QCD Phase Diagram: An Experimental Overview from the RHIC Beam Energy Scan

Confinement and symmetry from vacuum to QCD phase diagram Feb. 9 - 15, 2025

Frank Geurts

Rice University

PB

One Workshop, Two Themes

- Experimental approaches to the study of QCD matter at high temperatures and densities
 Exploring the QCD phase diagram at RHIC
- Experimental exploration of fundamental symmetries at high temperatures and densities
 Chiral symmetry restoration
- Let me try to cover both ...

Confinement and symmetry from vacuum to QCD phase diagram Feb. 9 - 15, 2025

QCD Phase Diagram

Experimentally, one can access different regions of phase diagram by varying centre-of-mass energy

- experimental data over 3-4 orders of magnitude in VSNN
- LHC and RHIC provide access to low μ_{B} region
 - cross-over region
- Several experiments/facilities give access to μ_B regions that both cover cross-over, possible 1st order PT, and a conjectured CP
- AGS, SPS
- HADES
- NA61/SHINE
- RHIC beam energy scan (BES)

Fig. 1. Schematic phase diagram of hadronic matter. ρ_B is the density of baryonic number. Quarks are confined in phase I and unconfined in phase II.

Active Heavy-Ion Experiments around the World

Charting the QCD Phase Diagram

- Turn-off of QGP signatures suppression, elliptic flow
- First-order phase transition changes in EoS due to attractive force (softest point)
 - "step" in mean transverse mass of identified particles
 - > non-monotonic behavior of directed flow slope at mid-rapidity $(dv_1/dy/y=0)$
- Critical point divergence of the correlation length ⇒ non-monotonic behavior of higher moments of conserved quantities
 - experimentally, skewness S, and kurtosis κ of event-by-event net-particle distributions

The Experimentalist' Toolbox

- Wide range of collision energies
 - versatile accelerators
 - determine excitation functions; beam energy scan
- Various colliding systems: A+A, p+p, p+A
 - compare hot nuclear medium (in A+A) to baseline (p+p)
 - disentangle initial state effects (p+A) from final state observations (A+A)
 - system size dependence
- Collider and/or Fixed-Target modes
 - fixed acceptance vs. high rates
- General vs. special purpose detectors

RHIC Beam Energy Scan Program

Studying the Phase Diagram of QCD Matter at RHIC

- Phase 1: 2010 2011, 2014
 - STAR base line detectors: TPC and BTOF
 - √s_{NN} = 7.7, 11.5, 14.5, 19.6, 27, 39 GeV
 - hints at low Vs_{NN} of QGP turn-off, ordered phase Chiral transition, and critical point
- Phase 2: 2019 2021
 - specific focus on lower Vs_{NN}
 - including Vs_{NN} = 9.2 and 17.3 GeV (plus 27, 54.4GeV)
 - include FXT program to reach lower energies
 - √s_{NN} = 3.0, 3.2, 3.9, 4.5, 5.2, 6.2 GeV (7.7, 9.2, 11.5, 13.7)
 - improve statistical significance
 - RHIC electron cooling for low beam energies
 - improve systematics
 - STAR detector upgrades: iTPC, EPD, eTOF

STAR Note 598						
Table 2. Event statistics (in millions) needed for Beam Energy Scan Phase-II for various observables.						
Collision Energy (GeV)	7.7	9.1	11.5	14.5	19.6	
μ_B (MeV) in 0-5% central collisions	420	370	315	260	205	
	1			and the set		
Observables				19.60		
R_{CP} up to $p_T = 5 \text{ GeV}/c$	-ATT		160	125	92	
Elliptic Flow (\$\$ mesons)	100	150	200	200	400	
Chiral Magnetic Effect	50	50	50	50	50	
Directed Flow (protons)	50	75	100	100	200	
Azimuthal Femtoscopy (protons)	35	40	50	65	80	
Net-Proton Kurtosis	80	100	120	200	400	
Dileptons	100	160	230/00	300	400	
Required Number of Events	100	160	230	300	400	

