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Determinant of the quark propagator with R
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Looks like a mass shift… 
But QCD has chiral symmetry…? 
Should be a spontaneous symmetry breaking. 
Phase structure may be changed in curved spacetime.

Flachi-Fukushima (2014)
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In terms of the fluid language:

βμpμ = β(p0 − Ω × x ⋅ p)
= x × p ⋅ Ω = L ⋅ Ω

Cranking Hamiltonian:

Ĥ → Ĥ − ̂J ⋅ Ω

Can be fully relativistically generalized with Ωμ = εμνρσuν∂ρuσ
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Metric in the rotating frame:

Geometrical condition:

<latexit sha1_base64="u6X55MTUN6K2UuB6MKnGX1lJInM="></latexit>

gµω =





1→ !2
Ir

2 →i!Ir2 0 0
→i!Ir2 r2 0 0

0 0 1 0
0 0 0 1





Euclidean Cylindrical + Imaginary Rotation

Analytical Continuation

Very singular 
due to causality

<latexit sha1_base64="Dd0o/4Oj+bCkGNqnyUsM+g+j4uU="></latexit>

(ω, ε, r, z) → (ω + ϑ, ε ↑ ϑ!I , r, z)

Period β = 1/T

Imaginary time 
× Imaginary angular velocity
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as a continuous variable. Also we assume a su�ciently
large integer N . Then, we can approximate the `-sum in
F⌦ by an integration as
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For our parameter choiceN ⇠ O(104) is large enough and
the above approximation is justified. Then the rotational
contribution to the gap equation (21) is reduced to

F⌦ = Fµ(µ = µN )�
eB
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(33)
It is obvious that a density-like e↵ect induced by rotation
is certainly contained in the first term Fµ. The second is
a negative term that makes a di↵erence from the finite-
density case. This extra term plays a role to weaken
chiral restoration by rotation as compared to that by
high density. Therefore, the suppression of the dynam-
ical mass in the rotating frame occurs more gradually
than that with the finite chemical potential. Moreover,
Eq. (33) implies F⌦ < Fµ for a fixed µN , and thus, chiral
restoration by rotation would need larger µN than that
by finite density (see Fig. 1).

(III) For T = 0 and large eB we can analytically in-
vestigate the eB-dependence of ⌦c. In our analysis we
adopted the näıve cuto↵ regularization with Eq. (20), but
the regularization scheme should be irrelevant for a large
system with S � 1/eB. If we utilized the proper time
regularization for F0, the gap equation with rotation and
strong magnetic field would be [? ]
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where �E is the Euler-Mascheroni constant, �(z) denotes
the gamma function, and ⇤PT stands for the cuto↵ pa-
rameter in the proper-time regularization. In this gap
equation (34), the terms in the third line result from the
n = 0 mode in Eq. (33). We can find ⌦c from the above
gap equation with m ! 0 substituted, and the analytical
result is
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FIG. 4. 3D plot for the dynamical mass as a function of ⌦
and eB at strong coupling. For large ⌦, chiral symmetry is
restored by eB, which manifests the inverse magnetic catalysis
or the rotational magnetic inhibition.

where Gc = 4⇡/⇤2
PT is the critical coupling for ⌦ =

p
eB = 0 that is found in the proper-time regularization.

In the second line in Eq. (35), we utilized the parameters
of Eqs. (26), (29) and (28). On the other hand, we can
numerically evaluate ⌦c as a function of eB as displayed
in Fig. 3. From the linearity in Fig. 3 the numerical fit
leads to

⌦c(eB) '
1.58⇥ 10�6

p
eB

exp

✓
�
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eB

◆
. (36)

This fitting result ensures that Eq. (32) is a good approx-
imation for the parameters in Eq. (28).

B. Dynamical mass at strong coupling (G > Gc)

We shall next focus on a following strong region:

G = 1.11Gc . (37)

We note that dynamically determined m with the above
strong-coupling is about 30 times larger than mdyn at
weak coupling. We show the numerical results in Fig. 4.
Below are several remarks on the results.

(I) For small angular velocity, the dynamical mass is
almost independent of ⌦ and eB. With increasing ⌦ the
dynamical mass is eventually suppressed by larger mag-
netic field, i.e. a counterpart of the finite-density inverse
magnetic catalysis is manifested. We would call this de-
creasing behavior of the mass for larger magnetic field
the “rotational magnetic inhibition” in this paper. In
Fig. 4 we see that the dynamical mass starts to drop
around µN = ⌦N ⇠

p
eB. The same is true for the

finite-density inverse magnetic catalysis observed around
µ ⇠

p
eB [? ].
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Phase Diagram at Finite Angular Velocity

Angular Velocity ~ Finite Density
Chen-Fukushima-Huang-Mameda (2015)

H → H − J ⋅ Ω ⇔ H − Nμ
4
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FIG. 3: The phase diagram on T -! plane (see text).

(rather than the fermion-anti-fermion) superconducting
pairing phenomenon in the presence of rotation. In the
QCD context, this is the color superconductivity at high
density and low temperature (see e.g. [37] for a recent
review). Quite di↵erent from the chiral condensate, the
diquark pairing state has the spatial angular momentum
(for the relative orbital motion) L = 0 while the total
spin S = 0 (i.e. antisymmetric combination of the two
individual quark spins), again with the total angular mo-
mentum J = 0 for the pair. We use the same NJL model
and for simplicity we focus on the low-temperature high-
density region where the chiral symmetry is already re-
stored. Assuming a mean-field 2SC diquark condensate
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In the above the mean-field quasiparticle dispersion ✏±n
and ✏�±

n is given by ✏±n = (
p
k2z + k2t +m2±µ)�(n+ 1

2 )!

and ✏�±
n = [(

p
k2z + k2t +m2 ± µ)2 +�2]

1
2 � (n+ 1

2 )!.
The mean-field diquark condensate � at given values of
temperature T , chemical potential µ and rotation !, can
then be determined from the self-consistency equation
through variation of the order parameter: �⌦

��(r) = 0 and
�2⌦

��(r)2 > 0. By numerically solving the equation, we show

in Fig. 4 the � (at radius r = 0.1GeV�1) as a function of

! for several values of T and fixed µ = 400MeV. One can
see that with increasing !, the diquark condensate always
decreases toward zero, through a 1st-order transition at
low T while a smooth crossover at higher T . This result
again confirms the generic rotational suppression e↵ect
on the scalar diquark pairing.

FIG. 4: The mean-field diquark condensate � (at radius r =

0.1GeV
�1

) as a function of ! for several values of T and fixed

value of µ = 400MeV.

Summary and Discussions.— In summary, we have
found a generic rotational suppression e↵ect on the
fermion pairing state with zero angular momentum. This
e↵ect is demonstrated for two well-known pairing phe-
nomena in QCD matter, namely the chiral condensate
and the color superconductivity. The scalar pairing
states in these two examples, while di↵erent in many
aspects, are both found to be reduced with increasing
rotation of the system. In the case of chiral phase transi-
tion, we have identified the phase boundary with a criti-
cal point on the T � ! parameter space.
The rotational e↵ects on pairing phase transitions may

bear interesting implications for a number of physics sys-
tems. The phase diagram of QCD matter on T �! plane
could be quantitatively explored by ab initio lattice sim-
ulations which has recently become feasible [8]. In heavy
ion collisions there is sizable global angular momentum
carried by the hot dense matter (as recently computed
in e.g. [6]): such rotational motion may cause the chiral
restoration to occur at lower temperature as our results
imply, and may bear measurable consequences (e.g. for
dilepton emissions). In the case of neutron stars, the
dense QCD matter is under global rotation which may
reduce the chiral as well as diquark or nucleon-nucleon
pairings and may a↵ect the moment of inertia for such
stars [27, 28]. In the non-relativistic domain, the cold
fermionic gas is an ideal place to study the rotational
suppression e↵ect on the fermion pairing and the very
interesting BCS-BEC crossover phenomenon [38–41]. Fi-
nally, while in this paper we limit ourselves to the study
of slow rotation e↵ects, it is worth commenting that

Jiang-Liao (2016)

This is a phase diagram 
at the rotation center in the 
quark model. 
Chiral Symmetry
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Figure 10. Deconfinement phase diagram for pure gluon system in the T�! and T�µ plane. Solid
line is first order transition and green point is the CEP. (a) Deconfinement phase diagram in the T�!

plane for µ = 0, 0.1, 0.15GeV. Positions of CEP are located at (!E
, T

E) = (0.67, 0.186), (0.43, 0.231)
respectively. (b) Deconfiement phase diagram in the T � µ plane for ! = 0, 0.5, 0.8GeV. Positions
of CEP are located at (µE

, T
E) = (0.188, 0.256), (0.139, 0.222), (0.068, 0.153) respectively. The unit

of T, µ,! is GeV.

the T � µ plane for di↵erent angular velocities !. When ! = 0, the deconfinement phase

transition is of 1st order phase transition in lower chemical potential and of crossover at

higher chemical potential, and the CEP is located at (µE
, T

E) = (0.188, 0.256)GeV. When

the angular velocity increases, the phase transition line shifts down, and the location of

the CEP shifts to the lower left plane.

The phase diagram of two-flavor system has be shown in Fig.11. We can see that the

angular velocity and chemical potential will suppress the transition temperature and the

phase transition will be always crossover in the whole phase diagram. Since the angular

velocity is normalized, the transition temperature will decrease down to zero at ! ! 1GeV .

In the left panel of Fig.11, we can see that small angular velocity has less influence on tran-

sition temperature while large angular velocity leads to a quick decrease of phase transition

temperature. The right panel of Fig.11 shows that the phase transition temperature has

weak dependence of chemical potential, which is similar to our previous work and PNJL

model of deconfinement transition of light flavor[24, 70, 97]. Besides, rotation will lead to a

anisotropic background which is in parallel with the analysis in anisotropic theories[98, 99].

There it has been found that the presence of anisotropy leads to easier dissociation of the

QQ̄ and that in phase transitions anisotropy acts like a catalyst decreasing the critical

temperature.1

3.3 Heavy-quark potential, Polyakov loop and spatial Wilson loop under ro-

tation

The above phase transition structure is obtained by analyzing the geometric phase tran-

sition, i.e. extracted from the thermodynamic quantities. To get more information of the

1Thanks Dimitrios Giataganas for this commment.
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They solved the 5D Einstein equations with

2.2 Extend the EMD system to the rotating case

To obtain the dual gravity background to rotating nuclear matter, a natural approach is to

solve the equation of motion from the action in Eq.(2.1), subject to the boundary condition

for a rotating 4D system. However, an exact solution might not be easy to get. It is quite

common that the distribution of the rotating system would depend on the distance to the

rotating axis. Thus, one has to solve a partial derivative equations to get such a solution.

