

The Nonlinear Dynamics of Axion Inflation on the Lattice

Nicolás Loayza Romero

In collaboration with: Daniel G. Figueroa, Joanes Lizarraga, Ander Urio & Jon Urrestilla Based on *Phys.Rev.D* 111 (2025) 6 2411.16368 [astro-ph.CO]

The Dawn of Gravitational Wave Cosmology - Benasque

VniverSitat de València

May 02, 2025

Inflation

Slow roll period $\phi \rightarrow \phi + c$

Shift symmetry

We want to protect from being spoiled

Symmetry protected flatness of potential

Slow roll períod

 $\phi \rightarrow \phi + c$

Shift symmetry

Axion Inflation

 $\mathscr{L} \supset \frac{\psi}{\kappa} F\tilde{F}$

$A_{\mu} \equiv U(1)$ gauge field

[K. Freese, J. A. Frieman, A. V. Olinto (PRL 65,3233 1990)] ...

[M. M. Anber, L. Sorbo (0908.4089)] [J. Cook, L. Sorbo (1109.0022)] [N. Barnaby, E. Pajer, M. Peloso (1110.3327)]

$\mathscr{L} \supset \frac{\phi}{1} F \tilde{F}$ $\xi \equiv \frac{|\dot{\phi}|}{2H\Lambda} \qquad \checkmark$ $\left(\partial_{\tau}^{2} + k^{2} + \operatorname{sign}(\dot{\phi})\frac{2k\xi}{|\tau|}\right)\mathscr{A}^{+}(\tau, \mathbf{k}) = 0$

[M. M. Anber, L. Sorbo (0908.4089)] [J. Cook, L. Sorbo (1109.0022)] [N. Barnaby, E. Pajer, M. Peloso (1110.3327)]

[N. Barnaby, E. Pajer, M. Peloso (1110.3327)]

Axion Inflation phenomenology

Chiral GWBs

Axion Inflation phenomenology

Chiral GWBs

Primordial Black Holes

Axion Inflation phenomenology

Chiral GWBs

Primordial Black Holes

Non-gaussianities

- [N. Barnaby, M. Peloso (1011.1500)]
- [A. Linde, S. Mooji, E. Pajer (1212.1693)]
- [E. Bugaev, P. Klimai (1312.7435)]
- [N. Bartolo et al (LISA) (1610.06481)]
- [J. G. Bellido, M. Peloso, C. Unal (1610.03763)]

Dynamical equations in FLRW

$$\ddot{\phi} = -3H\dot{\phi} + \frac{1}{a^2}\nabla^2\phi - m^2\phi + \frac{\alpha_{\Lambda}}{a^3m_p}\vec{E}$$
$$\dot{\vec{E}} = -H\vec{E} - \frac{1}{a^2}\vec{\nabla}\times\vec{B} - \frac{\alpha_{\Lambda}}{am_p}\left(\dot{\phi}\vec{B} - \vec{\nabla}\phi\times\vec{E}\right)$$
$$\vec{\nabla}\cdot\vec{E} = -\frac{\alpha_{\Lambda}}{am_p}\vec{\nabla}\phi\cdot\vec{B}$$

Dynamical equations in FLRW

$$\ddot{\phi} = -3H\dot{\phi} + \frac{1}{a^2}\nabla^2\phi - m^2\phi + \frac{\alpha_{\Lambda}}{a^3m_p}\vec{E} \cdot \vec{E}$$
$$\dot{\vec{E}} = -H\vec{E} - \frac{1}{a^2}\vec{\nabla}\times\vec{B} - \frac{\alpha_{\Lambda}}{am_p}\left(\phi\vec{B} - \vec{\nabla}\phi\times\vec{D}\right)$$
$$\vec{\nabla}\cdot\vec{E} = -\frac{\alpha_{\Lambda}}{am_p}\vec{\nabla}\phi\cdot\vec{B}$$
$$\ddot{a} = -\frac{a}{3m_p^2}\left(2\rho_{\rm K} - \rho_{\rm V} + \rho_{\rm EM}\right)$$
$$H^2 = \frac{1}{3m_p^2}\left(\rho_{\rm K} + \rho_{\rm G} + \rho_{\rm V} + \rho_{\rm EM}\right)$$

