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● In words: Goldstone’s theorem states that the spontaneous breaking of a 
continuous symmetry implies the existence of massless (Goldstone) bosons

● QFT language: if j μ is the conserved current associated with the symmetry, 
and A is some local field whose transformation under the symmetry has a 
non-trivial vev: <δA> = limR→∞<[QR, A]> 0≠ , then:

  → The Fourier transform of <[j 0(x), A(y)]> contains a δ(p2) singularity

● In fact... current conservation and field locality means that <δA> 0≠   
implies the Fourier transform of <[j 0(x), A(y)]> contains a δ(ω) component 
as p → 0. This is independent of the properties of the background state 

*

● The Goldstone “quasi-particle” δ(ω) becomes a stable massless particle 
state δ(p2) for relativistic QFTs       

 

 

             

1. Goldstone’s theorem in vacuum

* See: [F. Strocchi, Symmetry Breaking, Lect. Notes Phys. 732 (2008)]
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2. Generalisation to finite temperature

● For T = 1/β >0, one defines: <Φ(x1)...Φ(xn)>β = Z -1 Tr e- H β Φ(x1)...Φ(xn)

● There are some immediate implications:

● Since current conservation and field locality are unaffected by T, the 
Fourier transform of <[j 0(x), A(y)]>β  still contains a δ(ω) as p → 0

● Can we learn anything else about the properties of thermal Goldstone 
modes, e.g. what happens for p > 0 ?   

 

 

 

             

➢ Lorentz invariance ✘  →  but can retain rotational invariance
➢ Spectral condition (H >0) ✘  →  replaced by KMS condition   
➢ Field locality (causality) ✓ →  this is important!

Yes! The key is to determine how T modifies spectral functions       
ρAB(ω,p), the Fourier transform of the thermal expectation values    
<[ΦA(x), ΦB(y)]>β  [Bros, Buchholz, PRD 58 (1998)]   
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2. Generalisation to finite temperature

● For (complex) scalar fields, the constraints imposed for T  > 0 imply that 
the spectral function has the representation 

* 

● T > 0 effects amount to understanding: ρ(s) → Dβ(u,s), which tells us 
about the possible excitations that can exist in a thermal medium

● The non-trivial u dependence of Dβ(u,s) controls the extent to which the 
spectral function can be off the mass-shell p2

 = s 

● The s dependence determines whether the spectral function has energy ω 
thresholds, much like in the T = 0 case   

 

 

             

* See: [J. Bros and D Buchholz, Z. Phys. C 55 (1992), Ann. Inst. H.Poincare Phys.Theor. 64 (1996)]

“Thermal spectral density” This is the T > 0 generalisation of the 
textbook Källén-Lehmann representation!

~

~
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→  Thermoparticle components Dβ(u)δ(s-m2) reduce to those of a vacuum particle          
     with mass m in the limit T → 0

→  Non-trivial “Damping factor” Dβ(u) results                                                        
     in thermally-broadened peaks in the spectral                                                      
     function: this parametrises the effects of                                                           
     collisional broadening 

→  Component Dc,β(u,s) contains all other                                                             
     types of excitations, including those that                                                           
     are continuous in s

             

~

~

~

Proposition: the medium contains “Thermoparticles”: particle-like 
excitations which differ from collective quasi-particle modes, and show 
up as discrete contributions to Dβ(u,s)  [Bros, Buchholz, NPB 627 (2002)]

3. A thermal particle? → “Thermoparticle” 

~
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● There is mounting evidence for low-energy thermoparticle excitations, e.g. spatial 
correlator CPS(z) of the pseudo-scalar meson operator                    in lattice QCD

● Studies extracting pseudo-scalar spectral function in various channels: 

π

π

π*

π*
Light-light pseudo-scalar meson 
(pion) channel [P.L., O. Philipsen, 
JHEP 10, 161 (2022)] 

Light-strange (kaon) and strange-strange 
(eta) pseudo-scalar meson channels [D. Bala, 
O. Kaczmarek, P. L., O. Philipsen, and T. Ueding, 
JHEP 05, 332 (2024)] 

Data in all channels consistent with a thermoparticle-type ground state: suggests light 
pseudo-scalar mesons (pions, kaons,..) still have a bound-state-like structure, even at high T

3. A thermal particle? → “Thermoparticle” 
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4. Thermal Goldstone bosons

● Using the extra information given by the T  > 0 spectral representation, in 
[Bros, Buchholz, 1998] the authors were able to prove that the SSB condition 
<δA> 0 ≠  implies that <[j 

0(x), A(0)]>β  contains a massless thermoparticle 
component, which in position space has the form:

● This a thermal Goldstone boson: in the T → 0 limit DG(x) → 1, hence the 
current-field spectral function contains a vacuum Goldstone component 
δ(p2), as expected!     

● When the damping factor DG(x) is non-trivial, this causes the stable 
massless Goldstone peak at p2

 = 0 to become broadened 

 →  Describes the dissipative effects of the Goldstone boson moving         
      through the thermal medium
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4. Thermal Goldstone bosons

● This analysis reveals some very important characteristics:

     → The thermal Goldstone mode is never on-shell for T > 0 

     → This component can persist at any temperature, even if the           
          symmetry is restored when T >Tc 

Why? → Whether the vev v  vanishes or not depends on the functional     
             form of the damping factor DG(x)  

● This captures the physics! Sufficiently strong dissipative effects destroy the 
long-range order and lead to symmetry restoration

 

 

             

T = 0

T = Tc

DG(x) does not decay too rapidly → v > 0, broken phase

DG(x) has a rapid decay → v = 0, symmetry-restored phase

DG(x)=1, i.e. no dissipative effects, hence p2 = 0 mode
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4. Thermal Goldstone bosons

● If these thermal Goldstone modes are present one can look for their 
signatures in (Euclidean) correlation functions

● For simplicity, consider the QFT of a single complex scalar field at finite 
temperature, with two-point function

● If a thermal Goldstone mode is present, it follows from the thermoparticle 
structure and the spectral function representation that: 

● The mode dissipation is determined by the (model-dependent) factor DG(x) 

● For the spatial correlator  

   

 

 

             

→ For T → 0 the vacuum behaviour is recovered:

 See: [PL,O. Philipsen, 2022]
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5. Goldstone signatures from the lattice

● Now we know what the signatures of thermal Goldstone modes are, one 
can look for them in lattice data!