Fortunately, if one only tries to get the qualitative behavior of the rotating matter at a fixed

radius, the scenario used in Refs.[80–84] might provide a first approximation. According

to Refs.[80–84], one can get the rotating extension from the static configuration through a

local Lorentz boost
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Here, l is the radius to the rotating axis. ✓ is the angular coordinate describing the rotation.

! is the angular velocity. Since we will focus on the qualitative results, we simply take

l = 1GeV�1. Then, the corresponding transformation of the metric would be
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Chen-Zhang-Li-Hou-Huang (2020)

Hawking-Page phase transition modified by 
the orbital angular momentum.   Color Deconfinement
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Ahmed-Cong-Kubiznak-Mann-Visser (2023)

! to be independent of the boundary coordinates, in which case the CFT volume reads

V = ⌦d�2R
d�2 , (1.5)

where R = !L is the variable curvature radius of the manifold where the CFT lives. The

variation of the CFT volume V is then obviously independent of the variation of the central

charge C, which for Einstein gravity is dual to

C =
⌦d�2Ld�2

16⇡GN

, (1.6)

even when Newton’s constantGN is held fixed. Employing the following AdS/CFT dictionary:
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it is easy to show that the bulk first law (1.2) is dual to [24, 26]:

E = T �S + ⌦̃�J + �̃�Q̃+ µ�C � p�V , (1.8)

accompanied by the following two relations for the chemical potential µ associated to the

central charge and for the pressure p, respectively,

µ =
1

C
(E � TS � ⌦̃J � �̃Q̃) , (1.9)

p =
E

(d� 2)V , (1.10)

known as the Euler relation and the equation of state for CFTs, respectively. This Euler

equation holds for any large-N gauge theory, and di↵ers from the standard one in thermody-

namics in that it does not contain a pV term. In the high-temperature or large-volume regime,

i.e. RT � 1, the µC term becomes equal to �pV, and (1.9) becomes the standard thermo-

dynamic Euler relation [26]. In Ref. [31] we provided an extensive study of the extended

thermodynamics of CFT states dual to charged, nonrotating AdS black holes.

It is the purpose of this paper to explore the implications of this proposal for rotating

thermal CFT states that are dual to uncharged, singly-spinning AdS black holes in the bulk.

In particular, we shall focus on the following three ensembles that feature interesting phase

behavior:
fixed (J,V, C) : F ⌘ E � TS ,

fixed (⌦̃,V, C) : W ⌘ E � TS � ⌦̃J ,

fixed (J,V, µ) : G ⌘ E � TS � µC ,

(1.11)

where F , W , and G are the corresponding free energies of the respective ensembles. These

ensembles are analogous to the three ensembles studied in [31] for thermal CFT states dual

to charged, nonrotating AdS black holes, for which we found interesting phase behaviour.

For the present rotating case, in the first (‘canonical’) ensemble, we shall show that there is

– 3 –
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Grand Canonical

Figure 6: W � T diagram of fixed (⌦̃,V, C) ensemble for V = 1 = C, d = 4 (left), and

d = 6 (right). The curves correspond to ⌦̃ = 1

20

1

R
(blue), ⌦̃ = 5

6

1

R
(yellow), ⌦̃ = 1

R
(green)

and ⌦̃ = 3

2

1

R
(black). For ⌦̃ = 1

R
, the physical part of the figure corresponds to the solid line,

while the dashed part has z > 1. The black lines correspond to superradiant black holes in

the bulk.

0.0 0.5 1.0 1.5 2.0T0

1

2

3

4

5
Ω


DeconfinedConfined

Unstable

Figure 7: Co-existence diagram for ⌦̃ vs. T . The parameters used here are C = 1 = V,
d = 4 (left), and d = 6 (right). For ⌦̃R < 1, a first-order phase transition occurs across the

co-existence line separating the confined and deconfined phase. Contrary to the canonical

ensemble, the coexistence line no longer terminates at a critical point. Rather, an ‘unstable

region’ (subject to superradiant instabilities in the bulk) develops for ⌦̃R � 1.
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Consistent with  Chen-Zhang-Li-Hou-
Huang (2020)

Figure 10. Deconfinement phase diagram for pure gluon system in the T�! and T�µ plane. Solid
line is first order transition and green point is the CEP. (a) Deconfinement phase diagram in the T�!

plane for µ = 0, 0.1, 0.15GeV. Positions of CEP are located at (!E
, T

E) = (0.67, 0.186), (0.43, 0.231)
respectively. (b) Deconfiement phase diagram in the T � µ plane for ! = 0, 0.5, 0.8GeV. Positions
of CEP are located at (µE

, T
E) = (0.188, 0.256), (0.139, 0.222), (0.068, 0.153) respectively. The unit

of T, µ,! is GeV.

the T � µ plane for di↵erent angular velocities !. When ! = 0, the deconfinement phase

transition is of 1st order phase transition in lower chemical potential and of crossover at

higher chemical potential, and the CEP is located at (µE
, T

E) = (0.188, 0.256)GeV. When

the angular velocity increases, the phase transition line shifts down, and the location of

the CEP shifts to the lower left plane.

The phase diagram of two-flavor system has be shown in Fig.11. We can see that the

angular velocity and chemical potential will suppress the transition temperature and the

phase transition will be always crossover in the whole phase diagram. Since the angular

velocity is normalized, the transition temperature will decrease down to zero at ! ! 1GeV .

In the left panel of Fig.11, we can see that small angular velocity has less influence on tran-

sition temperature while large angular velocity leads to a quick decrease of phase transition

temperature. The right panel of Fig.11 shows that the phase transition temperature has

weak dependence of chemical potential, which is similar to our previous work and PNJL

model of deconfinement transition of light flavor[24, 70, 97]. Besides, rotation will lead to a

anisotropic background which is in parallel with the analysis in anisotropic theories[98, 99].

There it has been found that the presence of anisotropy leads to easier dissociation of the

QQ̄ and that in phase transitions anisotropy acts like a catalyst decreasing the critical

temperature.1

3.3 Heavy-quark potential, Polyakov loop and spatial Wilson loop under ro-

tation

The above phase transition structure is obtained by analyzing the geometric phase tran-

sition, i.e. extracted from the thermodynamic quantities. To get more information of the

1Thanks Dimitrios Giataganas for this commment.

– 14 –
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Figure 1: Thermodynamic quantities, the pressure (left), the energy density (middle), and the entropy (right), calculated in the HRG model
with and without imposing the mass cuto↵ m < ⇤ with ⇤ = 1.5 GeV.

that the changes of the chemical freezeout curve are as
small as around 10 MeV.

We quantitatively study the e↵ect of ⇤. In Fig. 1 we
plot the thermodynamic quantities with and without the
cuto↵ from Eq. (14) in the standard non-rotating HRG
model. The left panel shows the pressure p, the middle
shows the energy density ", and the right shows the en-
tropy density s as functions of T . To check the validity
of our simplification with ⇤, we shall compare the critical
temperature Tc read out from a thermodynamic criterion.

The critical temperature without ⇤ is known from the
lattice-QCD simulation as Tc = 154 MeV [40]. We can
find the corresponding critical p/T 4, "/T 4, and s/T

3 at
Tc from the crossing points of the orange dashed curves
and the dotted vertical lines. Then, we can estimate the
⇤ modified Tc from the crossing points of the blue solid
curves and the dotted horizontal lines in Fig. 1. The shifts
in Tc read out from p/T

4, "/T 4, and s/T
3 are 3.0 MeV,

5.6 MeV, and 5.2 MeV, respectively. This is the numerical
confirmation that the ⇤ e↵ects on Tc are less than 10 MeV.
In conclusion, our simplification by ⇤ = 1.5 GeV is qualita-
tively harmless for the study of the phase boundary around
Tc and also at the quantitative level the possible error is
⇠ 5 MeV. We assume that the ⇤ e↵ects are negligible for
finite ! as well.

Now let us discuss the deconfinement phase boundaries
at finite µ and !. For this purpose we should make the
thermodynamic quantities not only with T (as in Fig. 1)
but with some proper combination of T , µ, and !. We
employ the normalization given by the Stefan-Boltzmann
limit of a rotating quark-gluon gas:

pSB ⌘ (N2
c � 1) pg +NcNf (pq + pq̄) , (20)

where the number of colors and flavors are Nc = 3, Nf = 2,
respectively. The gluon pressure reads:

pg = � T
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Here, we note that the possible angular momenta are only
j = `� 1 and j = `+ 1 and there is no contribution from

Figure 2: Deconfinement transition surface as a function of the
baryon chemical potential µ and the angular velocity !.

sz = 0 because gluons are massless gauge bosons. This
is why J

2
`
(krr) + J

2
`+2(krr) appears above. The quark

pressure reads more straightforwardly:

pq = � T
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(22)

and the anti-quark pressure, pq̄, takes almost the same
expression with µ ! �µ.

Here our criterion for the deconfinement transition is
prescribed, in a way similar to Ref. [41], as

p

pSB
(Tc, µ, !) = � . (23)

Here, � is a constant, which is chosen to reproduce Tc(µ =
! = 0) = 154 MeV in accordance with the lattice-QCD
results [40]. This condition fixes � = 0.18 in our calcula-
tion. Now we can numerically solve Eq. (23) to identify
Tc = Tc(µ, !) as plotted in Fig. 2.

Now it is evident that Tc is a decreasing function with
increasing ! just like the behavior along the µ direction.
We cannot directly study the chiral properties within the
HRG model, but it is conceivable that the deconfinement

5

Hadron Resonance Gas model predicts thermodynamics. 
Pressure blows up around approximate Tc .

Fujimoto-Fukushima-Hidaka (2021)

Full QCD ?