Phase-2 Datasets

	√s _{NN} (GeV)	Beam Energy (GeV/nucleon)	Collider or Fixed Target	Ycenter of mass	μ _B (MeV)	Run Time (days)	No. Events Collected (Request)	Date Collected
	200	100	С	0	25	2.0	138 M (140 M)	Run-19
	27	13.5	С	0	156	24	555 M (700 M)	Run-18
i,	19.6	9.8	С	0	206	36	582 M (400 M)	Run-19
	17.3	8.65	С	0	230	14	256 M (250 M)	Run-21
	14.6	7.3	С	0	262	60	324 M (310 M)	Run-19
	13.7	100	FXT	2.69	276	0.5	52 M (50 M)	Run-21
2	11.5	5.75	С	0	316	54	235 M (230 M)	Run-20
	11.5	70	FXT	2.51	316	0.5	50 M (50 M)	Run-21
	9.2	4.59	С	0	372	102	162 M (160 M)	Run-20+20b
	9.2	44.5	FXT	2.28	372	0.5	50 M (50 M)	Run-21
	7.7	3.85	С	0	420	90	100 M (100 M)	Run-21
	7.7	31.2	FXT	2.10	420	0.5+1.0+ scattered	50 M + 112 M + 100 M (100 M)	Run-19+20+21
	7.2	26.5	FXT	2.02	443	2+Parasitic with CEC	155 M + 317 M	Run-18+20
	6.2	19.5	FXT	1.87	487	1.4	118 M (100 M)	Run-20
	5.2	13.5	FXT	1.68	541	1.0	103 M (100 M)	Run-20
	4.5	9.8	FXT	1.52	589	0.9	108 M (100 M)	Run-20
	3.9	7.3	FXT	1.37	633	1.1	117 M (100 M)	Run-20
	3.5	5.75	FXT	1.25	666	0.9	116 M (100 M)	Run-20
	3.2	4.59	FXT	1.13	699	2.0	200 M (200 M)	Run-19
	3.0	3.85	FXT	1.05	721	4.6	259 M -> 2B(100 M -> 2B)	Run-18+21

QCD Phase Diagram: An Experimental Overview

8

Charting the QCD Phase Diagram

• From theory:

- cross-over starts at T_0 = 156.5 ± 1.5 MeV
- for μ_B < 250 MeV (and n_S =0, n_Q/n_B =0.4)
 - cross-over along constant ε and s densities
 - no indication for CP
- RHIC BES-1 data:
 - (T_{chem}, μ_B) with large systematic uncertainties

➢ RHIC BES-2 data:

- reduce systematics in extrapolations
 - smaller uncertainties in chemical fits
- additional data points for $\mu_B > 150 \text{ MeV}$
- update Vs_{NN}=200 GeV (Run-19)

Bulk Properties: Kinetic Freeze-out

- separation between T_{kin} and T_{chem} grows with increasing energy
 - might suggest effect of increasing hadronic interactions between chemical and (MeV) 100 kinetic freeze-out at higher energies
- radial flow velocity $\langle \beta \rangle$ shows rapid increase at very low energies and slower increase at higher energies
- \blacktriangleright recent inclusion of light nuclei (d, t, ³He, ⁴He) from Vs_{NN} =3 GeV (FXT-2018)

- Centrality differential shows different trend
 - compared to higher $V_{S_{NN}}$

Benasque - Feb. 13, 2025

QCD Phase Diagram: An Experimental Overview

200

150

50

FXT 3 GeV fit [π[±],K[±],p]

0.2

50

0.1

O FXT 3 GeV fit $[\pi^{\pm}, K^{\pm}, p, d, t, {}^{3}He, {}^{4}He]$

0.3

Collective velocity $\langle \beta \rangle$

0.4

Comb. Blast-Wave Fit with n=1

10

Central

0.6

0.5

GeV

Onset of deconfinement

NA49 [PRC 77 (2008) 024903]: onset of deconfinement at Vs_{NN} =7.7GeV

STAR BES-1: h^{+/-} nuclear modification factor R_{CP}

- smooth transition from suppression (high Vs_{NN}), to enhancement (low Vs_{NN})
- below Vs_{NN} = 39 GeV no suppression? Turn-off?
 or, competition with enhancements from Cronin effect, flow, etc.
- R_{CP} > 1 does not mean "no QGP"

$$Y(\langle N_{part} \rangle) = \frac{B}{\langle N_{coll} \rangle} \frac{d^2 N(\langle N_{part} \rangle)}{dp_T d\eta}$$

=7.7GeV

normalization)

(arb.

dp_dp

BES-2: expect precision to disentangle

STAR, PRL 121 (2018) 032301

 $4.0 < p_T < 4.5 \text{ GeV/c}$ Au+Au $\sqrt{s_{MM}} = 7.7 \text{ GeV}$

11.5 Ge\

▲ 14.5 GeV ▼ 19.6 GeV ★ 27 GeV

● 62.4 GeV ★200 GeV

Horn System-size Dependence

NA61, EPJC 84 (2024) 416

Most central collisions (top 10%)