Dynamical equations in FLRW

$$\ddot{\phi} = -3H\dot{\phi} + \frac{1}{a^2}\nabla^2\phi - m^2\phi + \frac{\alpha_{\Lambda}}{a^3m_p}\vec{E}$$
$$\dot{\vec{E}} = -H\vec{E} - \frac{1}{a^2}\vec{\nabla}\times\vec{B} - \frac{\alpha_{\Lambda}}{am_p}\left(\dot{\phi}\vec{B} - \vec{\nabla}\phi\times\vec{\Phi}\times\vec{E}\right)$$
$$\vec{\nabla}\cdot\vec{E} = -\frac{\alpha_{\Lambda}}{am_p}\vec{\nabla}\phi\cdot\vec{B}$$
$$\ddot{a} = -\frac{a}{3m_p^2}\left(2\rho_{\rm K} - \rho_{\rm V} + \rho_{\rm EM}\right)$$
$$H^2 = \frac{1}{3m_p^2}\left(\rho_{\rm K} + \rho_{\rm G} + \rho_{\rm V} + \rho_{\rm EM}\right)$$

Dynamical equations in FLRW

$$\begin{split} \ddot{\phi} &= -3H\dot{\phi} + \frac{1}{a^2}\nabla^2\phi - m^2\phi + \frac{\alpha_{\Lambda}}{a^3m_p}\vec{E} \\ \dot{\vec{E}} &= -H\vec{E} - \frac{1}{a^2}\vec{\nabla}\times\vec{B} - \frac{\alpha_{\Lambda}}{am_p}\left(\dot{\phi}\vec{B} - \vec{\nabla}\phi\times\vec{E}\right) \\ \vec{\nabla}\cdot\vec{E} &= -\frac{\alpha_{\Lambda}}{am_p}\vec{\nabla}\phi\cdot\vec{B} \\ \ddot{a} &= -\frac{a}{3m_p^2}\left(2\rho_{\rm K} - \rho_{\rm V} + \rho_{\rm EM}\right) \\ H^2 &= \frac{1}{3m_p^2}\left(\rho_{\rm K} + \rho_{\rm G} + \rho_{\rm V} + \rho_{\rm EM}\right) \end{split}$$

Linear Regime

$$\ddot{\phi} = -3H\dot{\phi} + \frac{1}{a^2} \sqrt[3]{\phi} - m^2 \phi + \frac{\alpha_N}{a^3 m_p}$$
$$\dot{\vec{E}} = -H\vec{E} - \frac{1}{a^2} \vec{\nabla} \times \vec{B} - \frac{\alpha_N}{am_p} \left(\dot{\phi}\vec{B} - \vec{\nabla}\phi \right)$$
$$\ddot{a} = -\frac{a}{3m_p^2} (2\rho_{\rm K} - \rho_{\rm V} + \phi_{\rm V})$$

$$\left(\partial_{\tau}^{2} + k^{2} + \operatorname{sign}(\dot{\phi})\frac{2k\xi}{|\tau|}\right) \mathscr{A}^{+}(\tau, \mathbf{k}) = 0$$
$$\mathscr{A}^{+}(\tau, \mathbf{k}) \simeq \frac{1}{k|\tau| \ll 2\xi} \frac{1}{\sqrt{2k}} \left(\frac{k}{2\xi aH}\right)^{1/4} e^{\pi\xi - 2\sqrt{2\xi k/(aH)}}$$

Homogeneous Backreaction Regime

$$\ddot{\phi} = -3H\dot{\phi} + \frac{1}{a^2} \sqrt[3]{\phi} - m^2 \phi + \frac{\alpha_{\Lambda}}{a^3 m_p} \langle \vec{B} \rangle$$
$$\dot{\vec{E}} = -H\vec{E} - \frac{1}{a^2} \vec{\nabla} \times \vec{B} - \frac{\alpha_{\Lambda}}{a m_p} \left(\dot{\phi} \vec{B} - \vec{\nabla} \phi \right)$$
$$\ddot{a} = -\frac{a}{3m_p^2} (2\rho_{\rm K} - \rho_{\rm V} + \rho_{\rm EM})$$

- Integrate $\langle \vec{E} \cdot \vec{B} \rangle$ every time step

[Cheng, Lee, Ng (1508.00251)] [Notari, Tywoniuk, (1608.06223)] [Dall'Agata, González-Martín, Papageorgiu, Peloso (1912.09950)] [Domcke, Guidetti, Welling, Westphal (2002.02952)] ...

