Mapping the QCD phase diagram : Connecting EoS to observables

Workshop on "Confinement and Symmetry from vacuum to QCD phase diagram"

Maneesha Pradeep University of Maryland at College Park

Collaborators : Misha Stephanov, Jamie Karthein, Krishna Rajagopal, Yi Yin

Phys.Rev.Lett. 130 (2023) 16, 16, arXiv 2409.16249 + Work in progress

1

Is there a critical point on the QCD phase diagram?

At $\mu_B = 0$: It is a cross-over. — Lattice QCD simulations 0

At T=0: Models predict a first order phase transition — Not known from first principles Ο

Recent theory guidances for the location of the critical point

600 200400 100 -4.25 4.50 4.75 5.00 3.75 μ_{Bc} (MeV) 4.00 $\sqrt{s_{\rm NN}}(\mu_{Bc})$ (GeV)

Probing critical points experimentally

Baron Cagniard de la Tour's experiment

Ethane (C ₂ H ₆)	31.17 °C (304.32 K)	48.077 atm (4,871.4 kPa)
Ethanol (C ₂ H ₅ OH)	241 °C (514 K)	62.18 atm (6,300 kPa)
Fluorine	–128.85 °C (144.30 K)	51.5 atm (5,220 kPa)
Helium	–267.96 °C (5.19 K)	2.24 atm (227 kPa)
Hydrogen	–239.95 °C (33.20 K)	12.8 atm (1,300 kPa)
Krypton	–63.8 °C (209.3 K)	54.3 atm (5,500 kPa)
Methane (CH ₄)	–82.3 °C (190.8 K)	45.79 atm (4,640 kPa)
Neon	–228.75 °C (44.40 K)	27.2 atm (2,760 kPa)
Nitrogen	–146.9 °C (126.2 K)	33.5 atm (3,390 kPa)
Oxygen (O ₂)	–118.6 °C (154.6 K)	49.8 atm (5,050 kPa)
Carbon dioxide (CO ₂)	31.04 °C (304.19 K)	72.8 atm (7,380 kPa)
Nitrous oxide (N ₂ O)	36.4 °C (309.5 K)	71.5 atm (7,240 kPa)
Sulfuric acid (H ₂ SO ₄)	654 °C (927 K)	45.4 atm (4,600 kPa)
Xenon	16.6 °C (289.8 K)	57.6 atm (5,840 kPa)
Lithium	2,950 °C (3,220 K)	652 atm (66,100 kPa)
Mercury	1,476.9 °C (1,750.1 K)	1,720 atm (174,000 kPa)
Sulfur	1,040.85 °C (1,314.00 K)	207 atm (21,000 kPa)
Iron	8,227 °C (8,500 K)	
Gold	6,977 °C (7,250 K)	5,000 atm (510,000 kPa)
Aluminium	7,577 °C (7,850 K)	
Water (H ₂ O) ^{[3][20]}	373.946 °C (647.096 K)	217.7 atm (22,060 kPa)

- coexist.

Wikipedia₄

1. Subcritical ethane, liquid and gas phase

2. Critical point (32.17 °C, 48.72 bar), displaying critical opalescence. 3. Supercritical ethane, fluid.^[1]

A view of gold ions collisions as \square captured by the STAR detector.

> **Colliding heavy-ions at** varying center of mass energy

Probing the EoS via heavy-ion collisions

Quark-Gluon Plasma

Critical region

Freeze-out Figure by S.A.Bass

- QGP thermalizes in $\sim 1 \text{ fm/c}$ 0
- Freeze-out at about 10 fm/c Ο

• The event by event distribution of the particle multiplicities are measured at the detectors.

Non-monotonic dependence of cumulants as a function of collision energy

$$\left\langle \delta N_B^2 \right\rangle_c = \left\langle (N_B - \langle N_B \rangle)^2 \right\rangle, \left\langle \delta N_B^3 \right\rangle_c = \left\langle (N_B - \langle N_B \rangle)^2 \right\rangle, \left\langle \delta N_B^4 \right\rangle_c = \left\langle (N_B - \langle N_B \rangle)^4 \right\rangle - 3 \left\langle (N_B - \langle N_B \rangle)^4 \right\rangle$$

2021, STAR Collaboration

BES-I data for proton multiplicity cumulants

A clear excess of scaled protonnumber variance from non-critical baseline reported $\sqrt{s_{NN}} \le 10 \,\mathrm{GeV}$ for

Vovchenko, Koch, Shen, 22

EoS Particle multiplicity distributions

Susceptibilities that diverge at CP

Imprints on Particle Distribution Functions?

