text{odd}}}} \exp\left(\pm \int_{\tau_0}^x S_{\text{odd}} dx\right)$$

What happens if you cross the Stokes line?



Suppose **U1** and **U2** are Stokes regions having a Stokes curve **r** as a common boundary

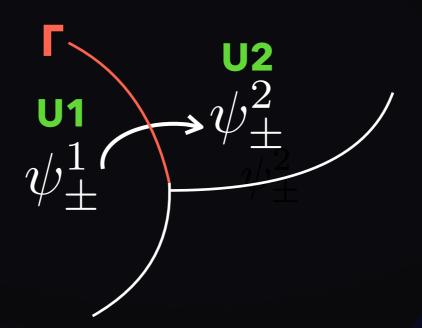
WKB solutions normalized at a turning point

$$\psi_{\pm,\tau_0} = \frac{1}{\sqrt{S_{\text{odd}}}} \exp\left(\pm \int_{\tau_0}^x S_{\text{odd}} dx\right)$$

Connection formula for Borel resummmed solutions: analytical continuation

$$\psi_{+,\tau_0}^1 = \psi_{+,\tau_0}^2 + i\psi_{-,\tau_0}^2$$

$$\psi_{-,\tau_0}^1 = \psi_{-,\tau_0}^2$$



Connection Formula Voros (1983)

 ψ^{1}_{\pm} are analytically continued to U2 by

The **sign** of Re
$$\int_a^x \sqrt{-V(\tilde{x})}d\tilde{x}$$

or clockwise crossing **\Gamma**

$$\begin{cases} \Psi_+^1 = \Psi_+^2 \pm i \Psi_-^2 \\ \Psi_-^1 = \Psi_-^2 \end{cases}$$

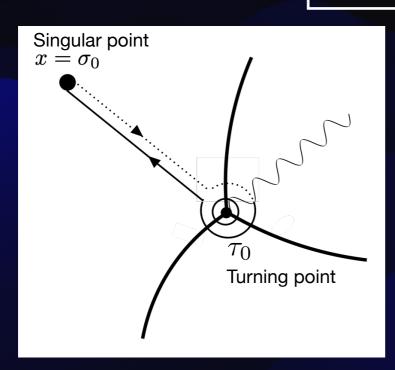
$$\pm: \textbf{Counter-clockwise}$$
 or **clockwise crossing Γ**
$$\begin{cases} \Psi_+^1 = \Psi_+^2 \pm i \Psi_-^2 \\ \Psi_-^1 = \Psi_+^2 \end{bmatrix}$$

\angle Singularities in Borel plane (ζ plane) gives **connection formula** ~non-perturbative information

Another Source of Non-perturbative Information: Voros Coefficients

Voros coefficient is defined with "regularized" Sodd

$$V_{
m voros} \equiv rac{1}{2} \int_{\gamma_{\sigma_0, \tau_0}} S_{
m odd}^{
m (reg)}$$



 γ_{σ_0,τ_0} : Integration path is non-closed contour in general — starting from a *singular point \sigma0* (second Riemann sheet), turning around *turning point \tau0* clockwise, to a *singular point* (first Riemann sheet)

e.g. Parabolic cylinder: V=-E+x²/4

$$V_{\text{voros}} \equiv \frac{1}{2} \int_{\gamma_{2\sqrt{E},\infty}} (S_{\text{odd}} - \eta S_{-1}) \sim \int_{2\sqrt{E}}^{\infty} (S_{\text{odd}} - \eta S_{-1})$$

lrregular singular point: x=∞, S₋₁ is deverging at x=∞

What Does the Voros Coefficient do?