- NA61: comprehensive study
 - p+p, ⁷Be+⁹Be, ⁴⁰Ar+⁴⁵Sc, ²⁰⁸Pb+²⁰⁸Pb
 - $-\sqrt{s_{NN}} = 5.12, 6.12, 7.62, 8.77, 11.9, and 16.8 GeV$
- Ar+Sc is clearly separated from small systems, but no horn structure
 - yields resemble Pb+Pb at high energies collision energies ($Vs_{NN} \gtrsim 16.8 \text{ GeV}$)
 - yields resemble small systems at low energies ($Vs_{NN} \lesssim 6.12 \text{ GeV}$)

Probing Canonical Production

(GeV/c)

• First multi-differential φ and Ξ at $\sqrt{s_{NN}} = 3$ GeV (FXT)

Au+Au, $\sqrt{s_{NN}} = 3.0 \text{ GeV}$

(C)

Particle Rapidity y

0

> p_T and y spectra

-0.5

Iocal treatment of strangeness conservation is very important

thermal particle phase space far from GCE limit

0

- Canonical Ensemble prefers small r_c < 4.2 fm
 - cannot simultaneously describe ϕ/K^{-} (2.7) and ϕ/Ξ^{-} (4.2)

(d)

-0.5

Expanding Rapidity Coverage

- BES-2 plans on reporting rapidity distributions
 - protons from Vs_{NN}=4.5GeV (FXT) consistent with E917
- baryon stopping systematics
 - amount of stopping determines μ_B
 - Ivanov (PRC87 (2013) 064904): potentially reveal 1st order PT, softening of EoS
 - more precision measurements needed :: BES-2

Benasque - Feb. 13, 2025

Proton Directed Flow

MAI -

directed flow v_1 describes sideward collective motion

sensitive to the EoS

[Yasushi Nara et al., PRC 94 034906 (2016)]

non-monotonic dependence

- softening (crossover or 1st order phase transition)
- geometry (tilted ellipsoid expansion)
 - ➤ relevant at $Vs_{NN} \gtrsim 27$ GeV)
- transport

\succ minimum in slope dv₁/dy of baryons in presence of 1st order PT

"net-protons" help isolate transported baryons

- Double sign change around **15 GeV**
- BES-2 :: more statistics fine centrality binning (~5%)

Benasque - Feb. 13, 2025

QCD Phase Diagram: An Experimental Overview

Directed Flow at high μ_B

- BES-2 preliminary results of v_1 vs. rapidity for π^{\pm} , K^{\pm} , K_S^0 , p, Λ
 - at Vs_{NN} = 3.0, 3.2, 3.5, and 3.9 GeV ("fixed target" energies)
- JAM Mean Field describes baryon flow
 - p-dependent Soft EOS, with nucl. compression κ = 210MeV

Testing the Coalescense Sum Rule

- If v₁ develops in a pre-hadronic stage
 - and hadrons are formed via coalescence
 - $and v_1(\bar{u}) = v_1(\bar{d}), v_1(s) = v_1(\bar{s})$
- then expect $\overline{\Lambda} v_1$ from K and p: $K^-(\overline{u}s) + \frac{1}{3}\overline{p}(\overline{uud})$

picture breaks down below 11.5 GeV

BES-2 :: additional energy between 7.7 and 11.5GeV + lower FXT energies

The case for the φ meson

- v₂ shows mass ordering for p_T < 2 GeV/c
- baryon-meson splitting for p_T > 2 GeV/c
 ➢ indicative of partonic collectivity, NCQ-scaling

But, at low energies:

- φ meson hints at a departure
- φ has a small hadronic scattering cross section
 - hadronic interactions more important for Vs_{NN} = 7.7 and 11.5 GeV?
 - BES-2 will provide more statistics

The Disappearance of Partonic Collectivity at 3GeV

\rightarrow NCQ scaling not observed at $\sqrt{s_{NN}}$ = 3 GeV

- v_2 is negative for all particles (out of plane)
 - − positive for $Vs_{NN} \ge 4.5$ GeV
- v_1 slopes are positive for all particles
 - negative for $V_{S_{NN}} \ge 10 \text{ GeV}$
- Qualitatively reproduced by transport models that include baryonic mean-fields

The Onset of Partonic Collectivity

STAR FXT program preliminary results complete a picture ...