STAR Collaboration, PRL 2014, PRL 2021

Freeze-out hypersurface : Both the hydrodynamics and kinetic description in terms of a hadron resonance gas apply

Freeze-out in heavy-ion collisions

Variables at freeze-out

Hydrodynamic mean densities

 $\{\langle \epsilon u^{\mu} \rangle, \langle n \rangle\} \equiv \Psi^a$

Hydrodynamic correlations

Particle distribution function at freeze-out

 $\Psi^a, \langle \delta \Psi^a \delta \Psi^b \rangle \equiv H^{ab}, \dots H^{abc...}$

 $\langle f_A \rangle = f_A, \langle \delta f_A \delta f_B \rangle = G_{AB}, \langle \delta f_A \delta f_B \delta f_C \rangle = G_{ABC} \dots$

MP, Stephanov, PRL, 23

Matching conditions at freeze-out

$$\langle \epsilon \, u^{\mu} \rangle = \sum_{A} \int_{p_{A}} \bar{f}_{A} \, p^{\mu}_{A}, \quad \langle n \rangle$$

$$H^{abc...} = \sum_{A,B,C,...} \int_{p_A p_B p_C...} G$$

- Matching conditions for averages of conserved densities 0
- Infinitely many sets of distribution functions that satisfy these matching conditions 0
- Ο

 $P_{ABC...}P_A^a P_B^b P_C^c \ldots$

Freeze-out prescription corresponds to choosing one of these sets - **How to choose**?

MP, Stephanov, PRL, 23

Maximum entropy freeze-out without fluctuations

- Results in a thermal gas of hadrons 0 specified by the local temperature and chemical potential. Coincides with Cooper-Frye, 74
- Recent work on extension to viscous 0 hydrodynamics : Everett-Heinz-Chattopadhyay, 21

Yield dN/dy 10³ Pb-Pb $\sqrt{s_{NN}}$ =2.76 TeV, 0-10% centrality 10² 10 10⁻¹ 10⁻² 10^{-3} Data, ALICE Statistical Hadronization 10^{-4} 10^{-5} 10⁻⁶ Andronic et al, Nature, 18 ita/Model 1.5 Dai 0.5 $\pi^{+} \pi^{-} \operatorname{K}^{+} \operatorname{K}^{-} \operatorname{K}^{0}_{s} \phi \quad p \quad \overline{p} \quad \Lambda \quad \overline{\Lambda} \quad \Xi^{-} \quad \overline{\Xi}^{+} \quad \Omega^{-} \quad \overline{\Omega}^{+} \quad d \quad \overline{d} \quad {}^{3}\operatorname{He} \, {}^{3}\operatorname{He} \, {}^{3}\operatorname{He} \, {}^{3}\operatorname{He} \, {}^{3}\operatorname{He} \, {}^{4}\operatorname{He} \, {}^{4}\operatorname{$

Maximum entropy freeze-out

Given all the information about the hydrodynamic densities on the freeze-out freeze-out that obeys the matching conditions?

S[f, G]

subject to the constraints of the matching conditions.

- hypersurface, what is the *least biased* ensemble of free streaming particles after

It is the one which maximizes the entropy of the fluctuating particle distribution function:

$$[\pi_2, G_3, \dots]$$

- Maximize the relative entropy when correlations are out of equilibrium
- Constraints from matching conditions

Generalized S|P(f)|**G** s are the correlation functions in the Hadron

MP, Stephanov, PRL, 23

Gas description

Entropy to describe out-of equilibrium two-point correlations in ideal HRG

Similar to 2-PI action

Berges, 04, Stephanov, Yin, 17...

2-PI entropy

MP, Stephanov, PRL, 23

Two-point correlation function of proton multiplicities in phase space,

$$\Delta G_{pp}(k,k') = \#_{pp}^{\epsilon\epsilon}(k,k')\Delta H_{\epsilon\epsilon} + \#_{pp}^{n\epsilon}(k,k')\Delta H_{n\epsilon} + \#_{pp}^{nn}(k,k')\Delta H_{nn} +$$

Contributions from baryon and energy density correlations

 Δ denotes deviation of the hydrodynamic correlation function from its value in Ideal Hadron Resonance Gas

MP, Stephanov, PRL, 23

• • •

Organizational Scheme for Non-Gaussian Correlations

Irreducible relative cumulants

• For gases obeying different statistics, IRCs quantify the non-trivial correlations Non-trivial correlations relative to any specified baseline distribution

For classical gas, irreducible relative cumulants (IRCs) reduce to so called "factorial cumulants".

Maximum entropy freeze-out procedure

- Factorial cumulants remove various sources of trivial correlations

But, the QCD EoS near the critical point is not known from first-principles?!