> -Gradient Expansion Formalism

[Sobol, Gorbar, Vilchinskii (1907.10443)] [Gorbar, Schmitz, Sobol, Vilchinskii (2109.01651)] [Durrer, Sobol, Vilchinskii (2303.04583)] [Durrer, von Eckardstein, Garg, Schmitz, Sobol (2404.19694)]

$$\begin{split} \ddot{\phi} &= -3H\dot{\phi} + \frac{1}{a^2}\nabla^2\phi - m^2\phi + \frac{\alpha_{\Lambda}}{a^3m_p}\vec{E}\cdot\vec{B} \\ \dot{\vec{E}} &= -H\vec{E} - \frac{1}{a^2}\vec{\nabla}\times\vec{B} - \frac{\alpha_{\Lambda}}{am_p}\left(\dot{\phi}\vec{B} - \vec{\nabla}\phi\times\vec{E}\right) \\ \vec{\nabla}\cdot\vec{E} &= -\frac{\alpha_{\Lambda}}{am_p}\vec{\nabla}\phi\cdot\vec{B} \\ \ddot{a} &= -\frac{a}{3m_p^2}\left(2\rho_{\rm K} - \rho_{\rm V} + \rho_{\rm EM}\right) \\ H^2 &= \frac{1}{3m_p^2}\left(\rho_{\rm K} + \rho_{\rm G} + \rho_{\rm V} + \rho_{\rm EM}\right) \end{split}$$

[Figueroa, Lizarraga, Urio, Urrestilla (2303.17436)] [Figueroa, Lizarraga, NL, Urio, Urrestilla (2411.16368)]

$$\begin{split} \ddot{\phi} &= -3H\dot{\phi} + \frac{1}{a^2}\nabla^2\phi - m^2\phi + \frac{\alpha_{\Lambda}}{a^3m_p}\vec{E}\cdot\vec{B} \\ \dot{\vec{E}} &= -H\vec{E} - \frac{1}{a^2}\vec{\nabla}\times\vec{B} - \frac{\alpha_{\Lambda}}{am_p}\left(\dot{\phi}\vec{B}\right)\cdot\vec{\nabla}\phi\times\vec{E} \\ \vec{\nabla}\cdot\vec{E} &= -\frac{\alpha_{\Lambda}}{am_p}\vec{\nabla}\phi\cdot\vec{B} \\ \ddot{a} &= -\frac{a}{3m_p^2}(2\rho_{\rm K} - \rho_{\rm V} + \rho_{\rm EM}) \\ H^2 &= \frac{1}{3m_p^2}(\rho_{\rm K} + \rho_{\rm G} + \rho_{\rm V} + \rho_{\rm EM}) \end{split}$$

- local description of $\overrightarrow{E} \cdot \overrightarrow{B}$ and $\phi \overrightarrow{B}$

[Figueroa, Lizarraga, Urio, Urrestilla (2303.17436)] [Figueroa, Lizarraga, NL, Urio, Urrestilla (2411.16368)]

$$\ddot{\phi} = -3H\dot{\phi} + \frac{1}{a^2}\nabla^2\phi - m^2\phi + \frac{\alpha_{\Lambda}}{a^3m_p}\vec{E}\cdot\vec{B}$$
$$\dot{\vec{E}} = -H\vec{E} - \frac{1}{a^2}\vec{\nabla}\times\vec{B} - \frac{\alpha_{\Lambda}}{am_p}\phi\vec{B}\cdot\vec{\nabla}\phi\times\vec{E}$$
$$\vec{\nabla}\cdot\vec{E} = -\frac{\alpha_{\Lambda}}{am_p}\vec{\nabla}\phi\cdot\vec{B}$$
$$\ddot{a} = -\frac{a}{3m_p^2}(2\rho_{\rm K} - \rho_{\rm V} + \rho_{\rm EM})$$
$$H^2 = \frac{1}{3m_p^2}(\rho_{\rm K} + \rho_{\rm G} + \rho_{\rm V} + \rho_{\rm EM})$$