Lattice QCD ?
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First surprise — Braguta et al. (2021)

8

Figure 5: The coefficient B2 in Eq. (16) versus the ratio Ns/Nt for several lattice sizes with OBC.
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Figure 6: The Polyakov loop |hL(x, y = 0)i| as a function of coordinate x for OBC and ⌦I = 0 MeV (a), ⌦I = 24 MeV (b).
The results were obtained on the lattice 8 ⇥ 24 ⇥ 492 for two temperatures: T/Tc(0) = 0.76 in the confinement phase and
T/Tc(0) = 1.21 in the deconfinement phase.

value of the ⌦:

Tc(⌦)

Tc(0)
= 1 + C2⌦

2
. (15)

Our results indicate that the C2 > 0, which leads to the conclusion: With OBC the critical temperature of the

confinement/deconfinement phase transition grows with increasing angular velocity.

• In order to study the dependence of our results on the Nz lattice size we calculated the critical temperature on
the lattices 8⇥Nz ⇥252

, Nz = 20, 24, 30. The results obtained on these lattices agree within the uncertainty (see
Fig. 4(a)). In order to study discretization effects, we conducted our study on the lattices 8⇥24⇥252

, 10⇥30⇥
312

, 12 ⇥ 30 ⇥ 372 where the physical sizes are kept fixed. As can be seen from Fig. 4(a), the ratio Tc(⌦I)/Tc(0)
shows almost no dependence on the lattice spacing a. Next we proceeded to the dependence of the results on
size in the transverse directions Ns. To do this we fixed the Nt and Nz sizes and varied the Ns. It is seen from
Fig. 4(a) that our data are split into lines with different slopes. The dependence of these slopes (different C2

constants) on the lattice sizes Ns is quite significant.

Imaginary rotation enhances the Polyakov loop 
Real rotation induces more confinement!?

Pure gluonic theory on lattice

Small but sizable 
changes here



February 13, 2025 @ Benasque

Rotation Controversies

12

Updates — Braguta-Kotov-Roenko-Sychev (2023)

Thermal phase transitions in rotating QCD with dynamical quarks A. A. Roenko

(a) (b)

Figure 2: The susceptibility of the averaged Polyakov loop (a) and the (disconnected) chiral susceptibility (b)
as a function of temperature for di�erent values of imaginary linear velocity at the boundary E� in case of
full rotation. The results are obtained on the lattice 4 ⇥ 16 ⇥ 172 with PBC and <%(/<+ = 0.80.
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Figure 3: The pseudo-critical temperature of the confinement-deconfinement (a) and chiral (b) crossover
as a function of (imaginary) linear velocity squared at the boundary for various regimes of rotation. Lines
correspond to the quadratic fits given by Eq. (10). The results are obtained on the lattice 4 ⇥ 16 ⇥ 172 with
PBC and <%(/<+ = 0.80.

For both deconfinement and chiral crossovers we obtain similar relation between coe�cients in
Eq. (10) for di�erent regimes: ⌫

(⌧)
2 > ⌫2 > 0, ⌫ (� )

2 < 0, where ⌫
(⌧/� )
2 is the coe�cient for the

regime of rotation when only gluon/fermion action includes contribution with non-zero angular
velocity, and ⌫2 is the coe�cient for the physical regime when all e�ects are accounted for. One
can give an intuitive physical interpretation of these results: separate rotations of fermions and
gluons in QCD have opposite e�ects on the pseudo-critical temperature. But in total, when all parts
of the system are subjected to rotation, the pseudo-critical temperatures decrease due to imaginary
rotation. It should be noted again that both the chiral crossover and the confinement-deconfinement
crossover shift together in the same direction for all rotational regimes.

6

Imaginary Velocity

[Deconfinement] [Chiral Restoration]

Matter sector is consistent with other approaches. 
Gluon sector is problematic !



February 13, 2025 @ Benasque

Rotation Controversies

13

Further updates — Braguta-Chernodub-Roenko (2023)
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Figure 2: Temperature Tc(r), shown in units of the ⌦ = 0 crit-
ical temperature Tc0 of the non-rotating system, which should be
imposed at the axis of rotation (r = 0) in order to produce the de-
confinement phase transition at the distances larger than r from the
rotation axis for the gluonic system rotating at various values of the
imaginary angular velocity vI = ⌦IR. The dashed lines are the best
quadratic fits by Eq. (5). The insets show the arrangement of the
phases for each fixed vI and the best-fit parameters vs. vI .

At a fixed distance r from the rotation axis, the ex-
pectation value of the Polyakov loop and its susceptibility
can only be evaluated at a finite number of spatial points
proportional to the lattice extension Lz. Since our cal-
culations are performed at finite Lz, a small volume of
this lattice submanifold leads to high uncertainty in the
determination of the critical temperature. To reduce the
associated statistical error, we calculated the mentioned
quantities within a thin cylinder (r � �r/2, r + �r/2). We
justified our approach by demonstrating numerically that
the finiteness of �r brings only a minor systematic error to
the estimation of the critical temperature [38].

In Fig. 2, we present the local (pseudo)critical tempera-
ture Tc(r) as a function of distance to the rotation axis for
various imaginary angular frequencies, obtained for the av-
eraging width �r ·T = 3 on the lattice with Nt = 5. In the
absence of rotation, at ⌦I = 0 (not shown in the figure),
there is no dependence of the critical temperature at the
center on r since the transition appears simultaneously in
the whole system. At any nonzero value of ⌦I , the critical
temperature at the rotation axis diminishes with the in-
crease of the distance r from the axis of rotation, implying
that the imaginary rotation facilitates the transition to the
deconfined phase outside of the rotation axis. The stronger
the imaginary rotation, the lower the on-axis temperature
should be to produce the deconfinement in the medium. 1

For a moderate radius r . 0.5R, the critical temperature
can be fitted, as a function of r, by the simple quadratic

1The small-r gap in the data presented in Fig. 2 is a result of the
finite thickness �r of the cylindrical averaging manifold mentioned
earlier. A decrease in �r closes the gap and increases the statistical
errors while leaving our conclusions unchanged.

formula:

Tc(r, ⌦I)

Tc0
=

Tc(⌦I)

Tc0
� (⌦I)(⌦Ir)

2 , (5)

where the transition temperature on the rotation axis, Tc,
and the dimensionless “vortical curvature”  serve as the
fitting parameters.2 The best fits for various angular fre-
quencies are shown in the main plot of Fig. 2.

7. On-axis transition and vortical curvature

The results for the fit parameters are shown in the in-
set of Fig. 2, where the systematic uncertainties associated
with the averaging width are taken into account. While
both fitting parameters of Eq. (5) should, in general, de-
pend on the imaginary frequency ⌦I , our data, shown in
the inset of Fig. 2 as functions of the imaginary veloc-
ity at the boundary vI , unexpectedly indicates that this
dependence is almost absent. We believe that this tiny
dependence –within a few percent of accuracy– might be
attributed to finite Nz e↵ects.

Our result is even more surprising given that the criti-
cal temperature of the deconfining transition in all analytic
calculations available so far is predicted to exhibit a signif-
icant dependence on rotation [4–16, 19]. In addition, the
previous numerical results that have found a dependence
of the critical temperature on ⌦I without specifying the
distance of the center of rotation [22–27] should be under-
stood as the bulk-averaged results. We found a minor de-
pendence of our results on the lattice spacing and obtained
a value  = 0.902(33) after continuum limit extrapolation
using the data for Nt = 4, 5, 6.

8. Violation of the Tolman-Ehrenfest law

The temperature of a system in the thermodynamic
equilibrium in an external static gravitational field de-
pends on the coordinates r and obeys the well-known
Tolman-Ehrenfest (TE) law [40, 41]:

p
g00(r)T (r) = T0 =

const. For a rotating system (2), the TE law gives:

T (r) =
T0

p
1 � ⌦2r2

=
T0p

1 + ⌦2
Ir

2
, (6)

where T0 is the temperature at the rotation axis (r = 0).
The last relation in Eq. (6) corresponds to the case of imag-
inary rotation. To simplify notations, we use the on-axis
temperature T0 ⌘ T , Eq. (6), to refer to the temperature
of the gluon plasma.

The TE law (6) suggests that real rotation e↵ectively
heats the system outside of the rotation axis. This fact

2The vortical curvature  resembles the finite-density curvature
of the QCD phase transition at small values of the baryonic chemical
potential [39].

4

Physics depends on 
the velocity  
dominated by the 
orbital component?

(ΩIr)2
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Figure 1: (top) The distribution of the local Polyakov loop in x, y-plane for lattice of size 5 ⇥ 30 ⇥ 1812 with open boundary conditions at
the fixed on-axis temperature T = 0.95 Tc0 and di↵erent imaginary angular frequencies (also shown as imaginary velocities at the boundary,
v2
I ⌘ (⌦IR)2 = 0.04, 0.12, 0.24, 0.48) with R = 13.5 fm. (bottom) The Polyakov loop at the x axis. The vertical lines mark the phase

boundaries with shaded uncertainties. The violet (blue) data points correspond to periodic (open) boundary conditions. Movies on the phase
evolution with increasing ⌦I are available as ancillary files [37].

implying that hLi = 0. In the deconfinement phase, on
the contrary, hLi 6= 0, the quark’s free energy is finite,
FQ 6= 0, and the quarks can exist as free states. The
expectation value of the Polyakov loop serves as a reliable
order parameter that distinguishes two phases in a static,
non-rotating SU(3) gluon plasma.

5. Emergence of the inhomogeneity

Quark-gluon plasma, slightly above the deconfining
phase transition, resembles more a liquid than a gas. Our
experience tells us that if a liquid is rotated –think about
a rotating glass of water– then it becomes inhomogeneous
due to the centrifugal force, which literally pushes the liq-
uid outwards the axis of rotation. Therefore, we suspect
that the gluon plasma develops inhomogeneity in a rotat-
ing state, and this inhomogeneity has an imprint on its
phase structure, with the phases close to the axis of rota-
tion and far from the axis of rotation being di↵erent.

In Fig. 1, we show a local structure of the Polyakov loop
in the gluon plasma for a fixed temperature and various
values of ⌦I . The lattice data demonstrates that gluody-
namics subjected to imaginary rotation generates an in-
homogeneous two-phase structure in thermal equilibrium.
There are three notable features of the system:

1. Imaginary rotation produces the deconfinement phase
outside of the rotation axis while the region near the
axis stays in the confinement phase. The deconfine-
ment region approaches the rotation axis with the in-
crease of ⌦I ;

2. The outer, deconfining region appears even if the tem-
perature at the rotation axis, T , is lower than the
deconfining temperature Tc0 of a non-rotating gluon

matter, T < Tc0 (so that the whole non-rotating sys-
tem would reside in the confining phase at this tem-
perature);

3. As the on-axis temperature increases, the radius of
the inner confining region shrinks.

On the contrary, if the on-axis temperature T is higher
than the deconfining temperature of a non-rotating sys-
tem, T > Tc0, then the two-phase structure does not
emerge, and the whole imaginary-rotating system resides
in the deconfinement phase.