The **Voros coefficient connects** exact **WKB** solutions normalized at a **turning point** and a **singular point**

- e.g. Parabolic cylinder: V=-E+x²/4 Shen & Silverstone '08, Takei '08
 - The WKB solution normalized at turning point τ_±:

$$\psi_{\pm,\tau_{\pm}}(x) = \frac{1}{\sqrt{S_{\text{odd}}(x)}} \exp\left[\pm \int_{\tau_{\pm}}^{x} S_{\text{odd}}(x') dx'\right]$$

— The WKB solution normalized at singular points x=±∞ :

$$\psi_{\pm}^{(\pm\infty)}(x) = \exp\left[\pm \int_{\tau_{\pm}}^{x} \eta S_{-1}(x') dx'\right] \frac{1}{\sqrt{S_{\text{odd}}(x)}} \exp\left[\pm \int_{\pm\infty}^{x} \left(S_{\text{odd}}(x') - \eta S_{-1}(x')\right) dx'\right]$$

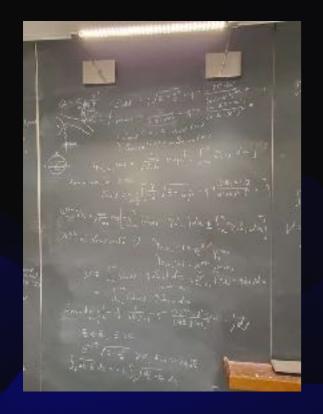
The **Voros coefficient** connects the two WKB solutions

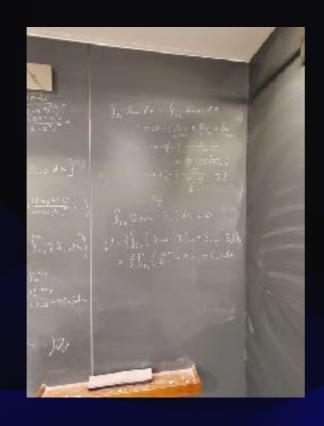
$$\psi_{\pm,\tau_{+}}(x) = e^{\pm \mathcal{V}_{\text{voros}}^{(+\infty)}} \psi_{\pm}^{(+\infty)}(x) , \ \psi_{\pm,\tau_{-}}(x) = e^{\pm \mathcal{V}_{\text{voros}}^{(-\infty)}} \psi_{\pm}^{(-\infty)}(x)$$

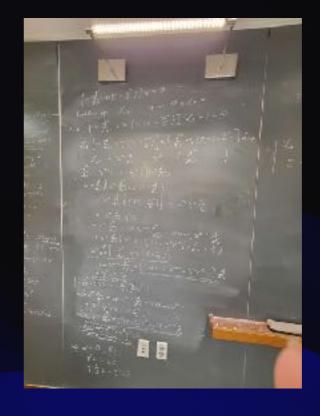
$$\mathcal{V}_{\text{voros}}^{(+\infty)} = \int_{\tau_{+}}^{\infty} [S_{\text{odd}}(x) - \eta S_{-1}(x)] dx , \quad \mathcal{V}_{\text{voros}}^{(-\infty)} = \int_{\tau_{-}}^{-\infty} [S_{\text{odd}}(x) - \eta S_{-1}(x)] dx$$

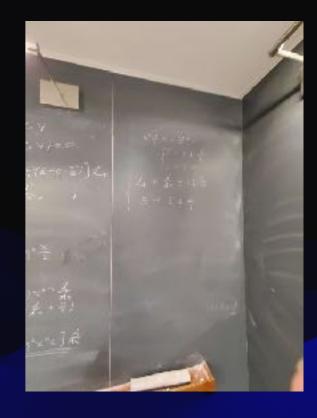
Remark: Like the connection formula, the Voros coefficient captures data from singularities in the Borel plane