- NCQ scaling broken for $Vs_{NN} \le 3.2 \text{ GeV}$
- Scaling gradually restores at 4.5 GeV

Indicative of transition from hadron-dominated to parton-dominated matter

BES-2 v₂ of multi-strange particles

STAR, PRC 107 (2023) 024912

- azimuthal anisotropy of identified particles vs p_T and centrality
 - help put substantial constraints on transport and hydro models
- Run-17 54 GeV data for (multi)strange hadrons published

> n_q scaling of v₂ holds within 10%

- Preliminary BES-2 results at 14.6 and 19.6 GeV
 - indicate n_q scaling for multi-strange particles is violated

Triangular flow measurements in Au+Au at $\sqrt{s_{NN}} = 3 \text{ GeV}$

- $v_3{\{\Psi_1\}}$ for π^{\pm}, K^{\pm} , p vs. centrality, rapidity, and p_T
 - $v_3{\{\Psi_1\}}$ correlated with reaction plane
- Comparison with HADES $Vs_{NN} = 2.4 \text{ GeV}$
 - Considerable differences (5x) in slope
 - Further studies needed to better understand physical drivers of this discrepancy
- Extensive comparison with several models
 - AMPT, RQMD, SMASH, JAM
 - suggests medium is not in a partonic state
- Larger 3GeV data set (5x) will help improve K⁻ results
 - will also include forward PID (eTOF)

Femtoscopic Probes

- Show transition from stopping (oblate) to boost-invariant (prolate source) dynamics
 - − at Vs_{NN} = 4.5 GeV : $R_{side} \approx R_{long} \approx 4.5$ fm
- R_{out} = transverse size + emission duration $\beta^2 t^2 = R_{out}^2 - R_{side}^2$ (if no collective flow)

Expect increase of R_{out} relative to R_{side} to reflect extended emission time scale

- may occur if system evolves through 1st order phase transition
- combination of STAR and HADES data reveals peak structure

(fm)

Size

transverse

Stephanov, PRL 107 (2011) 052301

Critical Fluctuations

- \blacktriangleright At low $\mu_{\rm B}$: smooth cross-over
 - test with higher-order cumulants
- At high $\mu_{\rm B}$: indications of 1st order phase transition
- Critical Point in a region accessible by heavy-ion collisions? •
 - can it be experimentally discovered?
- Look for the divergence of susceptibilities
 - or divergence of correlation lengths
 - non-monotonic behavior of correlations/fluctuations related to conserved quantities, e.q. baryon number
- Relate moments of experimentally measurable multiplicity distributions to ratios of susceptibilities STAR, PRL 128 (2022) 202303

BES-2 data sets with iTPC & EPD

- increase Δy_p acceptance with iTPC
- improve centrality selection with EPD
 - use TPC for measurements
- STAR only to release final results

BES Phase-2: net-proton higher moments

- Collider data from 7.7 27 GeV
 - 150 < μ_B < 400 MeV</p>
- Precision results on proton cumulants and factorial cumulants
 - from BES-II with greatly improved statistical and systematic uncertainties
 - Reduction factors in uncertainties on 0-5% C_4/C_2 (BES 1 vs BES 2) 7.7 GeV 19.6 C

7.7 0	łeV	19.6 GeV			
stat. error	sys. error	stat. error	sys. error		
4.7	3.2	4.5	4	(

Very interesting trends observed as a function of collision energy

25

Critical Fluctuations: cross-over

- At low μ_B: smooth cross-over
 - test with higher-order cumulants: expected to be negative

First measurement of net-proton C6/C2

- statistics limited
- consistent with 0 for Vs_{NN} = 27 and 54.5 GeV
- negative in more central collisions for $\sqrt{s_{NN}}$ =200 GeV
 - *caveat*: exp. data involves kinematic cuts that are not incorporated in the lattice calculations
- Suggestive of a smooth cross-over at top RHIC energies

BES-1/2: Hyper-order Cumulant Ratios

- Higher-order cumulants more sensitive to correlation length
- Cumulant ratios cancel volume dependence

 directly related to susceptibilities
- 7 200GeV: falling trend with rising order
 - $> C_3/C_1 > C_4/C_2 > C_5/C_1 > C_6/C_2$
 - predicted by LQCD [Bazavov, et al. PRD 101 (2020) 074502]
- 3 GeV:
 - rising trend with rising order
 - in agreement with UrQMD
 - suggestive of hadronic matter