Finalizing this section, we stress that the central confin-
ing regions in Fig. 1 have the form of a disk, despite the
lattice having a square shape, thus signaling the expected
restoration of the rotational symmetry and implying that
we work in the physical domain of lattice coupling close to
the continuum limit. Moreover, the boundary conditions
a↵ect the local phase structure only very near the bound-
ary. The latter property is a result of the short-range
nature of the screening, which implies that the boundary
e↵ects on the phase structure are negligible [23].

6. Size of the inhomogeneity

In order to quantitatively study the inhomoge-
neous phase, it is convenient to introduce the local
(pseudo)critical temperature on the rotation axis Tc(r) for
which the system undergoes confinement/deconfinement
phase transition at a distance r. One has a confinement
phase at distances smaller than r and a deconfinement
phase at distances larger than r. The local (pseudo)critical
temperature is associated with the position of the peak of
the Polyakov loop susceptibility, �L =

⌦
|L|

2
↵

� h|L|i
2 in

the parameter space.

3

More “deconfined” for farer from the center 
→ Real rotation would favor “confinement” ?

Further updates — Braguta-Chernodub-Roenko (2023)
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Figure 2: SU(2) Weiss potential as a function of q (left) and � (right).

Using these commutation relations we can express the covariant derivative as

DB4Aµ = @4Aµ � ig[AB4,Aµ] = @(i,j)
4 A(i,j)

µ
t(i,j) , (42)

where @(i,j)
4 = @4� 2⇡i�µ4qij with qij = qi� qj. We note that AB4 or qij appears like a colored imaginary

chemical potential. Then, the one-loop integration with respect to Aµ and the ghost fields leads to the
following e↵ective potential,

Vglue[q] =
1

2
tr ln
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Here the first term multiplied by four polarizations tr(�µ⌫) results from Aµ fluctuations and the second
term from the ghost fluctuations that eliminate two unphysical polarizations out from the gluon fluctu-
ations. From the observation that qij is an imaginary chemical potential, the above trace in momentum
space becomes the grand canonical partition function with an imaginary chemical potential, that is,

Vglue[q] = 2V

Z
d3p

(2⇡)3

X

i>j

h
ln
�
1� e��|p|+2⇡iqij

�
+ ln

�
1� e��|p|�2⇡iqij

�i
. (44)

We can carry out this momentum integration explicitly, which yields,

V Weiss
glue [q] =

4⇡2V

3�3

X

i>j

(qij)
2
mod1

⇥
(qij)mod1 � 1

⇤2
. (45)

This is often called the (GPY-)Weiss potential [8, 37, 38]. The modulo operation is defined as (q)mod1 =
q � bqc, where b· · · c denotes the floor function.

The Weiss potential has a periodic nature for qij, that is already obvious in Eq. (44); qij or the
imaginary chemical potential generally appears as an angle variable. This periodic property is attributed
to center symmetry that is a symmetry associated with a discretized displacement in A4 as we discussed
in Eq. (20).

First let us consider the SU(2) case, for which there is only one independent variable; q1 = q/2 and
q2 = �q/2. Then, the SU(2) Weiss potential has a periodic shape as depicted in the left of Fig. 2.
We note that the Polyakov loop in this case is � = cos(⇡q) (just like the case at strong coupling),
and so a minimum at the perturbative vacuum q = 0 corresponds to � = 1, and center symmetry is
spontaneously broken there. The next minimum at q = 1 is a center transformed point with � = �1.
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Figure 2: SU(2) Weiss potential as a function of q (left) and � (right).
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This is often called the (GPY-)Weiss potential [8, 37, 38]. The modulo operation is defined as (q)mod1 =
q � bqc, where b· · · c denotes the floor function.

The Weiss potential has a periodic nature for qij, that is already obvious in Eq. (44); qij or the
imaginary chemical potential generally appears as an angle variable. This periodic property is attributed
to center symmetry that is a symmetry associated with a discretized displacement in A4 as we discussed
in Eq. (20).

First let us consider the SU(2) case, for which there is only one independent variable; q1 = q/2 and
q2 = �q/2. Then, the SU(2) Weiss potential has a periodic shape as depicted in the left of Fig. 2.
We note that the Polyakov loop in this case is � = cos(⇡q) (just like the case at strong coupling),
and so a minimum at the perturbative vacuum q = 0 corresponds to � = 1, and center symmetry is
spontaneously broken there. The next minimum at q = 1 is a center transformed point with � = �1.
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Figure 3: SU(3) Weiss potential as a function of q1 and q2 (left) and Re� and Im� (right).

One might think that the perturbation theory may be reformulated around q = 1 equivalently to that
around q = 0, but as we see later, the quark one-loop potential favors q = 0 and the perturbative
vacuum must be identified as q = 0 if we assume continuity between the pure gluonic theory and the
massive limit of QCD. It is straightforward to change the variable from q to �, and the SU(2) Weiss
potential as a function of � is plotted in the right of Fig. 2. We can see that the potential minima are
located at � = ±1, but these points of � = ±1 look singular unlike the left of Fig. 2. Such singular
character originates from the Jacobian from q to �, namely, dq/d� = �1/[⇡ sin(⇡q)], which diverges at
� = ±1. As we will discuss later, this observation of the potential shape is important when we want to
consider the e↵ect of the Polyakov loop fluctuations.

Next, the generalization to the SU(3) case is easy to understand. Now, for the graphical purpose,
we choose q1 and q2 as independent variables and set q3 = �q1 � q2 to draw the SU(3) Weiss potential
in the left of Fig. 3. We see that one of the minima is certainly located at the perturbative vacuum
q1 = q2 = 0 and there are degenerate minima as the center transformed points. It is not clear which
minimum has what value of the Polyakov loop, and so let us change the variables from q1 and q2 to Re�
and Im� as shown in the right of Fig. 3. In this case, three points, � = 1, e2⇡i/3, e4⇡i/3, are degenerate
connected by center transformation, among which � = 1 is favored by quark loop contributions.

In this way we have confirmed that the perturbative vacuum at A4 = 0 should be certainly identified
as an ordered state with spontaneous center symmetry breaking. The potential curvature around the
potential minimum characterizes how strongly symmetry is broken; in other words, the Debye screening
mass stabilizes the perturbative vacuum. From the explicit expression (45) we can infer the potential
curvature or the Debye screening mass mE, i.e.

Vglue[q]

�V
=

4⇡2

3�4

X

i>j

(qij)
2 +O(q3) = m2

E
tr(A2

4) = m2
E

✓
2⇡T

g

◆2 X

i

q2
i
) m2

E
=

Nc

3
g2T 2 , (46)

where we used
P

i>j
(qij)2 = Nc

P
i
q2
i
. We can continue such an analysis to read higher-order interaction

terms. The cubic term has an infrared singular origin from infinite sum over ring diagrams (at zero
Matsubara frequency), and we next go to quartic order; suppose that the one-loop e↵ective action has
quartic terms such as �E(trA2

4)
2 + �̄EtrA4

4, we can infer �E and �̄E from the Weiss potential (45) as

�E =
g4

4⇡2
, �̄E =

Ncg4

12⇡2
. (47)

These are exactly the coe�cients that appear in the so-called electrostatic QCD (EQCD).

13

Center symmetry spontaneously broken at high T.
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2

placed by the covariant derivative D⌧ as

D⌧ = @⌧ + i
� ·H
�

. (2)

The g-valued vector H is an orthonormal basis of a Car-
tan subalgebra of g, the Lie algebra of the gauge group.
Thus the Polyakov loop is labeled with a real vector �.
We take homogeneous � backgrounds because they are
the classical vacua even in the presence of ⌦I.

To perform the one-loop integral, we need to diagonal-
ize the fluctuation operator. For ghosts, it is the scalar
Laplacian, �D2

s = �D2
⌧ � r�1@r(r@r)� r�2@2

✓ � @2
z . We

solve the eigenequation, �D2
s� = ��, with the twisted

boundary condition (1) to find the spectrum. Since we
are merely interested in a potential of �, we drop the
eigenmodes that commute with H. Then we find,

�n,m,~k,↵(x) =
E↵p
2⇡�

ei[(
2⇡n
� +⌦Im)⌧+m✓+kzz]Jm(k?r) .

(3)

Here, n,m 2 Z, ~k := (k?, kz) 2 R+⇥R and ↵’s are
positive roots of g. The eigenvalues are given by

�n,m,~k,↵ =

✓
2⇡n+ � ·↵

�
+ ⌦Im

◆2

+ |~k|2 . (4)

We can generalize the above calculation to the covariant
vector fields, for which the Laplacian is a 4 ⇥ 4 matrix
given by

�D2
v =

0

BB@

�D2
s 0 0 0

0 �rD2
s r

�1 + r�2 �2r�1@✓ 0
0 2r�3@✓ �D2

s + r�2 0
0 0 0 �D2

s

1

CCA .

(5)
Its eigenvalues are the same as Eq. (4) but its eigen-
modes come with a degeneracy of four polarizations.
The unphysical (non-transverse) polarizations are sim-

ply replicas of the scalar mode (3), i.e., ⌅(i)

n,m,~k,↵
(x) =

�n,m,~k,↵(x) ⇠
(i), where ⇠(1) := (1, 0, 0, 0)T and ⇠(2) :=

(0, 0, 0, 1)T . The loop of these unphysical eigenmodes
are canceled by the ghost loop. The physical transverse
eigenmodes have nontrivial tensorial structure with m
shifted by the helicity of the vector fields as

⌅(±)

n,m,~k,↵
(x) =

E↵ ⇠(±)

2
p
⇡�

ei[(
2⇡n
� +⌦Im)⌧+m✓+kzz]Jm±1(k?r) ,

(6)

where ⇠(±) := (0, r,±i, 0)T .
After performing the Matsubara summation and drop-

ping the ultraviolet divergence independent of �, we find
the following expression for the e↵ective potential:

V =
T

4⇡2

X

↵

X

m2Z

Z 1

0
k?dk?