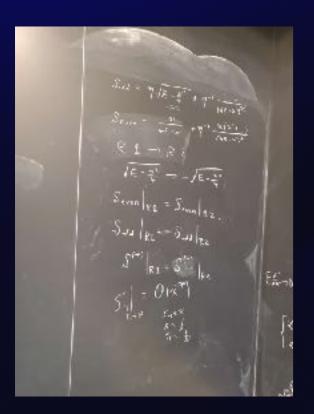
Behind the elegance 6

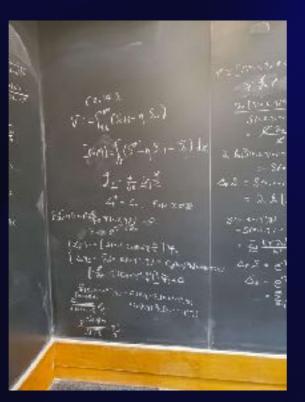


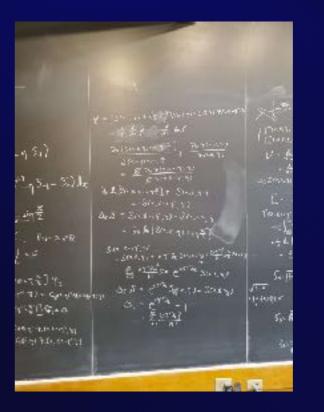












To be continued

Quantization via Exact WKB

We now use exact WKB solutions to perform quantization

Hamiltonian:
$$\hat{H} \equiv \frac{1}{2} \left[\hat{\pi} \hat{\pi} + V(x) \, \hat{\psi} \hat{\psi} \right]$$

Complete set of solutions:
$$\left(-\frac{d^2}{dx^2} - V\right)u_{\pm} = 0$$

$$(u_+, u_+) = 1$$
, $(u_-, u_-) = -1$, $(u_+, u_-) = (u_-, u_+) = 0$
 $(f, g) \equiv -i (f \partial_x \bar{g} - \bar{g} \partial_x f)$

Mode decomposition:

$$\hat{\psi}(x) = u_+(x)\,\hat{a} + u_-(x)\,\hat{a}^\dagger \;, \qquad \hat{\pi}(x) = v_+(x)\,\hat{a} + v_-(x)\,\hat{a}^\dagger \;,$$

$$v_\pm(x) \equiv \frac{du_\pm}{dx}$$

Quantization conditions:

$$[\hat{a}, \hat{a}^{\dagger}] = 1$$
, $[\hat{a}, \hat{a}] = [\hat{a}^{\dagger}, \hat{a}^{\dagger}] = 0$
 $u_{+}v_{-} - u_{-}v_{+} = i$

Vacuum: $\hat{a}|0\rangle = 0$

We want to define **mode functions** with **exact WKB** solution Ψ_±

Quantization via Exact WKB: A Practical Example

e.g. Parabolic cylinder: V=-E+x²/4

f We take mode functions by the exact WKB solutions normalized at asymptotic point x=∞

$$u_{+}(x) = \frac{1}{\sqrt{2}} \left[\alpha \psi_{-}^{(\infty)}(x) + \beta \psi_{+}^{(\infty)}(x) \right]$$
$$u_{-}(x) = \overline{u_{+}(x)}$$

$$\psi_{\pm,\tau_{+}} = \exp(\pm V_{\text{voros}}) \psi_{\pm}^{(\infty)}$$

$$\psi_{\pm}^{(\infty)} = \frac{1}{\sqrt{S_{\text{odd}}}} \exp(\pm \eta \int_{\tau_{+}}^{x} S_{-1} dx) \exp(\pm \int_{\infty}^{x} (S_{\text{odd}} - \eta S_{-1}) dx)$$

The asymptotic state is described by the standard WKB

$$\psi_{\pm}^{(\infty)} \sim \frac{1}{\sqrt{S_{-1}}} \exp(\pm \eta \int_{\tau_{+}}^{x} S_{-1} dx)$$

$$x \to \infty$$

- Satisfying quantization conditions
- We can generalized this procedure to other potentials

Computing Particle Production with Exact WKB

With the mode functions defined via exact WKB, we now compute the particle production.

— Define vacua:

$$|0\rangle$$
 such that $a|0\rangle = 0$
 $|\tilde{0}\rangle$ such that $\tilde{a}|\tilde{0}\rangle = 0$

$$\hat{\psi} = \tilde{u}_{+}(x)\hat{a} + \tilde{u}_{-}(x)\hat{a}^{\dagger}$$

— Relate mode functions via Bogoliubov transformation:

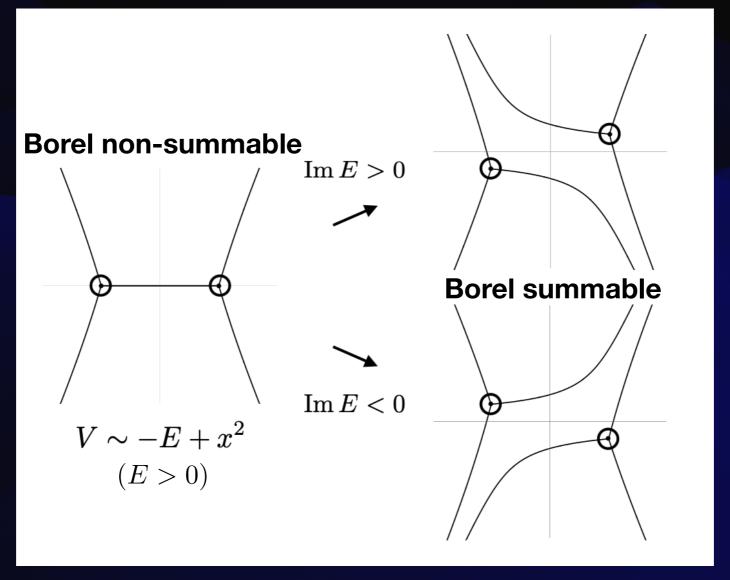
$$\begin{pmatrix} \tilde{u}_{+} \\ \tilde{u}_{-} \end{pmatrix} = \begin{pmatrix} \alpha & \beta \\ \bar{\beta} & \bar{\alpha} \end{pmatrix} \begin{pmatrix} u_{+} \\ u_{-} \end{pmatrix}$$

Bogoliubov coefficient β encodes particle production:

$$|\beta|^2$$
 = number density of produced particles

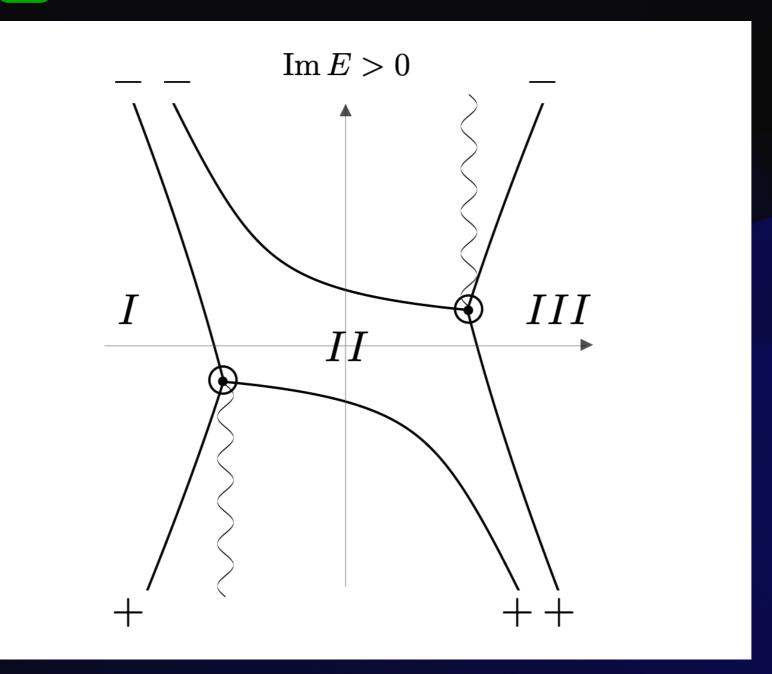
In exact WKB, α and β are computed via the connection formula and Voros coefficients

- **V** Simple turning points: $au = \pm 2\sqrt{E}$
- **✓** Stokes curves:

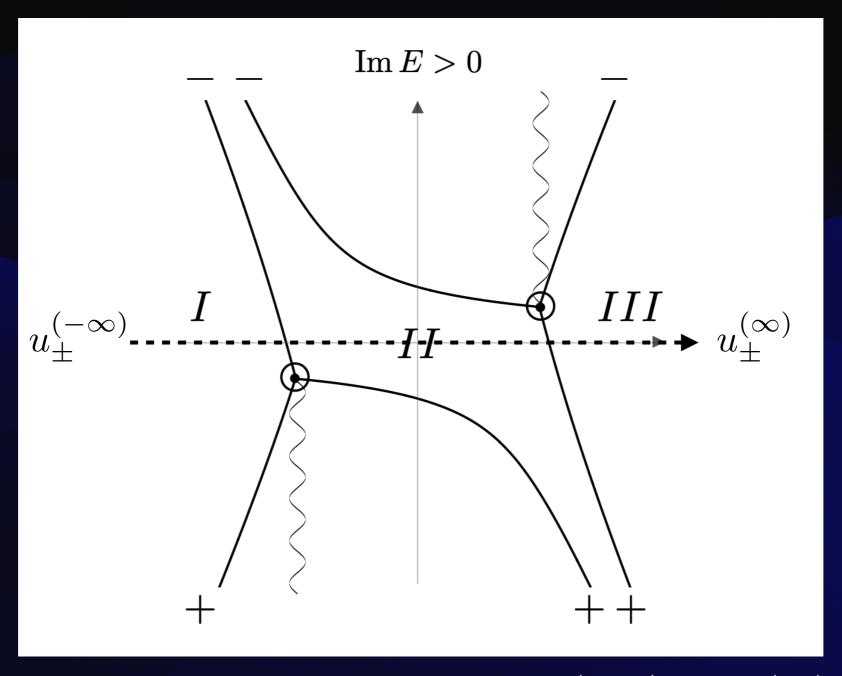


Both eventually give the same physics

- **V** Simple turning points: $\tau = \pm 2\sqrt{E}$
- **✓** Stokes curves:

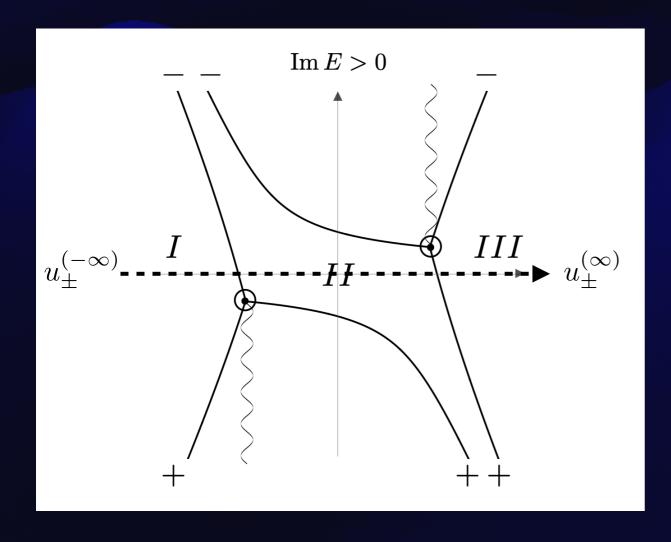


- **V** Simple turning points: $au = \pm 2\sqrt{E}$
- **✓** Stokes curves:



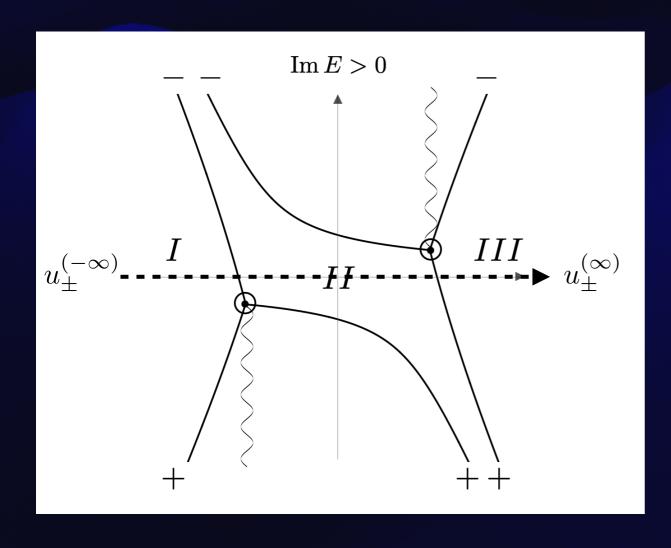
Relate two asymptotic states: $u_{\pm}^{(-\infty)} \to u_{\pm}^{(\infty)}$

