THE CHIRAL PHASE TRANSITION & THE AXIAL ANOMALY

CONFINEMENT AND SYMMETRY FROM VACUUM TO QCD PHASE DIAGRAM BENASQUE - 13/02/2025

Fabian Rennecke

JUSTUS-LIEBIG-UNIVERSITÄT **GIESSEN**

QCD PHASE DIAGRAM

- explicit chiral symmetry breaking due to finite quark masses + axial anomaly

QCD PHASE DIAGRAM

reduce/remove explicit symmetry breaking

actual phase transition

- 2nd order transition for some $0 \leq m_q < m_{q,\,\rm physical}$ at $\mu_B = 0$
- depends on symmetries, i.e. masses of the different quark flavors and the fate of the axial anomaly

THE COLUMBIA PLOT

"Classic" Pisarski-Wilczek scenario:

[Pisarski, Wilczek, PRD 29 (1984)]

• 2nd order transition in the light chiral limit $(m_{\mu,d} = 0)$ if $U(1)_A$ remains broken, otherwise 1st order

Conjecture based on NLO ϵ -expansion (perturbative RG) of a linear sigma model:

• Ist order transition in the chiral limit $(m_{u.d.s} = 0)$, irrespective of the fate of the axial anomaly

THE COLUMBIA PLOT

- fixed point analysis has been improved significantly since 1984
- classic scenario has recently been challenged by direct calculation [Cuteri, Philipsen, Sciarra (2021)]

(cf. Aoki's and Philipsen's talks)

no 1st order at all?

<u>upper bound/"small" region:</u> [Bazavov et al., 1701.03548] [Kuramashi et al., 2001.04398] [Dini et al., 2111.12599]

no 1st order transition [Cuteri, Philipsen, Sciarra, 2107.12739] [Bernhardt, Fischer, 2309.06737]

No evidence of 1st order transition in bottom left corner from lattice QCD. Maybe a very small region? Maybe

HOW TO UNDERSTAND THE CHIRAL PHASE TRANSITION?

(I) What are relevant symmetries?

 \longrightarrow role of the axial anomaly at T_c

(2) Does the underlying critical theory have stable fixed points?

what do we know from critical phenomena?

(3) Are the fixed points reached with physical parameters

can the system be tuned to criticality with available control parameters?

NECESSARY CONDITIONS FOR 2ND ORDER TRANSITIONS

necessary ingredient from QCD

symmetry at transition

- If $U(1)_A$ remains broken at T_c , possibilities are $SU(3)_L \times SU(3)_R$, O(4) and Z(2)
- If $U(1)_A$ is restored at T_c , possibilities are $SU(N)_L \times SU(N)_R \times U(1)_A$ for N = 2, 3 and Z(2)

we must be able to tune the system to the fixed point

- CEP: tune T and μ
- Columbia plot: tune T and m

stable fixed point for us: two relevant directions

Note: these are not sufficient conditions!

STABLE FIXED POINT \neq **2ND ORDER TRANSITION**

Even if there is a stable critical point, the physical transition can still be 1 st order

Example: functional RG (nonperturbative RG, LO derivative expansion) analysis of quark-meson model

• fixed point analysis: stable fixed point for $SU(N)_L \times SU(N)_R \times U(1)_A$ for N = 2,3

• direct computation of phase diagram (QM model): Ist order transition for "physical" parameters in same universality class in (light) chiral limit

[Resch, FR, Schaefer, 1712.07961]

fixed point is there, but system doesn't seem to reach it Note: same method and very similar approximation is used in both studies!

[Fejos, 2201.07909] [Fejos, Hatsuda, 2404.00554]

UNIVERSALITY AND THE CHIRAL TRANSITION

Critical theory is, in general, given by a matrix model,

Universal effective Lagrangian can be constructed systematically from (chiral) invariants,

- $SU(N_f)_L \times SU(N_f)_R \times U(1)_A$ invariants: tr $(\Phi^{\dagger}\Phi)^{1,\ldots,N_f}$ $(\phi^{2,\ldots,2N_f}$ terms)

E.g., for $N_f = 3$ the $SU(3)_L \times SU(3)_R$ phase transition is described by

$$\Phi \sim \bar{q}_L q_R \xrightarrow{SU(N_f)_L \times SU(N_f)_R \times U(1)_A} e^{i\theta_A} U_R \Phi U_L^{\dagger}$$