Z 1

�1
dkz

h
J2
m�1(k?r)

+ J2
m+1(k?r)

i
Re ln

h
1�e�(|

~k|�i⌦Im)/T+i�·↵
i
. (7)

FIG. 1. Evolution of the Polyakov loop potential (made di-
mensionless with T 4) for ⌦̃I = 0,⇡/3, 2⇡/3,⇡ in the color
SU(2) case at r̃ = 0.

Interestingly, we can analytically perform the summation

and integrals using the power series: ln(1� z) = �
1X

l=1

zl

l

which converges for |z|  1, z 6= 1. We then obtain a
simple expression,

V (�; ⌦̃I) = �2T 4

⇡2

X

↵

1X

l=1

cos(l� ·↵) cos
⇣
l⌦̃I

⌘

n
l2 + 2r̃2

⇥
1� cos

⇣
l⌦̃I

⌘⇤o2 ,

(8)
where we introduced dimensionless r̃ := rT . Clearly, at
⌦̃I = 0, Eq. (8) loses its r-dependence and recovers the
well-known GPY-W potential [16–18].
The �-vacua predicted by our inhomogeneous poten-

tial (8) exhibit very mild r̃-dependence and are, in partic-
ular, homogeneous in the vicinity of ⌦̃I = 0 mod ⇡. Ac-
tually, as we shall see shortly, the most nontrivial physics
revealed in this Letter exactly inhabits this most reliable
region. For a concrete reference, we shall focus on the
rotation center, r̃ = 0, where we can complete the l sum-
mation to find:

V (�; ⌦̃I)|r̃=0 =
⇡2T 4

3

X

↵

X

s=±1

B4

✓⇣
� ·↵+ s⌦̃I

2⇡

⌘

mod 1

◆
.

(9)
Here B4(x) = x4 � 2x3 + x2 � 1

30 is the 4th Bernoulli
polynomial. Equation (9) has quite rich physical contents
despite its simple appearance.

Perturbative confinement phase transition: We now
investigate the evolution of the Polyakov loop potential
with increasing ⌦̃I. Let us start with the simplest SU(2)
gauge group. Here we define � := � ·↵ for the only pos-
itive root ↵. Modulo periodicities and the Weyl group,
� runs in [0, 2⇡] and the Z2 center symmetry acts as
� ! 2⇡ � �.
Figure 1 shows the evolution of the Polyakov loop po-

tential in terms of �/2⇡ with increasing ⌦̃I at r̃ = 0.
The solid curve in Fig. 1 for ⌦̃I = 0 reproduces the cen-H − J ⋅ ΩHelicity sum

Polyakov loop 
background
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the scalar one. Each eigenmode has four polarization degrees of freedom, and two
out of four are canceled by the ghost contribution. After some calculations, we
arrive at the Polyakov loop potential resulting from the two physical (transverse)
modes as

Vg(�; ⌦̃I) =
T

4⇡2

X

↵2�

X

l2Z

Z 1

0
k?dk?

Z +1

�1
dkz

⇥
h
J

2
l�1(k?r) + J

2
l+1(k?r)

i
Re ln

⇣
1 � ei�·↵�i⌦̃Il��|k|

⌘
. (7)

For notational brevity, we introduced a dimensionless imaginary angular veloc-
ity; ⌦̃I = ⌦I/T . By expanding the logarithm, we can perform the momentum
integration to simplify the above form into

Vg(�; ⌦̃I) = �
2T

4

⇡2

X

↵2�

1X

n=1

cos(n� · ↵) cos
⇣
n⌦̃I

⌘

n
n2 + 2r̃2⇥1 � cos

⇣
n⌦̃I

⌘⇤o2 . (8)

The potential is dependent on the dimensionless radial distance; r̃ = rT . The po-
tential is minimized at the optimal value of �, and the Polyakov loop expectation
value, L(�), is evaluated accordingly. The denominator has singularities at r̃ , 0
even for � = 0 (i.e., free theory), which is consistent with Ref. [43].

Specifically, for the S U(3) Yang-Mills theory, the background gauge field is
AB4 = (�1T

3 + �2T
8)/g�, where T

3 and T
8 constitute the Cartan subalgebra of

su(3). The traced Polyakov loop in the fundamental representation of S U(3) is

|L| = 1
3

�����tr exp
✓
ig
Z �

0
AB4 d⌧

◆����� =
1
3

s

4 cos2
⇣�1

2

⌘
+ 4 cos

⇣�1

2

⌘
cos
⇣ p3�2

2

⌘
+ 1 . (9)

In our previous work [36], we showed that confinement, |L| = 0, is realized for
⌦̃I � ⇡/2 at r̃ = 0.

It is a straightforward exercise to find the global minima of the potential (8)
for r̃ , 0. Figure 1 shows the results from such extensive analyses of Eq. (8) for
S U(2) (left) and S U(3) (right). It is notable that both cases generally develop r-
dependent spatial structures. For the S U(2) case as shown in the left of Fig. 1, the
Polyakov loop changes to zero, indicating confinement, with second-order phase
transition as ⌦̃I grows up. In the previous paper [36], we focused on two edges of
r̃ = 0 and ⌦̃I = ⇡ only. Our present results imply that, for ⌦̃I ' 3⇡/4 for example,
there should appear a spatial interface separating the confined phase for r̃ . 0.5
and the deconfined phase for r̃ & 0.5. We can confirm a qualitatively similar trend

5

For any small r, the denominator can vanish for some 
complex angular velocity — Causality Singularity

Chen-Fukushima-Shimada (2022)

Ω̃I = ΩI /T , r̃ = rT
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3

FIG. 2. The expectation value of the fundamental Polyakov
loop, normalized by the representation dimension, as a func-
tion of ⌦̃I for SU(2) (solid line) and SU(3) (dashed line) at
r̃ = 0.

ter breaking GPY-W potential with minima located at
� = 0 and 2⇡. The positive curvature around the min-
ima then corresponds to the Debye screening mass that
stabilizes the deconfined phase at high temperature [44].
We clearly see that the curvature is suppressed as ⌦̃I

gets larger, and eventually the sign of the curvature flips
around ⌦̃I ' ⇡/2. Then, the potential minima devi-
ate from the deconfined vacua and the confined vacuum
at � = ⇡ is energetically favored. We can visualize this
phase transition by plotting hLi, the expectation value of
the fundamental Polyakov loop L, as a function of ⌦̃I as
shown in Fig. 2. We see that hLi starts to decrease from
⌦̃I = (1 � 1/

p
3)⇡. The dropping curve hits hLi = 0 at

⌦̃I = ⇡/
p
3, indicating a second-order confinement phase

transition.

We can intuitively understand the confining force at
⌦̃I = ⇡ from the twisted geometry (1). It assigns the
antiperiodic boundary condition to all odd-m transverse
modes (6). But these modes still obey bosonic statistics
such that their loops have no overall sign of �1. At r = 0,
only the modes of m = ±1 contribute. Such antiperiodic
gluons reverse the one-loop potential just in analogy to
periodic gluinos.

We move on to the SU(3) case. The positive roots are
↵1 = (1, 0), ↵2 = (1/2,

p
3/2), and ↵3 = (1/2,�

p
3/2).

Accordingly, the order parameter has two components,
namely, � = (�1,�2). Modulo periodicities and the Weyl
group, � runs in a triangular region spanned by the ver-
tices (0, 0), (2⇡, 2⇡/

p
3), and (2⇡,�2⇡/

p
3), as drawn in

Fig. 3. The points in this triangle bijectively represent
conjugacy classes of SU(3). The Z3 center symmetry
acts on this equilateral triangle as its rotational geome-
try symmetry.

We show the SU(3) potential height in the form of the
contour plot in Fig. 3. The lighter (darker) color indi-
cates the region of larger (smaller) potential values. The
left in Fig. 3 presents the potential profile at ⌦̃I = 0.
The minima are located at (0, 0) and its center symme-

FIG. 3. Polyakov loop potential for the SU(3) case. The light
(dark) color indicates the region of larger (smaller) potential
values.

try images, which signifies the spontaneous breaking of
center symmetry. With increasing ⌦̃I, these minima de-
part from the conventional vacua as we observed in the
SU(2) case. A crucial di↵erence of SU(3) from the SU(2)
case is, as shown in the middle of Fig. 3, the center sym-
metric point (4⇡/3, 0) is pushed down and eventually at
⌦̃I = ⇡/2 we see degeneracy between three shifted de-
confined vacua and the center symmetric point. The
degeneracy indicates a first-order phase transition, and
the center symmetric (confining) state is energetically fa-
vored for ⌦̃I = ⇡ as shown in the right of Fig. 3. We can
also visualize this first-order nature by plotting hLi as
shown in Fig. 2. Clearly, we see a sudden jump of hLi
at ⌦̃I = ⇡/2. This di↵erence in the order of the phase
transition between SU(3) and SU(2) is consistent with
the universality class argument [45].

Our formulae hold for any semisimple Lie algebra. We
can show that, for any simply-connected compact gauge
group with a nontrivial center, Eq. (9) at ⌦̃I = ⇡ al-
ways favors a center symmetric vacuum. For example,
Spin(5) also exhibits a first-order confinement phase tran-
sition at ⌦̃I = ⇡/2. A more interesting case is G2 which
has no center symmetry. Consistently, we observed no
phase transition; the location of its potential minimum
just moves continuously as a function of ⌦̃I.

Phase diagram and adiabatic continuity: It is an in-
triguing question whether, on the ⌦̃I-T plane, the pertur-
batively confined phase we found above is smoothly con-
nected to the conventional confined phase. Although our
loop calculations cannot constrain the low-T physics, the
Kugo-Ojima-Gribov-Zwanziger (KOGZ) mechanism [40–
42] still allows us to grasp some hints. The KOGZ mech-
anism asserts that one characteristic of the conventional
confinement is the (nearly divergent) infrared enhance-
ment of the ghost propagator. The ghost contribution
to the one-loop potential is just negative of Eq. (7) with
Jm±1 replaced by Jm. Then, at r = 0, only the m = 0
component remains and thus the potential does not de-
pend on ⌦̃I. This contribution thus favors an inverted
form of the GPY-W potential for any ⌦̃I. At high T ,
perturbatively, this confining potential and the decon-
fining potential from unphysically polarized gluons pre-
cisely cancel out. But the KOGZ mechanism suggests

Deconf. Conf.

Phase 
Transition

Rotating Weiss-GPY potential
Chen-Fukushima-Shimada (2022)

Gluons with  look like adjoint fermions: 
 favoring confinement.