Beam Energy Scan: deuteron cumulants

- First measurement of cumulants, up to 4th order
 - BES Phase-1 data
- Cumulant ratios favor CE over a GCE in thermal models
 - CE explicitly conserves B number
- Anti-correlation between p and d numbers
 - negative Pearson correlation coefficients
- BES Phase-2 data (incl. FXT) will allow for more differential studies

STAR, PLB 855 (2024) 138560

Beam Energy Scan: Triton Production

- Study of ratio of triton to deuteron yields $N_t \times N_p / N_d^2$
 - Coalesence Model: sensitive to fluctuations of the local neutron density [Sun, Chen, Ko, and Xu, PLB 774 (2017) 103–107]
 - non-monotonic behavior can be indicative of CP or 1st-order PT

enhancements relative to the coalescence baseline

– significance 2.3 σ and 3.4 σ in 0–10% central Au+Au collisions at 19.6 and 27 GeV

Exploring Fundamental Symmetries. What can dileptons do?

Dileptons are excellent penetrating probes

- colorless objects ... no coupling to strongly interacting matter
- produced in various ways throughout the system's evolution
- long mean free paths
- experimentally provide an additional "knob": invariant mass

Dilepton invariant mass spectrum

- Primordial emissions, pre-equilibrium
 - Drell-Yan, $NN \rightarrow e^+e^- X$
 - heavy flavor production ($c\bar{c}, b\bar{b}$), quarkonia & open charm
- Thermal radiation from QGP/hadronic matter
 - QGP thermal radiation $q\bar{q} \rightarrow e^+e^-$
 - HG thermal radiation $\pi^+\pi^- \rightarrow e^+e^-$
 - in-medium ρ
 - other 4 π , multi-meson interactions, incl. ρ a_1 mixing
- Long-lived hadron and resonance decays
 - decays of light mesons of π^0 , η , ω , ϕ (incl. Dalitz decays)
 - in-medium modification of vector mesons
 - decays of quarkonia J/ Ψ , Ψ ' and correlated $D\overline{D}$ pairs
 - nuclear modification effects

open heavy flavor

e⁻/µ⁻

 e^{+}/μ^{+}

courtesy of Axel Drees

Dilepton invariant mass spectrum

- High Mass Range (HMR)
 - M_{ee} > 3 GeV/c²
 - primordial emission, Drell-Yan
 - Heavy quarkonia: J/ ψ and Υ suppression
- Intermediate Mass Range (IMR)
 - $1.1 < M_{ee} < 3 \text{ GeV}/c^2$
 - QGP thermal radiation
 - Semi-leptonic decay of correlated charm heavy-flavor modification
- Low Mass Range (LMR)
 - M_{ee}< 1.1 GeV/*c*²
 - in-medium modification of vector mesons
 - fireball lifetime measurement
 - transport coefficients (electrical conductivity)

EM production rates

From thermal field theory⁺, using EM current-current correlation function:

 $\Pi_{em}^{\mu\nu}(q_0,q) = -i \int d^{4x} e^{iqx} \Theta(x^0) \left\langle \left\langle [j^{\mu}(x), j^{\nu}(0)] \right\rangle \right\rangle \quad \Pi_{\rm EM} =$

$$j^{\mu} = \sum_{q} e_{q} \bar{q} \gamma^{\mu} q = \frac{2}{3} \bar{u} \gamma^{\mu} u - \frac{1}{3} \bar{d} \gamma^{\mu} d - \frac{1}{3} \bar{s} \gamma^{\mu} s$$

with the thermal emission rates

• photons:

$$p_0 \frac{dN_{\gamma}}{d^4 x \, d^3 p} = -\frac{\alpha_{em}}{\pi^2} f^B(p_0; T) \, \frac{1}{2} g_{\mu\nu} \, \mathrm{Im} \Pi^{\mu\nu}_{em}(M=0, p; \mu_B, T)$$

• dileptons:

 $\frac{dN_{ll}}{d^4x \, d^4p} = -\frac{\alpha_{em}^2}{\pi^3 M^2} L(M) f^B(p_0;T) \, \frac{1}{3} g_{\mu\nu} \, \mathrm{Im}\Pi_{em}^{\mu\nu}(M,p;\mu_B,T)$