• $SU(N_f)_L \times SU(N_f)_R$ - invariant: det Φ ('t Hooft determinant, ϕ^{N_f} - term)

 $\mathscr{L}_{\text{eff}} = \text{tr}\left(\partial_{\mu}\Phi^{\dagger}\right)\left(\partial_{\mu}\Phi\right) + m^{2}\text{tr}\Phi^{\dagger}\Phi - \xi_{1}^{(\text{eff})}\left(\det\Phi + \det\Phi^{\dagger}\right) + \lambda_{1}\left(\operatorname{tr}\Phi^{\dagger}\Phi\right)^{2} + \lambda_{2}\operatorname{tr}\left(\Phi^{\dagger}\Phi\right)^{2} + \mathcal{O}(\phi^{6})$

Ist order transition seems inevitable for any $\xi_1^{(\text{eff})} > 0$ (broken $U(1)_A$) (consistent with apparent absence of stable fixed point for $SU(N_f)_L \times SU(N_f)_R$)

AXIAL ANOMALY

How could 1st-order transition be avoided?

Revisit microscopic origin of the anomaly, at weak coupling:

Functional determinant of quark zero modes accounts for change in axial charge: (otherwise partition function is zero)

topological gluons instantons [BPST (1975)] $Q = -\frac{1}{16\pi^2} \int d^4x \,\mathrm{tr}\, F\tilde{F}$

axial charge changes + quark zero modes [Atiyah, Singer (1963)]

> ['t Hooft (1976)] $\Delta Q_5 = 2N_f Q$

 $n_L - n_R = N_f Q$

ANOMALOUS CORRELATIONS

Dilute gas of $Q = \pm 1$ instantons: $U(1)_A$ -breaking effective interaction ['t Hooft (1976)]

• larger-Q instantons are suppressed in the semi-classical weak-coupling limit, $\sim \exp(-8\pi^2|Q|/g^2)$

anomalous $2N_f$ - quark (N_f - meson) correlation

average instanton size • dilute approximation reasonable at large T due to thermal screening of instantons: $\bar{\rho} \ll \frac{1}{\pi T}$ [Pisarski, Yaffe (1980)] [Gross, Pisarski, Yaffe (1981)]

ANOMALOUS CORRELATIONS

Lower T/larger g: corrections to the dilute gas become relevant. Dilute gas of instantons with multi-instanton (|Q| > 1) corrections: more $U(1)_A$ -breaking effective interactions

[Pisarski, FR, 1910.14052] [FR, 2003.13876]

$$\det_{f} \bar{\psi}_{L} \psi_{R} \rangle^{|\mathcal{Q}|} + \left(\det_{f} \bar{\psi}_{R} \psi_{L} \right)^{|\mathcal{Q}|} \sim \left(\det \Phi \right)^{|\mathcal{Q}|} + \left(\det \Phi^{\dagger} \right)^{|\mathcal{Q}|}$$

 \longrightarrow anomalous $2N_fQ$ - quark (N_fQ - meson) correlations

ANOMALOUS CORRELATIONS & THE CHIRAL TRANSITION

Topological quark zero modes give rise to tower of fundamental anomalous interactions,

$$\xi_1 \left[\det \Phi + \det \Phi^{\dagger} \right] + \xi_2 \left[(\det \Phi)^2 + \xi_2 \right]$$

They feed into anomalous effective couplings at $T \lesssim T_c$,

$$\xi_n^{(\text{eff})} = \xi_n + \sigma_0^{N_f} \xi_{n+1} + \sigma_0^{2N_f} \xi_{n+2} + \dots$$

Explain small/no 1st-order region in lower-left corner of the Columbia plot by:

conjecture: higher Q effects dominate for $T \lesssim T_c$, e.g., $\langle Q \ge 0 \rangle_{T \lesssim T_c} > 1$