Ω̃I = π
nB(ε + iπT ) = − nF(ε)
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Expected behavior of phase transition

Increasing 
Function

Decreasing 
Function

High-T 
Confined 
State???

Imaginary variable

TcTc(Ω2
I ) ↔ Tc(−Ω2)

cf. Imaginary μ

The canonical approach was studied in a number of papers [6–13]. It is based on the following
relations. Relation between grand canonical partition function ZGC(µq, T,V) and the canonical one
ZC(n, T,V) called fugacity expansion:

ZGC(µ, T,V) =
∞
∑

n=−∞
ZC(n, T,V)ξn, (2)

where ξ = eµq/T is the fugacity. The inverse of this equation can be presented in the following form
[14]

ZC (n, T,V) =
∫ 2π

0

dθ
2π
e−inθZGC(θ, T,V). (3)

ZGC(θ, T,V) is the grand canonical partition function for imaginary chemical potential µq = iµqI ≡
iTθ. Standard Monte Carlo simulations are possible for this partition function since fermionic deter-
minant is real for imaginary µq.

The QCD partition function ZGC is a periodic function of θ: ZGC(θ) = ZGC(θ + 2π/3). This
symmetry is called Roberge-Weiss symmetry [15]. As a consequence of this periodicity the canonical
partition functions ZC(n, T,V) are nonzero only for n = 3k. QCD possesses a rich phase structure at
nonzero θ, which depends on the number of flavors Nf and the quark mass m. This phase structure
is shown in Fig. 1. Tc is the confinement/deconfinement crossover point at zero chemical potential.
The line (T ≥ TRW , µI/T = π/3) indicates the first order phase transition. On the curve between Tc
and TRW , the transition is expected to change from the crossover to the first order for small and large
quark masses, see e.g. [16]. Quark number density nq for Nf degenerate quark flavours is defined by

RW
T

T

c

L ! 0
T

0 π/3 π/32

Figure 1. Schematical figure of Roberge-Weiss phase structure in the pure imaginary chemical potential regions.

the following equation:

nq
T 3
=

1
VT 2

∂

∂µq
ln ZGC =

Nf N3t
N3s ZGC

∫

DUe−SG (det∆(µq))Nf tr
[

∆−1
∂∆

∂µq/T

]

. (4)

It can be computed numerically for imaginary chemical potential. Note, that for the imaginary chem-
ical potential nq is also purely imaginary: nq = inqI .

From eqs. (2) and (4) it follows that densities nq and nqI are related to ZC(n, T,V) (below we will
use the notation Zn for the ratio ZC(n, T,V)/ZC(0, T,V)) by equations

nq/T 3 = N
2
∑

n>0 nZn sinh(nθ)
1 + 2

∑

n>0 Zn cosh(nθ)
, nqI/T 3 = N

2
∑

n>0 nZn sin(nθ)
1 + 2

∑

n>0 Zn cos(nθ)
, (5)

Bornyakov et al.

Before reaching high-T confinement, 
the periodicity by  prevents.π/Nc
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Figure 2: S U(3) effective potential as a function of ω1 and ω2 for Ω̃I = ε/2 (left) and Ω̃I = ε
(right) with r̃ = 0 fixed. The dark (light) colored region has smaller (larger) potential values. The
triangular domain indicated by the red line is sufficient for the minimum search.

reflective symmetry, which manifests charge conjugation. The potential shape
visualized by the pattern in Fig. 2 does not change by 2ε/3 rotation but the phase
of the Polyakov loop, L, does. The center of the triangle at (4ε/3, 0) corresponds
to L = 0, that is, a center symmetric vacuum. Although the potential minima may
break center symmetry, the charge conjugation symmetry is never broken.

We point out a nontrivial observation in Fig. 2; an emergent symmetry is re-
alized at Ω̃I = ε/2. We observe a reflective mirror on the line of ω1 = ε. This
emergent symmetry comes from the vanishing of odd-n terms in the one-loop po-
tential (8) at Ω̃I = ε/2 and exists for not only r̃ = 0 but any radius. It could be
either a one-loop artifact or a genuine symmetry. In the latter case, it has to be a
non-invertible symmetry like that in the 2D critical Ising model since it exchanges
the unbroken and broken vacua.

In this work, we also quantify the spatial inhomogeneity. In Fig. 3, we plot
the Polyakov loop potential for r̃ = 0 (confined phase) and r̃ = 0.5 (deconfined
phase) at Ω̃I = ε in the S U(3) case. It is intriguing that the potential minima
are located in a different way from the ordinary perturbative vacuum where three
vertices of the triangle minimize the potential. In this sense, this deconfined phase
discovered in the upper right region in the right panel of Fig. 1 may have exotic
properties different from the ordinary one.

We mention the difference from the previous arguments [27] based on the
Tolman-Ehrenfest (TE) effect. In our calculation, we treat T as a Lagrange multi-
plier to conserve the total energy. By construction, T is a global variable without

7
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Chen-Fukushima-Shimada (2024)Accidental symmetry?

Z(2) symmetry that didn’t exist…?
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~ Large PL 
~ Deconfined

This is SU(2) and 
SU(3) is qualitatively 
the same.
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A tension of conflicting lattice…
Braguta-Chernodub-Roenko, PLB (’23)
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Figure 1: (top) The distribution of the local Polyakov loop in x, y-plane for lattice of size 5 ⇥ 30 ⇥ 1812 with open boundary conditions at
the fixed on-axis temperature T = 0.95 Tc0 and di↵erent imaginary angular frequencies (also shown as imaginary velocities at the boundary,
v2
I ⌘ (⌦IR)2 = 0.04, 0.12, 0.24, 0.48) with R = 13.5 fm. (bottom) The Polyakov loop at the x axis. The vertical lines mark the phase

boundaries with shaded uncertainties. The violet (blue) data points correspond to periodic (open) boundary conditions. Movies on the phase
evolution with increasing ⌦I are available as ancillary files [37].

implying that hLi = 0. In the deconfinement phase, on
the contrary, hLi 6= 0, the quark’s free energy is finite,
FQ 6= 0, and the quarks can exist as free states. The
expectation value of the Polyakov loop serves as a reliable
order parameter that distinguishes two phases in a static,
non-rotating SU(3) gluon plasma.

5. Emergence of the inhomogeneity

Quark-gluon plasma, slightly above the deconfining
phase transition, resembles more a liquid than a gas. Our
experience tells us that if a liquid is rotated –think about
a rotating glass of water– then it becomes inhomogeneous
due to the centrifugal force, which literally pushes the liq-
uid outwards the axis of rotation. Therefore, we suspect
that the gluon plasma develops inhomogeneity in a rotat-
ing state, and this inhomogeneity has an imprint on its
phase structure, with the phases close to the axis of rota-
tion and far from the axis of rotation being di↵erent.

In Fig. 1, we show a local structure of the Polyakov loop
in the gluon plasma for a fixed temperature and various
values of ⌦I . The lattice data demonstrates that gluody-
namics subjected to imaginary rotation generates an in-
homogeneous two-phase structure in thermal equilibrium.
There are three notable features of the system:

1. Imaginary rotation produces the deconfinement phase
outside of the rotation axis while the region near the
axis stays in the confinement phase. The deconfine-
ment region approaches the rotation axis with the in-
crease of ⌦I ;

2. The outer, deconfining region appears even if the tem-
perature at the rotation axis, T , is lower than the
deconfining temperature Tc0 of a non-rotating gluon

matter, T < Tc0 (so that the whole non-rotating sys-
tem would reside in the confining phase at this tem-
perature);

3. As the on-axis temperature increases, the radius of
the inner confining region shrinks.

On the contrary, if the on-axis temperature T is higher
than the deconfining temperature of a non-rotating sys-
tem, T > Tc0, then the two-phase structure does not
emerge, and the whole imaginary-rotating system resides
in the deconfinement phase.

Finalizing this section, we stress that the central confin-
ing regions in Fig. 1 have the form of a disk, despite the
lattice having a square shape, thus signaling the expected
restoration of the rotational symmetry and implying that
we work in the physical domain of lattice coupling close to
the continuum limit. Moreover, the boundary conditions
a↵ect the local phase structure only very near the bound-
ary. The latter property is a result of the short-range
nature of the screening, which implies that the boundary
e↵ects on the phase structure are negligible [23].

6. Size of the inhomogeneity

In order to quantitatively study the inhomoge-
neous phase, it is convenient to introduce the local
(pseudo)critical temperature on the rotation axis Tc(r) for
which the system undergoes confinement/deconfinement
phase transition at a distance r. One has a confinement
phase at distances smaller than r and a deconfinement
phase at distances larger than r. The local (pseudo)critical
temperature is associated with the position of the peak of
the Polyakov loop susceptibility, �L =

⌦
|L|

2
↵

� h|L|i
2 in

the parameter space.

3

Chen-Fukushima-Shimada, PLB (’24)

Larger Imaginary Rotation
Non-perturbative Lattice 
at  and T ∼ Tc ΩI ≪ T

Perturbative Calc 
at  and T ≫ Tc ΩI > T

Darker ~ More Confined
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Both are very counter-intuitive!
Larger Pressure

Smaller Pressure

Rotation

Larger P at outer ~ Higher T ~ More Deconfined
[Intuition]

[Lattice/perturb.] More Confined at outer…?
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Unconventional “deconfined” phase ?

Figure 3: S U(3) effective potential for r̃ = 0 (left) and r̃ = 0.5 (right) with Ω̃I = ω fixed.

r dependence. Therefore, in our study, we do not need to introduce the apparent
temperature as a result of the TE effect. Nevertheless, the calculations naturally
lead to r dependent structures.

3. Chiral symmetry breaking in the perturbatively confined phase

We can repeat similar calculations including dynamical quark contributions
that break center symmetry explicitly. We can also address a relation between
confinement and chiral symmetry breaking from two (approximate) order parame-
ters, namely, the Polyakov loop and the dynamical quark mass, m, which is rooted
in the chiral condensate. In the perturbative treatment, the pressure (the free en-
ergy) is maximized (minimized) for m = 0, and the dynamical mass generation is
energetically disfavored. It is quite interesting what would happen in the pertur-
batively confined phase with imaginary rotation.