$\hat{\Delta} \left\langle \delta N_{A_1 \dots A_k}^k \right\rangle = X_{A_1}^{b_1} X_{A_2}^{b_2} \dots X_{A_k}^{b_k} \hat{\Delta} H_{b_1 \dots b_k}$

• Integrating over phase space bins, we get factorial cumulants of particle multiplicities

 They contain crucial information about criticality in the Equation of State / Hydro MP, Stephanov, PRL, 23

20

Equation of States with a QCD critical point

- Must agree with the Taylor Expanded EoS from lattice
- Compatible with other limits : PQCD, HRG
- Critical point in the 3D Ising universality class

Examples of recently developed EoSs that have a CP in the Ising universality class but differ in their implementation: Parotto et al, 19, Karthein et al., 21, Grefa et al., 21, Kapusta & Welle, 22, Kahangirwe et al., 24

QCD EoS near the Critical Point

Parotto et al., 18, Karthein et al., 21

$$P_{\rm QCD}(\mu, T) = P_{\rm BG}(\mu, T)$$

Kahangirwe et al., 24

Summation scheme by WB collaboration Borsanyi et al,21

Non-universal map from QCD to Ising variables

+ $AG(r(\mu, T), h(\mu, T))$

Kahangirwe et al., 24

Range of Validity improved

23

 μ_B

A general class of candidate EoSs

Independent & non-universal parameters

- $0 \le \mu_B \le 700 \,\mathrm{MeV}, 25 \,\mathrm{MeV} \le T \le 800 \,\mathrm{MeV}$
- The new construction is causal and stable for a larger range of ρ and w

Equilibrium estimates for critical contribution to factorial cumulants of proton multiplicities

$$\mu_c = 600 \,\mathrm{MeV}, \, \alpha_2 = 0^\circ, \, \rho = 1, \, w = 20$$

Karthein, MP, Rajagopal, Stephanov, Yin (in preparation)

Freeze-out curve

Karthein, MP, Rajagopal, Stephanov, Yin (in preparation)

Fluctuation dynamics

Refer to Johannes Roth's talk

Deterministic Approach

- Deterministic evolution for hydro correlation functions
- Semi-realistic estimates for two-point correlation functions computed and connected to observables

Teaney, Akamatsu, Mazeliauskas, 16 along with Yan, Yin , 19, Stephanov, Yin, 17, An, Basar, Stephanov, Yee, 19, 20, 22, 24...

An, Basar, Stephanov, Yee, 22,24

Rajagopal,Ridgway,Weller,Yin,19,Du,Heinz,Rajagopal, Yin,20 MP, Rajagopal, Stephanov, Yin, 22,Mukherjee, Venugpalan, Yin 15

Out-of-equilibrium effects of fluctuations near the CP

$$\langle \delta \hat{s}(x_{+}) \delta \hat{s}(x_{-}) \rangle = \int e^{i\mathbf{Q}\cdot\mathbf{\Delta x}} W_2(\mathbf{Q}), \, \mathbf{\Delta x} =$$

CP fluctuations in **MD** simulations : **V**. Kuznietsov et al

 $= x_{+} - x_{-}$

Persistence of critical imprints in the fluctuation observables until freeze-out

Cout-of-equilibrium>Equilibrium

Prolonged memory of CP

Rajagopal, Ridgway, Weller, Yin, 19 Du,Heinz,Rajagopal, Yin,20 MP, Rajagopal, Stephanov, Yin, 22 Mukherjee, Venugopalan, Yin 15

27

Deformation of hydrodynamic trajectories near CP

MP, Sogabe, Stephanov, Yee, 24

Deformations can be broadly classified based on the value of the mapping parameter α_2

Critical lensing~Dore et al,22, Nonaka&Asakawa, 05

 Consequence of universal ridge-like structure of the isentropes near CP

Phenomenological implications

Smearing effect - Du et al, 22

Specific entropy is non-monotonic along one of the branches on the firstorder curve

Summarizing & Looking forward

A *family of candidate EoSs with a CP* that match with the lattice have been developed

Vovchenko,Koch,Shen,22

 $\chi_j(\mu, T; \mu_c, \alpha_{12}, w, \rho) \xrightarrow{\text{ME}} C^k_A(\mu_F(T_F); \mu_c, \alpha_{12}, w, \rho, \Gamma)$

Dynamics

Quantitative estimates for **out-of equilibrium** corrections to higher order cumulants - needed

Bayesian Analysis of experimental data pertaining to *multiple observables* with the theoretical framework may possibly help us learn about QCD EoS near CP, if it exists in the regime scanned by HICs

Thank you!

FIG. 6: Normalized proton multiplicity correlator $\tilde{C}(\Delta y)$ for protons from Eq. (60) as a function of the rapidity gap Δy in the Bjorken scenario for two choices of the diffusion MP, Rajagopal, Setphanov, Yin, 22 parameter D_0 .