- local description of $\overrightarrow{E} \cdot \overrightarrow{B}$ and $\phi \overrightarrow{B}$

$$\ddot{\phi} = -3H\dot{\phi} + \frac{1}{a^2}\nabla^2\phi - m^2\phi + \frac{\alpha_{\Lambda}}{a^3m_p}\vec{E}\cdot\vec{B}$$
$$\dot{\vec{E}} = -H\vec{E} - \frac{1}{a^2}\vec{\nabla}\times\vec{B} - \frac{\alpha_{\Lambda}}{am_p}\phi\vec{B}\cdot\vec{\nabla}\phi\times\vec{E}$$
$$\vec{\nabla}\cdot\vec{E} = -\frac{\alpha_{\Lambda}}{am_p}\vec{\nabla}\phi\cdot\vec{B}$$
$$\ddot{a} = -\frac{a}{3m_p^2}(2\rho_{\rm K} - \rho_{\rm V} + \rho_{\rm EM})$$
$$H^2 = \frac{1}{3m_p^2}(\rho_{\rm K} + \rho_{\rm G} + \rho_{\rm V} + \rho_{\rm EM})$$

- local description of $\overrightarrow{E} \cdot \overrightarrow{B}$ and $\phi \overrightarrow{B}$

Turn on gradients $\nabla^2 \phi$ and $\overrightarrow{\nabla} \phi$

CosmoLattice

[D. G. Figueroa, A. Florio, F. Torrenti & W. Valkenburg (2006.15122)] [D. G. Figueroa, A. Florio, F. Torrenti & W. Valkenburg (2102.01031)]

$$\ddot{\phi} = -3H\dot{\phi} + \frac{1}{a^2}\nabla^2\phi - m^2\phi + \frac{\alpha_{\Lambda}}{a^3m_p}\vec{E}\cdot\vec{B}$$
$$\dot{\vec{E}} = -H\vec{E} - \frac{1}{a^2}\vec{\nabla}\times\vec{B} - \frac{\alpha_{\Lambda}}{am_p}\phi\vec{B}\cdot\vec{\nabla}\phi\times\vec{E}$$
$$\vec{\nabla}\cdot\vec{E} = -\frac{\alpha_{\Lambda}}{am_p}\vec{\nabla}\phi\cdot\vec{B}$$
$$\ddot{a} = -\frac{a}{3m_p^2}(2\rho_{\rm K} - \rho_{\rm V} + \rho_{\rm EM})$$
$$H^2 = \frac{1}{3m_p^2}(\rho_{\rm K} + \rho_{\rm G} + \rho_{\rm V} + \rho_{\rm EM})$$

Alternative lattice descriptions

- local description of $\overrightarrow{E} \cdot \overrightarrow{B}$ and $\phi \overrightarrow{B}$

Turn on gradients $\nabla^2 \phi$ and $\nabla \phi \times \vec{E}$

CosmoLattice

[D. G. Figueroa, A. Florio, F. Torrenti & W. Valkenburg (2006.15122)][D. G. Figueroa, A. Florio, F. Torrenti & W. Valkenburg (2102.01031)]

[Sharma, Brandenburg, Subramanian, Vikman (2411.04854)] [Caravano, Komatsu, Lozanov, Weller (2204.12874)] [Caravano, Komatsu, Lozanov, Weller (2110.10695)]

04854)]

Lattice implementation of axion coupling

Lattice implementation of axion coupling

$$\frac{1}{\Lambda} \overrightarrow{E} \cdot \overrightarrow{B}$$

Satisfy all conditions

> Satisfies - Gauge transformations $A_{\mu} \rightarrow A_{\mu} + \partial_{\mu} \alpha(\mathbf{x})$

Lattice

 $\sum \frac{\phi}{\Lambda} E_i^{(2)} B_i^{(4)}$

- Bianchi identities

 $\overrightarrow{\nabla} \times \overrightarrow{E} = \overrightarrow{B} \quad \nabla \cdot \overrightarrow{B} = 0$