The theoretical treatments of fermions in the rotating frame are found in Refs. [7,
30, 44]. We should be careful about the fact that the Polyakov loop coupling with
quarks is given by the fundamental representation. We can calculate the fermionic
partition function by imposing an aperiodic thermal boundary condition or equiv-
alently considering the ordinary anti-periodic boundary condition in the rotating
frame. In this paper, for fermions, we choose the latter. It should be noted that
the fermion interactions appear from gauge fluctuations which are beyond the
one-loop perturbative order. In this way, we can locate the onset of instability
toward chiral symmetry breaking, but finding the physical value of m ! 0 needs
non-perturbative interactions that we do not include in the present study. The

8

Confining Point Perturbative 
vacuum still 
unstable

Deconfined but 
nontrivial PL 
background…?

Figure 1: (Left) Polyakov loop |L| for S U(2) as a function of dimensionless radial distance r̃
and dimensionless imaginary angular velocity Ω̃I. (Right) The same plot of |L| for S U(3). The
confined phase with |L| = 0 is bounded by the first-order phase transitions.

for the S U(3) case, but the detailed shape looks different as shown in the right of
Fig. 1. In this case of S U(3), the homogeneously confined phase is realized around
Ω̃I ↭ 3ω/4, and the interface between confinement and deconfinement emerges
only when Ω̃I becomes larger.

We should emphasize that this r̃ dependence of inhomogeneity is qualitatively
consistent with the lattice-QCD results [29]. As closely discussed in our previous
work [36], our Ω̃I dependence of the Polyakov loop is opposite to the lattice-
QCD case; |L| goes smaller with larger imaginary rotation in our perturbative
calculation, while |L| goes smaller with larger real rotation in the lattice-QCD
simulation. However, in the both cases of ours and the lattice-QCD calculations,
|L| becomes larger (smaller) with larger r̃ for a given imaginary (real) angular
velocity. This makes a sharp contrast to preceding works [14, 15, 27, 28, 30] and
might be a key observation to resolve the controversy of rotating QCD matter.

Now, let us turn our attention to the Polyakov loop potential and the symmetry
properties. Since we sum up all the roots in Φ, different (ε1, ε2) pairs can have
the same potential and the Polyakov loop value according to Weyl symmetry of
the S U(3) root lattice. We can see the characteristic patterns of the potential
minima in Fig. 2. The repetition of the minima reflects Weyl symmetry. The red
triangle region with three edges, (ε1, ε2) = (0, 0), (2ω, 2ω/

→
3), (2ω,↑2ω/

→
3), is

the fundamental domain and we can identify the state of matter from the minimum
inside this triangular domain. The triangle has S 6 geometric symmetry, including
three-fold rotational symmetry, which manifests center symmetry, and two-fold

6
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In this work, we also quantify the spatial inhomogeneity. In Fig. 3, we plot
the Polyakov loop potential for r̃ = 0 (confined phase) and r̃ = 0.5 (deconfined
phase) at ⌦̃I = ⇡ in the S U(3) case. It is intriguing that the potential minima
are located in a di↵erent way from the ordinary perturbative vacuum where three
vertices of the triangle minimize the potential. In this sense, this deconfined phase
discovered in the upper right region in the right panel of Fig. 1 may have exotic
properties di↵erent from the ordinary one.

We mention the di↵erence from the previous arguments [27] based on the
Tolman-Ehrenfest (TE) e↵ect. In our calculation, we treat T as a Lagrange multi-
plier to conserve the total energy. By construction, T is a global variable without
r dependence. Therefore, in our study, we do not need to introduce the apparent
temperature as a result of the TE e↵ect. Nevertheless, the calculations naturally
lead to r dependent structures.

3. Chiral symmetry breaking in the perturbatively confined phase

We can repeat similar calculations including dynamical quark contributions
that break center symmetry explicitly. We can also address a relation between
confinement and chiral symmetry breaking from two (approximate) order parame-
ters, namely, the Polyakov loop and the dynamical quark mass, m, which is rooted
in the chiral condensate. In the perturbative treatment, the pressure (the free en-
ergy) is maximized (minimized) for m = 0, and the dynamical mass generation is
energetically disfavored. It is quite interesting what would happen in the pertur-
batively confined phase with imaginary rotation.

The theoretical treatments of fermions in the rotating frame are found in Refs. [7,
30, 44]. We should be careful about the fact that the Polyakov loop coupling with
quarks is given by the fundamental representation. We can calculate the fermionic
partition function by imposing an aperiodic thermal boundary condition or equiv-
alently considering the ordinary anti-periodic boundary condition in the rotating
frame. In this paper, for fermions, we choose the latter and the fermionic partition
function is the determinant of the Dirac operator �µGB µ +m in the rotating frame,
i.e.,

ZfT,! = Det(�µGB µ + m) . (10)

Here, GB µ = Dµ��µ is the covariant derivative including the AB4 background field
with �µ = � i

4�
i j !µi j, where �i j = i

2 [�̂i, �̂ j] and !µi j = g⇢� e
⇢

i

⇣
@µe �j + �

�
µ⌫ e

⌫
j

⌘
.

We denote the gamma matrices of the flat space-time by �̂i and �µ = e
µ

i
�̂i. After

all, we arrive at the expression for the Polyakov loop potential per one fermion

8

Chen-Fukushima-Shimada (2024)
Adding “free” fermions with dynamical mass

Search for the potential minimum of the Polyakov loop 
and the dynamical mass.

Once symmetry breaking is turned on, the mass blows up.

We may introduce a model such as NJL, but this is 
the most model-independent set-up.
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Chen-Fukushima-Shimada (2024)
SU(2) full (2 flavor) SU(3) full (2 flavor)

Almost correlated… but SU(3) looks horrible…
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Polyakov loop Chiral condensate

Fermion mass and the PL are strongly correlated 
but something funny in the intermediate regions…

Chen-Fukushima-Shimada (2024)
Figure 6: Order parameters in the S U(2) case; the Polyakov loop (left) and the dynamical mass
(right) as functions of dimensionless radial distance r̃ and dimensionless imaginary angular veloc-
ity Ω̃I. To reduce the numerical cost, the mesh resolution is chosen to be 100 → 100.

is 2ω periodic because the S U(2) gauge group covers the fermionic parity (↑)F .
Also we see that the behavior is symmetric around Ω̃I = ω. For the S U(3) case
in the right of Fig. 5, in contrast, the order parameters depend on Ω̃I in a compli-
cated way and the confined phase seems to be less favored. Also the periodicity
becomes 4ω because the S U(3) gauge group does not contain (↑)F .

In the same way as the pure gluonic theory, we have quantified the inhomoge-
neous structures in Fig. 6. The left and the right panels show the Polyakov loop
and the dynamical mass, respectively, as functions of r̃ and Ω̃I. We have per-
formed this calculation for the S U(2) case only. As compared to the left of Fig. 1
in the pure gluonic case, the perturbatively confined region is shrunk to the upper
left corner. Interestingly, in view of the right of Fig. 6, confinement and chiral
symmetry breaking are locked together and the phase transitions occur simultane-
ously even at large imaginary rotation. It would be an interesting future problem
to probe a possibility of fractal structures for Ω̃I/(2ω) given by a rational number,
which is not visible in the present analysis.

4. Conclusions

We considered the inhomogeneous structures and the chiral symmetry break-
ing in the perturbatively confined phase which is realized by rotation with imagi-
nary angular velocity, Ω̃I. In both color S U(2) and S U(3) cases, the perturbatively
confined phase is induced at the rotation center, r̃ = 0, for Ω̃I above a certain
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is 2ω periodic because the S U(2) gauge group covers the fermionic parity (↑)F .
Also we see that the behavior is symmetric around Ω̃I = ω. For the S U(3) case
in the right of Fig. 5, in contrast, the order parameters depend on Ω̃I in a compli-
cated way and the confined phase seems to be less favored. Also the periodicity
becomes 4ω because the S U(3) gauge group does not contain (↑)F .

In the same way as the pure gluonic theory, we have quantified the inhomoge-
neous structures in Fig. 6. The left and the right panels show the Polyakov loop
and the dynamical mass, respectively, as functions of r̃ and Ω̃I. We have per-
formed this calculation for the S U(2) case only. As compared to the left of Fig. 1
in the pure gluonic case, the perturbatively confined region is shrunk to the upper
left corner. Interestingly, in view of the right of Fig. 6, confinement and chiral
symmetry breaking are locked together and the phase transitions occur simultane-
ously even at large imaginary rotation. It would be an interesting future problem
to probe a possibility of fractal structures for Ω̃I/(2ω) given by a rational number,
which is not visible in the present analysis.

4. Conclusions

We considered the inhomogeneous structures and the chiral symmetry break-
ing in the perturbatively confined phase which is realized by rotation with imagi-
nary angular velocity, Ω̃I. In both color S U(2) and S U(3) cases, the perturbatively
confined phase is induced at the rotation center, r̃ = 0, for Ω̃I above a certain
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Fukushima-Shimada (soon)
QCD matter in extreme environments 11

L (xi)†L(xj)

Figure 4. Leading order contribution to the Polyakov loop effective action in the
strong-coupling limit.

manner (see reference [43] for some attempts and also [52] for another idea). It is quite

difficult to investigate the nature of deconfinement phase transition in the perturbative

approaches.

2.2. Non-perturbative methods at work

Theoretical researches on the confining properties near and below Tc require non-

perturbative extensions of the method. The lattice-QCD simulations are the most

successful as long as the quark chemical potential is sufficiently smaller than the

temperature. For recent developments in the lattice-QCD calculations there are a

number of nice reviews (see reference [53] for example). In this review article we shall

focus on some of analytical approaches.

2.2.1. Strong-coupling expansion: The deconfinement phase transition can be

formulated non-perturbatively in the limit of the strong coupling constant, g−1 → 0,

which was first elucidated in the Hamiltonian formalism in reference [24]. The same

conclusion is readily obtained in the formalism of functional integration [54, 55].

In the leading order of the plaquette expansion as sketched in figure 4, the effective

action in terms of the Polyakov loop reads,

Spol[L] = −e−σa/T
∑

n.n

trL†(xi) trL(xj) , (35)

which describes a hopping interaction between adjacent Polyakov loops. Here a is the

lattice spacing. This action actually defines a spin-like theory of the Polyakov loop

matrix;

Z =

∫
DL e−Spol[L] . (36)

Here DL represents the functional integral with the group invariant (Haar) measure.