$$\begin{pmatrix} u_{+}^{(-\infty)} \\ u_{-}^{(-\infty)} \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ i & 0 \end{pmatrix} \begin{pmatrix} \exp(-V_{\text{voros}}^{(-\infty)}) & 0 \\ 0 & \exp(V_{\text{voros}}^{(-\infty)}) \end{pmatrix} \begin{pmatrix} 1 & 0 \\ -i & 1 \end{pmatrix} \begin{pmatrix} e^{\pi E \eta} & 0 \\ 0 & e^{-\pi E \eta} \end{pmatrix} \begin{pmatrix} 1 & i \\ 0 & 1 \end{pmatrix}$$
$$\begin{pmatrix} \exp(V_{\text{voros}}^{(\infty)}) & 0 \\ 0 & \exp(-V_{\text{voros}}^{(\infty)}) \end{pmatrix} \begin{pmatrix} 0 & -i \\ 1 & 0 \end{pmatrix} \begin{pmatrix} u_{+}^{(\infty)} \\ u_{-}^{(\infty)} \end{pmatrix}$$



$$u_{+}^{(-\infty)} = \frac{1}{\sqrt{2}} \psi_{-}^{(-\infty)} , \ u_{-}^{(-\infty)} = \frac{i}{\sqrt{2}} \psi_{+}^{(-\infty)}$$
$$u_{+}^{(\infty)} = \frac{1}{\sqrt{2}} \psi_{-}^{(\infty)} , \ u_{-}^{(\infty)} = \frac{i}{\sqrt{2}} \psi_{+}^{(\infty)}$$

$$\begin{pmatrix} u_{+}^{(-\infty)} \\ u_{-}^{(-\infty)} \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ i & 0 \end{pmatrix} \begin{pmatrix} \exp(-V_{\text{voros}}^{(-\infty)}) & 0 \\ 0 & \exp(V_{\text{voros}}^{(-\infty)}) \end{pmatrix} \begin{pmatrix} 1 & 0 \\ -i & 1 \end{pmatrix} \begin{pmatrix} e^{\pi E \eta} & 0 \\ 0 & e^{-\pi E \eta} \end{pmatrix} \begin{pmatrix} 1 & i \\ 0 & 1 \end{pmatrix}$$
$$\begin{pmatrix} \exp(V_{\text{voros}}^{(\infty)}) & 0 \\ 0 & \exp(-V_{\text{voros}}^{(\infty)}) \end{pmatrix} \begin{pmatrix} 0 & -i \\ 1 & 0 \end{pmatrix} \begin{pmatrix} u_{+}^{(\infty)} \\ u_{-}^{(\infty)} \end{pmatrix}$$

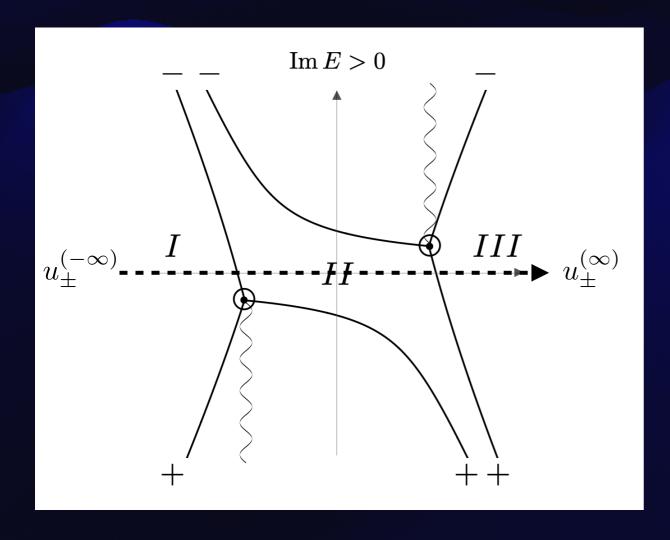


$$u_{+}^{(-\infty)} = \frac{1}{\sqrt{2}} \psi_{-}^{(-\infty)} , \ u_{-}^{(-\infty)} = \frac{i}{\sqrt{2}} \psi_{+}^{(-\infty)}$$