- Topological term as a total derivative

$$F_{\mu\nu}\tilde{F}^{\mu\nu}=\partial_{\mu}K^{\mu}$$

Lattice implementation of axion coupling

$$\frac{1}{\Lambda} \overrightarrow{E} \cdot \overrightarrow{B}$$

Lattice formulation of axion inflation

$$\pi_{\phi}' = -3\pi_{\phi} + \frac{1}{H} \left(\frac{1}{a^2} \sum_{i} \Delta_i^{-} \Delta_i^{+} \phi - m^2 \phi + \frac{\alpha_{\Lambda}}{a^3 m_p} \sum_{i} E_i^{(2)} B_i^{(4)} \right)$$

$$E_i' = -E_i - \frac{1}{H} \left(\frac{1}{a^2} \sum_{jk} \epsilon_{ijk} \Delta_j^{-} B_k + \frac{\alpha_{\Lambda}}{2am_p} \left(\pi_{\phi} B_i^{(4)} + \pi_{\phi,+i} B_{i,+i}^{(4)} \right) - \frac{\alpha_{\Lambda}}{4am_p} \sum_{\pm} \sum_{j,k} \epsilon_{ijk} \left\{ \left[(\Delta_j^{\pm} \phi) E_{k,\pm j}^{(2)} \right]_{+i} + \left[(\Delta_j^{\pm} \phi) E_{k,\pm j}^{(2)} \right\} \right]$$

$$\sum_i \Delta_i^{-} E_i = -\frac{\alpha_{\Lambda}}{2am_p} \sum_{\pm} \sum_i \left(\Delta_i^{\pm} \phi \right) B_{i,\pm i}^{(4)}$$

Lattice formulation of axion inflation

$$\pi_{\phi}' = -3\pi_{\phi} + \frac{1}{H} \left(\frac{1}{a^2} \sum_{i} \Delta_{i}^{-} \Delta_{i}^{+} \phi - m^2 \phi + \frac{\alpha_{\Lambda}}{a^3 m_p} \sum_{i} E_{i}^{(2)} B_{i}^{(4)} \right)$$

$$E_{i}' = -E_{i} - \frac{1}{H} \left(\frac{1}{a^2} \sum_{jk} \epsilon_{ijk} \Delta_{j}^{-} B_{k} + \frac{\alpha_{\Lambda}}{2am_p} \left(\pi_{\phi} B_{i}^{(4)} + \pi_{\phi,+i} B_{i,+i}^{(4)} \right) - \frac{\alpha_{\Lambda}}{4am_p} \sum_{\pm} \sum_{j,k} \epsilon_{ijk} \left\{ \left[(\Delta_{j}^{\pm} \phi) E_{k,\pm j}^{(2)} \right]_{+i} + \left[(\Delta_{j}^{\pm} \phi) E_{k,\pm j}^{(2)} \right] \right\}$$

$$\sum_{i} \Delta_{i}^{-} E_{i} = -\frac{\alpha_{\Lambda}}{2am_p} \sum_{\pm} \sum_{i} \left(\Delta_{i}^{\pm} \phi \right) B_{i,\pm i}^{(4)}$$

- kernel of
$$\mathcal{K}_{A}[a, \dot{a}, \phi, \pi_{\phi}, A_{i}, E_{i}]$$

Lattice formulation of axion inflation

$$\pi_{\phi}' = -3\pi_{\phi} + \frac{1}{H} \left(\frac{1}{a^2} \sum_{i} \Delta_{i}^{-} \Delta_{i}^{+} \phi - m^2 \phi + \frac{\alpha_{\Lambda}}{a^3 m_p} \sum_{i} E_{i}^{(2)} B_{i}^{(4)} \right)$$

$$E_{i}' = -E_{i} - \frac{1}{H} \left(\frac{1}{a^2} \sum_{jk} \epsilon_{ijk} \Delta_{j}^{-} B_{k} + \frac{\alpha_{\Lambda}}{2am_p} \left(\pi_{\phi} B_{i}^{(4)} + \pi_{\phi,+i} B_{i,+i}^{(4)} \right) - \frac{\alpha_{\Lambda}}{4am_p} \sum_{\pm} \sum_{j,k} \epsilon_{ijk} \left\{ \left[(\Delta_{j}^{\pm} \phi) E_{k,\pm j}^{(2)} \right]_{4i} + \left[(\Delta_{j}^{\pm} \phi) E_{k,\pm j}^{(2)} \right] \right\}$$

$$\sum_{i} \Delta_{i}^{-} E_{i} = -\frac{\alpha_{\Lambda}}{2am_p} \sum_{\pm} \sum_{i} \left(\Delta_{i}^{\pm} \phi \right) B_{i,\pm i}^{(4)}$$