2nd order transition in the chir

- + $(\det \Phi^{\dagger})^2$] + ξ_3 [$(\det \Phi)^3$ + $(\det \Phi^{\dagger})^3$] + ...
- $\mathscr{L}_{anom} = \xi_1^{(eff)} \left[\det \Phi + \det \Phi^{\dagger} \right] + \xi_2^{(eff)} \left[(\det \Phi)^2 + (\det \Phi^{\dagger})^2 \right] + \xi_3^{(eff)} \left[(\det \Phi)^3 + (\det \Phi^{\dagger})^3 \right] + \dots$

 $\sigma_0 \sim \langle \bar{q}q \rangle$: chiral condensate

[Pisarski, FR, 2401.06130]

ral limit:
$$\xi_1(T = T_c) = 0 \implies \xi_1^{\text{(eff)}}(T = T_c) = 0$$

EXTENDED LINEAR SIGMA MODEL

Test consistency with vacuum phenomenology using a low-energy model in mean-field approximation

 $\mathscr{L}_{U(3)\times U(3)} = \begin{cases} \bullet \text{ LSM containing all possible relevant and marginal terms in } d = 4 \text{ involving mesons} \\ \text{ in the scalar, pseudoscalar, vector and axialvector nonets} \\ \bullet \text{ coupled to quarks, } A_0 \text{ background field + Polyakov loop potential (lattice input)} \end{cases}$

 $\mathscr{L}_{\text{anom}} = \xi_1^{(\text{eff})} \left(\det \Phi + \det \Phi^{\dagger} \right) + \xi_1^{1,(\text{eff})} \operatorname{tr} (\Phi^{\dagger} \Phi) \left(\det \Phi + \det \Phi^{\dagger} \right) + \xi_2^{(\text{eff})} \left[(\det \Phi)^2 + (\det \Phi^{\dagger})^2 \right]$

- χ^2 fit to 29 physical quantities (meson masses, dec decay widths, T_c at the physical point; 14-16 free param
- test viability of different realizations of the ano over steepest descent minimizations from 10^6 random

 $\xi_1^{(\text{eff})} = 0$ consistent with vacuum phenc in fact, any realization of the anomaly is

 $\mathscr{L} = \mathscr{L}_{U(3) \times U(3)} + \mathscr{L}_{anom}$

	nonzero	$\overline{\chi}^2$	$\overline{\chi}^2$
cay constants,	params.	X	χ_{red}
neters)	$\overline{\xi_1}$	31.31	2.09
maly (average	ξ_1^1	29.70	1.98
starting points)	ξ_2	33.50	2.23
omenology;	ξ_1,ξ_1^1	29.51	2.11
	ξ_1,ξ_2	30.90	2.21
	ξ_1,ξ_1^1,ξ_2	30.81	2.37

EXTENDED LINEAR SIGMA MODEL

Once good parameters for vacuum phenomena are identified, we compute the Columbia plot:

- in all these cases $U(1)_A$ remains broken, $\xi_n^{(\text{eff})} = \text{const}$.
- \rightarrow Dashen's phenomenon [Dashen (1971), Witten (1980)] (to be investigated further)

Note: mean-field analysis cannot be the final answer

→ the smaller $\xi_1^{(\text{eff})}$, the smaller the first order region; vanishes for $\xi_1^{(\text{eff})} = 0$

• gray region can only be reached for $m_s < 0$, so like $\theta = \pi$: we find spontaneous CP violation (η' condensate)

SUMMARY/OUTLOOK

The order of the chiral phase transition remains an open question. It is related to various subtle phenomena.

- no evidence for 1st order transition from the lattice: either small region or not there at all
- critical phenomena suggest that $U(1)_A$ needs to be restored at T_c for a second order transition in the chiral limit, but existing calculations may still have large systematic errors
- axial anomaly is encoded in a tower of anomalous correlations, are directly linked to higher topological charges in the semi-classical limit
- conjecture: small/no 1 st order region because of dominance of higher topological charge effects at $T \lesssim T_c$
- 2nd order transition for vanishing Q = 1 contribution, $\xi_1 = 0$. But why would only one coupling vanish? Maybe all of them do, $\xi_n = 0 \forall n \to U(1)_A$ restoration right at T_c
- how to test this? One suggestion: look for actual phase transition in $N_f = 1$ QCD

BEYOND MEAN-FIELD

Columbia plot of quark-meson model - mean-field vs FRG-LPA

[Resch, FR, Schaefer, 1712.07961]