$$u_{+}^{(\infty)} = \frac{1}{\sqrt{2}} \psi_{-}^{(\infty)} , \ u_{-}^{(\infty)} = \frac{i}{\sqrt{2}} \psi_{+}^{(\infty)}$$

$$\psi_{\pm,\tau_{-}}^{I} = \exp(\pm V_{\text{voros}}^{(-\infty)}) \psi_{\pm}^{(-\infty)}$$

$$\begin{pmatrix} u_{+}^{(-\infty)} \\ u_{-}^{(-\infty)} \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ i & 0 \end{pmatrix} \begin{pmatrix} \exp(-V_{\text{voros}}^{(-\infty)}) & 0 \\ 0 & \exp(V_{\text{voros}}^{(-\infty)}) \end{pmatrix} \begin{pmatrix} 1 & 0 \\ -i & 1 \end{pmatrix} \begin{pmatrix} e^{\pi E \eta} & 0 \\ 0 & e^{-\pi E \eta} \end{pmatrix} \begin{pmatrix} 1 & i \\ 0 & 1 \end{pmatrix}$$
$$\begin{pmatrix} \exp(V_{\text{voros}}^{(\infty)}) & 0 \\ 0 & \exp(-V_{\text{voros}}^{(\infty)}) \end{pmatrix} \begin{pmatrix} 0 & -i \\ 1 & 0 \end{pmatrix} \begin{pmatrix} u_{+}^{(\infty)} \\ u_{-}^{(\infty)} \end{pmatrix}$$



$$u_{+}^{(-\infty)} = \frac{1}{\sqrt{2}} \psi_{-}^{(-\infty)} , \ u_{-}^{(-\infty)} = \frac{i}{\sqrt{2}} \psi_{+}^{(-\infty)}$$

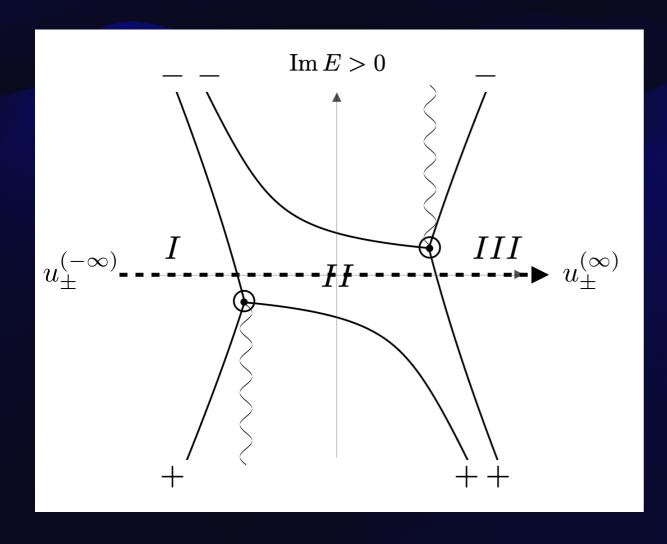
$$u_{+}^{(\infty)} = \frac{1}{\sqrt{2}} \psi_{-}^{(\infty)} , \ u_{-}^{(\infty)} = \frac{i}{\sqrt{2}} \psi_{+}^{(\infty)}$$

$$\psi_{\pm,\tau_{-}}^{I} = \exp(\pm V_{\text{voros}}^{(-\infty)}) \psi_{\pm}^{(-\infty)}$$

$$\begin{pmatrix} \psi_{+,\tau_{-}}^{I} \\ \psi_{-,\tau_{-}}^{I} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ -i & 1 \end{pmatrix} \begin{pmatrix} \psi_{+,\tau_{-}}^{II} \\ \psi_{-,\tau_{-}}^{II} \end{pmatrix}$$