The theoretical content of this matrix model itself is very intriguing [56]. In the same

manner as the mean-field treatment (or the so-called molecular-field approximation) of

spin systems, it is possible to formulate the spontaneous breaking of centre symmetry

S ∼ J∑
n.n.

trLntrLn′￼

Disordered Phase 
~ Smaller J 
~ More Confined

Rotation correction?
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3

tice gluon action is

SG =
∑

x

ω

[

(1 + r2Ω2)

(

1→
1

Nc
Re trŪxy

)

+ (1 + y2Ω2)

(

1→
1

Nc
Re trŪxz

)

+ (1 + x2Ω2)

(

1→
1

Nc
Re trŪyz

)

+ 3→
1

Nc
Re tr

(

Ūxτ + Ūyτ + Ūzτ

)

→
1

Nc
Re tr

(

yΩV̄xyτ → xΩV̄yxτ

+ yΩV̄xzτ → xΩV̄yzτ + xyΩ2V̄xzy

)

]

.

(15)

The bare lattice coupling is ω = 2Nc/g2YM. For a local
definition of the lattice field strength, we take the clover-
type average of four plaquettes as

Ūµν =
1

4













µ

ν 











. (16)

In a flat space-time, this average is redundant because
it can be absorbed into the summation

∑

x in the ac-
tion. However, in a curved space-time, this average is
important because the coefficients depend on the space-
time coordinate. Similarly, we take the (anti-)symmetric
average of eight chair-type loops as

V̄µνρ =
1

8













ρ
ν

µ
→

ρ
ν

µ













. (17)

For the lattice quark action, we adopt the Wilson fermion
with the gamma matrices in the rotating frame. The
spin-rotation coupling term is exponentiated as a chem-
ical potential [12]. The lattice quark action is

SF =
∑

x1,x2

ψ̄(x1)

[

δx1,x2

→ κ

{

(1 → γx)Tx+ + (1 + γx)Tx−

+ (1 → γy)Ty+ + (1 + γy)Ty−

+ (1 → γz)Tz+ + (1 + γz)Tz−

+ (1 → γτ ) exp

(

iaΩ
σ12

2

)

Tτ+

+ (1 + γτ ) exp

(

→iaΩ
σ12

2

)

Tτ−

]

ψ(x2)

(18)

with Tµ+ ≡ Uµ(x1)δx1+µ̂,x2
and Tµ− ≡ U †

µ(x2)δx1−µ̂,x2
.

The bare hopping parameter is κ = 1/(2am + 8). In

the continuum limit a → 0, the lattice actions (15) and
(18) correspond to the continuum actions (7) and (10),
respectively.

In the Minkowskian rotation, the angular velocity is
replaced as Ω → iΩ. In the gluon action (15), the O(Ω)
terms become pure imaginary numbers. In the quark
action (18), the orbit-rotation coupling term becomes
like an imaginary hopping term and the spin-rotation
coupling term becomes like a chemical potential. Since
both of the gluon and quark actions become complex,
the Monte Carlo simulation severely suffers from the sign
problem. On the other hand, in the Euclidean rotation,
the gluon and quark actions are real, and thus there is
no sign problem.

We have formulated the hypercubic lattice, which is
commonly used in most lattice simulations. It is possible
to formulate the cylindrical lattice in the cylindrical co-
ordinate xµ = (r, θ, z, τ). An advantage of the cylindrical
lattice is better rotational symmetry around the rotation
axis. However, since the action includes a singular metric
factor 1/r, the region around the rotation axis must be
removed to avoid this apparent singularity.

The angular velocity Ω might affect the renormaliza-
tion, e.g., the physical scale. This correction cannot be
neglected when the angular velocity is large. However, it
is not trivial how to determine the physical scale in rotat-
ing frames. Moreover, since the Lorentz symmetry and
translational invariance are broken, the isotropy and the
coordinate independence are no longer assured at the full
quantum level. (This is similar to the anisotropic lattice
[13] and the coordinate-dependent lattice coupling [14].)
In the following numerical simulation, we restrict the an-
gular velocity only to small values, and do not discuss
the problem of the renormalization.

Simulation.—We performed the quenched SU(3)
Monte Carlo simulation. The lattice size is Nx × Ny ×
Nz ×Nτ = 13× 13× 12× 12. The range of the x-y plane
is x = [→6a, 6a] and y = [→6a, 6a], and the position of
the rotation axis is (x, y) = (0, 0). We set the bare lat-
tice coupling ω = 5.9 and the bare hopping parameter is
κ = 0.1583, where the lattice spacing is a % 0.10 fm and
the meson mass ratio is mπ/mρ % 0.59 [15].

We analyze the angular momentum of the rotating
QCD vacuum. Rotation induces a finite vacuum ex-
pectation value of the angular momentum operator. To
understand the reason, let us recall a rotating classical
particle. The classical Lagrangian is L = mr2θ̇2rest/2 =
mr2(θ̇ + Ω)2/2, and it has a minimum at θ̇ = →Ω.
The classical solution has a finite angular momentum
J = mr2θ̇ = →mr2Ω in the rotating frame. The neg-
ative sign means that the rest particle seems oppositely
rotating from the rotating frame. Similarly, in QCD, we
can observe the rotating state with a finite angular mo-
mentum by generating the vacuum in a rotating frame.

Hirono-Yamamoto (2013)

3

tice gluon action is

SG =
∑

x

ω

[

(1 + r2Ω2)

(

1→
1

Nc
Re trŪxy

)

+ (1 + y2Ω2)

(

1→
1

Nc
Re trŪxz

)

+ (1 + x2Ω2)

(

1→
1

Nc
Re trŪyz

)

+ 3→
1

Nc
Re tr

(

Ūxτ + Ūyτ + Ūzτ

)

→
1

Nc
Re tr

(

yΩV̄xyτ → xΩV̄yxτ

+ yΩV̄xzτ → xΩV̄yzτ + xyΩ2V̄xzy

)

]

.

(15)

The bare lattice coupling is ω = 2Nc/g2YM. For a local
definition of the lattice field strength, we take the clover-
type average of four plaquettes as

Ūµν =
1

4













µ

ν 











. (16)

In a flat space-time, this average is redundant because
it can be absorbed into the summation

∑

x in the ac-
tion. However, in a curved space-time, this average is
important because the coefficients depend on the space-
time coordinate. Similarly, we take the (anti-)symmetric
average of eight chair-type loops as

V̄µνρ =
1

8













ρ
ν

µ
→

ρ
ν

µ













. (17)

For the lattice quark action, we adopt the Wilson fermion
with the gamma matrices in the rotating frame. The
spin-rotation coupling term is exponentiated as a chem-
ical potential [12]. The lattice quark action is

SF =
∑

x1,x2

ψ̄(x1)

[

δx1,x2

→ κ

{

(1 → γx)Tx+ + (1 + γx)Tx−

+ (1 → γy)Ty+ + (1 + γy)Ty−

+ (1 → γz)Tz+ + (1 + γz)Tz−

+ (1 → γτ ) exp

(

iaΩ
σ12

2

)

Tτ+

+ (1 + γτ ) exp

(

→iaΩ
σ12

2

)

Tτ−

]

ψ(x2)

(18)

with Tµ+ ≡ Uµ(x1)δx1+µ̂,x2
and Tµ− ≡ U †

µ(x2)δx1−µ̂,x2
.

The bare hopping parameter is κ = 1/(2am + 8). In

the continuum limit a → 0, the lattice actions (15) and
(18) correspond to the continuum actions (7) and (10),
respectively.

In the Minkowskian rotation, the angular velocity is
replaced as Ω → iΩ. In the gluon action (15), the O(Ω)
terms become pure imaginary numbers. In the quark
action (18), the orbit-rotation coupling term becomes
like an imaginary hopping term and the spin-rotation
coupling term becomes like a chemical potential. Since
both of the gluon and quark actions become complex,
the Monte Carlo simulation severely suffers from the sign
problem. On the other hand, in the Euclidean rotation,
the gluon and quark actions are real, and thus there is
no sign problem.

We have formulated the hypercubic lattice, which is
commonly used in most lattice simulations. It is possible
to formulate the cylindrical lattice in the cylindrical co-
ordinate xµ = (r, θ, z, τ). An advantage of the cylindrical
lattice is better rotational symmetry around the rotation
axis. However, since the action includes a singular metric
factor 1/r, the region around the rotation axis must be
removed to avoid this apparent singularity.

The angular velocity Ω might affect the renormaliza-
tion, e.g., the physical scale. This correction cannot be
neglected when the angular velocity is large. However, it
is not trivial how to determine the physical scale in rotat-
ing frames. Moreover, since the Lorentz symmetry and
translational invariance are broken, the isotropy and the
coordinate independence are no longer assured at the full
quantum level. (This is similar to the anisotropic lattice
[13] and the coordinate-dependent lattice coupling [14].)
In the following numerical simulation, we restrict the an-
gular velocity only to small values, and do not discuss
the problem of the renormalization.

Simulation.—We performed the quenched SU(3)
Monte Carlo simulation. The lattice size is Nx × Ny ×
Nz ×Nτ = 13× 13× 12× 12. The range of the x-y plane
is x = [→6a, 6a] and y = [→6a, 6a], and the position of
the rotation axis is (x, y) = (0, 0). We set the bare lat-
tice coupling ω = 5.9 and the bare hopping parameter is
κ = 0.1583, where the lattice spacing is a % 0.10 fm and
the meson mass ratio is mπ/mρ % 0.59 [15].

We analyze the angular momentum of the rotating
QCD vacuum. Rotation induces a finite vacuum ex-
pectation value of the angular momentum operator. To
understand the reason, let us recall a rotating classical
particle. The classical Lagrangian is L = mr2θ̇2rest/2 =
mr2(θ̇ + Ω)2/2, and it has a minimum at θ̇ = →Ω.
The classical solution has a finite angular momentum
J = mr2θ̇ = →mr2Ω in the rotating frame. The neg-
ative sign means that the rest particle seems oppositely
rotating from the rotating frame. Similarly, in QCD, we
can observe the rotating state with a finite angular mo-
mentum by generating the vacuum in a rotating frame.

Leading correction 
to J is NEGATIVE.

Imaginary rotation 
more confinement!



Summary (Real Rotation)

Controversies: Real rotation causes… 
□ Decreasing Tc in the matter sector. ← Okay 
□ Increasing Tc in the gluonic sector. ← Conflicting 
□ Increasing Tc in the full theory. ← Subtle 

Controversies: Inhomogeneity patter shows… 
□More confinement at outer regions.  ← Theory 
□Which is more natural?  More deconfinement? 

Controversies: Chiral condensate exhibits… 
□ Something too complicated to be true? ← No lattice yet
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