L(M) is lepton space factor and $f^B(p;T)$ is the thermal Bose distribution

- both governed by same underlying spectral functions
 - but different kinematic regimes (light-like and time-like)

† see e.g. Friman, et al., Lecture Notes in Phys. 814 (2011) 1

lee g

Connection with vector mesons

For lightest quarks

$$j^{\mu} = \sum_{q} e_{q} \bar{q} \gamma^{\mu} q = \frac{2}{3} \bar{u} \gamma^{\mu} u - \frac{1}{3} \bar{d} \gamma^{\mu} d - \frac{1}{3} \bar{s} \gamma^{\mu} s$$

or grouping into isospin states $I = 1(\rho), 0(\omega, \varphi)$:

$$j^{\mu} = \frac{1}{2} (\bar{u}\gamma^{\mu}u - \bar{d}\gamma^{\mu}d) + \frac{1}{6}\bar{d}\gamma^{\mu}d(\bar{u}\gamma^{\mu}u + \bar{d}\gamma^{\mu}d) - \frac{1}{3}\bar{s}\gamma^{\mu}s_{0.1}$$

$$= \frac{1}{\sqrt{2}}j^{\mu}_{\rho} + \frac{1}{3\sqrt{2}}j^{\mu}_{\omega} + \frac{1}{3}j^{\mu}_{\phi}$$

$$= \frac{1}{\sqrt{2}}j^{\mu}_{\omega} + \frac{1}{3}j^{\mu}_{\phi}$$

$$= \frac{1}{\sqrt{2}}j^{\mu}_{\omega} + \frac{1}{3}j^{\mu}_{\phi}$$

100 F

10

R(s)

which leads at low M :

$$\operatorname{Im} \Pi_{\text{em}} \sim D_{\rho} + \frac{1}{9}D_{\omega} + \frac{2}{9}D_{\phi}$$

vector meson dominance

- carry same quantum numbers as photons
- can directly decay into dileptons
- ρ(770) dominant source

Im Π_{em} is well understand in vacuum:

3 loop pQCD Naive quark model

In-medium vector mesons (1)

ρ meson will interact with hadrons in the medium

propagator will have various contributions to the self-energy

$$D_{\rho}(M,q;T,\mu_{B}) = \frac{1}{(M^{2} - m_{\rho}^{2} - \Sigma_{\rho\pi\pi} - \Sigma_{\rhoM} - \Sigma_{\rhoB})}$$

$$\Sigma_{\rho\pi\pi} = \underbrace{\mathfrak{oos}}_{\rho} \underbrace{(\pi, \mu_{B})}_{\pi} \underbrace{\mathfrak{oos}}_{\rho}$$
in-medium pion cloud
$$N^{*}(1520)\dots$$

$$a_{1}(1260)\dots$$

$$a_{1}(1260)\dots$$

$$\sum_{\rho \in \mathcal{A}} \underbrace{\mathfrak{oos}}_{\rho} \underbrace{(\pi, \mu_{B})}_{\rho} \underbrace{\mathfrak{oos}}_{\rho} \underbrace{\mathfrak{oos}}_{\rho} \underbrace{(\pi, \mu_{B})}_{\rho} \underbrace{\mathfrak{oos}}_{\rho} \underbrace{\mathfrak{oos}}_{\rho} \underbrace{(\pi, \mu_{B})}_{\rho} \underbrace{\mathfrak{oos}}_{\rho} \underbrace{(\pi, \mu_{B})}_{\rho} \underbrace{\mathfrak{oos}}_{\rho} \underbrace{\mathfrak{oos}}_{\rho} \underbrace{(\pi, \mu_{B})}_{\rho} \underbrace{\mathfrak{oos}}_{\rho} \underbrace{\mathfrak{oos}}_{\rho$$

direct p-hadron scattering

strong broadening of ρ spectral function \rightarrow baryons are important

Rapp, Acta Phys. Polon. B42 (2011) 2823

In-medium vector mesons (2)

QCD langrangian contains subgroup $SU_L(n_f) \times SU_R(n_f)$

- chiral symmetric in limit of vanishing quark masses
 - lattice QCD: dynamical formation of $\langle q \bar{q} \rangle \sim \Delta_{l,s}$ breaks chiral symmetry
 - profound effect on chiral partners $\langle q\bar{q} \rangle = \langle q_L \bar{q}_R + q_R \bar{q}_L \rangle$ significant mass splitting between chiral partners $\rho(770) - a_1(1260)$, nucleon(940) - N(1535), $\sigma - \pi$
- Weinberg (chiral) sum rules connect SFs to condensates:

$$\int_0^\infty \frac{ds}{\pi} \left(\Pi_V(s) - \Pi_A(s) \right) = m_\pi^2 f_\pi^2 = -2 m_q \langle q\bar{q} \rangle$$