$$\begin{pmatrix}
u_{+}^{(-\infty)} \\ u_{-}^{(-\infty)}
\end{pmatrix} = \begin{pmatrix} 0 & 1 \\ i & 0 \end{pmatrix} \begin{pmatrix} \exp(-V_{\text{voros}}^{(-\infty)}) & 0 \\ 0 & \exp(V_{\text{voros}}^{(-\infty)}) \end{pmatrix} \begin{pmatrix} 1 & 0 \\ -i & 1 \end{pmatrix} \begin{pmatrix} e^{\pi E \eta} & 0 \\ 0 & e^{-\pi E \eta} \end{pmatrix} \begin{pmatrix} 1 & i \\ 0 & 1 \end{pmatrix}$$

$$\begin{pmatrix} \exp(V_{\text{voros}}^{(\infty)}) & 0 \\ 0 & \exp(-V_{\text{voros}}^{(\infty)}) \end{pmatrix} \begin{pmatrix} 0 & -i \\ 1 & 0 \end{pmatrix} \begin{pmatrix} u_{+}^{(\infty)} \\ u_{-}^{(\infty)} \end{pmatrix}$$



$$u_{+}^{(-\infty)} = \frac{1}{\sqrt{2}} \psi_{-}^{(-\infty)} , u_{-}^{(-\infty)} = \frac{i}{\sqrt{2}} \psi_{+}^{(-\infty)}$$

$$u_{+}^{(\infty)} = \frac{1}{\sqrt{2}} \psi_{-}^{(\infty)} , u_{-}^{(\infty)} = \frac{i}{\sqrt{2}} \psi_{+}^{(\infty)}$$

$$\psi_{\pm,\tau_{-}}^{I} = \exp(\pm V_{\text{voros}}^{(-\infty)}) \psi_{\pm}^{(-\infty)}$$

$$\begin{pmatrix} \psi_{+,\tau_{-}}^{I} \\ \psi_{-,\tau_{-}}^{I} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ -i & 1 \end{pmatrix} \begin{pmatrix} \psi_{+,\tau_{-}}^{II} \\ \psi_{-,\tau_{-}}^{II} \end{pmatrix}$$

$$\begin{pmatrix} \psi_{+,\tau_{-}}^{II} \\ \psi_{-,\tau_{-}}^{II} \end{pmatrix} = \begin{pmatrix} e^{+\int_{\tau_{-}}^{\tau_{+}} S_{\text{odd}} dx} & 0 \\ 0 & e^{-\int_{\tau_{-}}^{\tau_{+}} S_{\text{odd}} dx} \end{pmatrix} \begin{pmatrix} \psi_{+,\tau_{+}}^{II} \\ \psi_{-,\tau_{+}}^{II} \end{pmatrix}$$

Exact WKB to Particle Production: Mission Accomplished

Ryo& M.S. (arXiv:2503.XXXXX)

$$\begin{pmatrix} u_{+}^{(-\infty)} \\ u_{-}^{(-\infty)} \end{pmatrix} = \begin{pmatrix} \sqrt{1 + e^{2\pi E\eta}} e^{i\theta} & -e^{\pi E\eta} \\ -e^{\pi E\eta} & \sqrt{1 + e^{2\pi E\eta}} e^{-i\theta} \end{pmatrix} \begin{pmatrix} u_{+}^{(\infty)} \\ u_{-}^{(\infty)} \end{pmatrix}$$

Exact WKB Reproduces known results

Kofman, Linde & Starobinsky '97 Salehian, Gorji, Mukohyama & Firouzjahi '20

Im E<0 gives the same results

Through singularities in the exact WKB analysis, we fully determine the particle number density — connecting formal structure to real physics

Summary and Outlook

- Starting from a divergent WKB series, we applied Borel transformation and found that non-perturbative information is encoded in singularities on the Borel plane
- Key structures like turning points, Stokes lines, and Voros coefficients allowed us to capture these non-perturbative effects precisely
- Using exact WKB solutions as mode functions, we reproduced the known particle production results by extracting Stokes data
- Exact WKB analysis can provide a systematic approach to study particle production

Challenges: deeper mathematics and smarter physical approximations

Tackle more complicated potentials (e.g. Mathieu equation) with exact WKB techniques

Explore exact WKB-based approximations to go beyond current limits