- kernel of
$$\mathscr{K}_{A}[a, \dot{a}, \phi, \pi_{\phi}, A_{i}, E_{i}]$$

Non-symplectic integrators like Runge-Kutta

Run simulations until end of inflation $\epsilon_H = 1$

$$\begin{array}{c} \alpha_{\Lambda} = 10\\ \alpha_{\Lambda} = 11\\ \alpha_{\Lambda} = 12\\ \alpha_{\Lambda} = 12\\ \alpha_{\Lambda} = 13\\ \alpha_{\Lambda} = 13\\ \alpha_{\Lambda} = 14\\ \alpha_{\Lambda} = 15\\ \alpha_{\Lambda} = 15\\ \alpha_{\Lambda} = 16\\ \alpha_{\Lambda} = 17\\ \alpha_{\Lambda} = 18\\ \alpha_{\Lambda} = 19\\ \alpha_{\Lambda} = 20\end{array}$$

$$\Delta {\cal N}_{
m br}$$

Extrapolations $\alpha_{\Lambda} = 25 \rightarrow \Delta \mathcal{N}_{br} \sim 10 - 12$ $\alpha_{\Lambda} = 30 \rightarrow \Delta \mathcal{N}_{br} \sim 15 - 18$ $\alpha_{\Lambda} = 35 \rightarrow \Delta \mathcal{N}_{br} \sim 18 - 25$

Strong

Strong

(Electro)Magnetic Slow Roll

 $\Delta^{(\pm)}_A(\mathcal{N},k)/m^2$

UV sensitivity and convergence

Evolve equally

During strong backreaction, Different UV resolution affects evolution

UV sensitivity and convergence

UV resolution affects the evolution of the self consistent background

UV sensitivity and convergence

UV resolution affects the evolution of the self consistent background

Conclusions

Local backreaction is crucial.

Inflation is delayed several e-folds.

• Dominance of magnetic energy during well st stage of inflation.

Scale dependent chirality.

 $\sum \frac{\phi}{\Lambda} E_i^{(2)} B_i^{(4)}$

$$\Delta \mathcal{N}_{\rm pr} = b_2 (\alpha_{\Lambda} - 14.31)^{a_2} + 1.44$$

 10^{0}

Excitation of longitudinal and negative A_{μ} modes

$$(\pi_{\phi}\overrightarrow{B})_{\overrightarrow{k}} = -i\sum_{\lambda=\pm}\lambda\int^{3}q\dot{\phi}^{*}_{(\overrightarrow{k}-\overrightarrow{q})}qA^{\lambda}_{\overrightarrow{q}}\overrightarrow{\varepsilon}^{\lambda}_{\overrightarrow{q}}$$

$$(\pi_{\phi}\overrightarrow{B})_{\overrightarrow{k}} \equiv -i \int d^{3}\overrightarrow{q} \ \dot{\phi}_{(\overrightarrow{k}-\overrightarrow{q})}^{*} q (A_{\overrightarrow{q}}^{+}(\overrightarrow{\varepsilon}_{\overrightarrow{k}}^{+} \cdot \overrightarrow{\varepsilon}_{\overrightarrow{q}}^{+}) - A_{\overrightarrow{q}}^{-}(\overrightarrow{\varepsilon}_{\overrightarrow{k}}^{+})$$

$$\simeq -\frac{i}{2} \int d^2\hat{q} \, dq \, q^3 \, \dot{\phi}^*_{(\vec{k}-\vec{q})} (1-\cos\theta) A^+_{\vec{q}}$$

Comparison with Homogeneous backreaction

Comparison with Homogeneous backreaction

Power spectrum of homogeneous back reaction