Chiral symmetry restoration

- restoration of chiral symmetry manifests itself in mixing of V and A correlators
- ρ mesons melts in hot matter while a₁ decreases and degenerates

chiral mass splitting "burns off"

Massive Yang-Mills in hot pion gas

Three Decades of p melting

At SPS from CERES to NA60

- Excess in LMR $\mu^+\mu^-$ EPJ C61 (2009) 711
- rules out: dropping-mass scenario
- very good agreement with Resonance Width Broadening for $M_{\mu\mu}$ < 0.9 GeV/ c^2

At RHIC from STAR and PHENIX

- systematic beam energy scan
 - √s_{NN} = 7.7 200 GeV

question is positive."

 within uncertainties agreement between experiment and theory

Phenomenological Approach:

- compare experimental data against vector SF (p meson) from phenomenological model
- "Is p-meson melting compatible with chiral restoration?" [Hohler, Rapp PLB 731 (2014) 103] "This establishes a direct connection between dileptons and chiral restoration, and thus the answer to the originally raised

Chiral symmetry restoration: p-a₁ mixing

> mixing "moves strength from the axialvector to the vector channel"

Rapp, Wambach, Adv. Nucl. Phys. 25 (2000) 1

Critical Point: Lifetime Increase

- ρ peak as a clock for fireball lifetimes
 - see e.g., U.Heinz, KS.Lee, PLB 259 (1991) 162
- Dilepton yields sensitive to lifetime of the system
 - close to Critical Point expect increase in correlation lengths
 - critical slowing down? anomalous increase in the lifetime of the fireball?
- Normalized yields in LMR track medium lifetime
 - Rapp & Van Hees, PLB 753 (2016) 586
- > Can we observe this in an increase of e^+e^- rates?
- Integrated excess radiation
 - measured below free ρ/ω mass
 - results from HADES, NA60, STAR look promising
- Experimental uncertainties are large
 - high statistics measurements needed

Dileptons as thermometer

Recall thermal dilepton radiation:

- LMR dilepton spectra saturated by light vector mesons
- IMR quark-antiquark continuum

IMR dilepton rate

 $\frac{dR_{ll}}{dM} \propto \left(\frac{M}{T}\right)^{\frac{3}{2}} \exp(-\frac{M}{T})$

- *M* by construction Lorentz-invariant
- independent of flow → no blue-shift effects
- average over the system evolution
- Other bulk temperature measurements rely on hadron yields and spectra
 - chemical and kinetic freezout
 - separation between T_{chem} and T_{kin} grows with $v_{s_{NN}}$

LMR/IMR temperature measurements

At SPS/RHIC energies

- predominantly thermal dileptons from in-medium p
- include Breit-Wigner in T_{LMR} fit
- recent STAR results at $Vs_{NN} = 27$ and 54 GeV show similar mass spectra and extracted T_{LMR}
 - compared with NA60 at 17.3GeV

- LMR temperatures close to T_{ch} and T_{pc}
- emitted from hadronic phase
- predominantly around phase transition
- IMR temperatures well above Tpc
- access to $q\bar{q}$ radiation

an experimentalist's Summary

Cornucopia of Experimental Data

- A wealth of experimental data has been collected in two dedicated Beam Energy Scan campaigns at RHIC
 - most BES 1 results have been published
- RHIC program spans a wide μ_B range : Beam Energy Scan Phase 1, 2, and FXT
 - large coverage of the QCD phase diagram
 - bridging LHC to FAIR/NICA/JPARC-HI
- Many STAR BES-2 papers have already been published
 - so far more than 25, and much more to come
 - expect a lot of new results at the upcoming QuarkMatter conference
- Precision, precision, precision: large statistics data sets are coming online

Connecting Theory & Experiment

- "multi-messenger"- the whole is more than the sum ...
 - different observables, more differentials
- theory guidance is paramount
 - critical point
 - chiral symmetry restoration
 - etc.
- and experimental guidance, too
 - feasibility, cuts, and acceptances
 - accessing to QCD medium

Future Prospects – another "phase diagram"