● Consider a simple model with SSB: U(1) complex scalar field theory

● In the broken phase at T = 0 the model contains a massless Goldstone 
boson and a resonance-like mode

→  Model expected to undergo a second-order phase transition: for T > Tc          
     the U(1) symmetry is restored, and |v |2 = <Φ><Φ†>= 0

● Standard perturbative intuition comes from neglecting the p-dependence of 
the Goldstone self-energy 

* → i.e. Goldstone has purely real poles ω = E(p)

● But this approximation is flawed at finite temperature...  

 

   

 

 

             

* See eg. [J. I. Kapusta and C. Gale, Finite-temperature Field Theory]

“Narnhofer-Requardt-Thirring Theorem” [Commun. Math. Phys. 92, 247 (1983)] 
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5. Goldstone signatures from the lattice

● The NRT theorem implies that states with purely real dispersion relations 
ω = E(p) cannot exist in interacting theories when T > 0

QFT reason: thermal states satisfy the KMS condition, and this gives rise 
to very different spectral constraints than in the vacuum case 

Physics reason: Dissipative effects of the thermal medium are everywhere-
present → always need to take these into account (i.e. always a width!)  

● This has significant implications for perturbation theory: neither free field, 
nor quasi-particle propagators with real poles can form the basis of finite-
temperature perturbative expansions [Landsman, Ann. Phys. 186, 141 (1988)]

● There is both analytic [Weldon, PRD 65 (2002)] and                                    
now numerical [PL, O. Philipsen, JHEP 08, (2024)]                                           
evidence for this perturbative breakdown
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5. Goldstone signatures from the lattice

● Investigate U(1) theory on a L  τ ×L3  lattice (L  τ =aN  τ ,L=aNs) with action

● Avoid potential triviality of the model by keeping lattice spacing a fixed 
throughout, hence T = (aNτ)-1 is varied in discrete steps

● Require a sufficiently fine and large lattice to ensure that the lattice 
temperature covers both the symmetry-broken and restored phases for 
large and small values of Nτ, respectively 

● In the broken symmetry phase at T = 0 the vev |v | sets the scale of the 
system, and separates long |x ||v | > 1 and short |x ||v | < 1 distances  

● To reduce cutoff effects one requires that Λ/|v | is large 

 → Choose lattice parameter set (am0, g0) which satisfies these conditions!
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● SSB does not occur in a finite spatial volume V = L3 , i.e. there is no 
notion of a “vev” on the lattice 

    →  One needs to perform an L→∞ extrapolation of lattice results!

● For T = 0 one has the general property:

● Based on this property there are different approaches 
* for extracting |v |2 

● Given periodic spatial boundary conditions one can use:

      →  But need a choice of parametrisation for CL(0,z = |x |) 

● For T = 0 the correlator will be dominated by the massless Goldstone, so 
this should also be true if the lattice is sufficiently cold, i.e. large N  τ

 →  CL(0,z) fits and extrapolation ansatz need to take this into account!

5. Goldstone signatures from the lattice

* See eg. [H. Neuberger, PRL 60,(1988).]



 15

5. Goldstone signatures from the lattice

Results from the coldest lattice (Nτ=32):
● To test the hypothesis that the system is in the vacuum-like broken phase 

we therefore fit the functional form:

● Functional form provides very good description of the data for each of the 
volumes considered (Ns = 32, 64, 96)

→ To extrapolate vev perform fits of CL(0,z =L/2 ) using |v |2 +B0/L2     

   

 

 

             

Massless mode for finite L

 T/|v| ~ 0.35, hence cold!

Non-zero if in broken phase
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5. Goldstone signatures from the lattice

Results from the hottest lattice (Nτ=2):

● In this case: T/|v| ~ 6, which indicates the system is hot and potentially in 
the symmetry-restored phase (for L→∞) 

● As outlined previously, the Goldstone mode can still persist in this regime, 
and would have the structure of a massless thermoparticle

● What is the structure of the damping factor DG(x)? Use spatial correlator:

● Spatial correlator fits provide excellent description of data over full range 
[0,L/2] for each of the (large) volumes considered (Ns = 64, 96, 128)

● This strongly indicates: (i) In symmetry-restored phase for L→∞  

        (ii) Goldstone damping factor is pure exponential  
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5. Goldstone signatures from the lattice

Results from the hottest lattice (Nτ=2):

● In this case, Goldstone two-point function has the form:

● To test the consistency of this conclusion one fits:

● Find that the functional form describes                                              
data increasingly better for larger volumes,                                          
and changes to the parametrisation lead                                             
to significant fit instabilities

● Non-trivial test:  
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5. Goldstone signatures from the lattice

Results from the hottest lattice (Nτ=2):

● Data strongly indicates that the correlator is dominated by massless 
thermoparticle component → a thermal Goldstone boson!

● One can use the extracted damping factor DG(x) = α e- |γ x| to compute the 
corresponding spectral function ρG(ω,p) of the Goldstone mode

● Spectral properties are very different to                                              
the vacuum case: ρG(ω,p) ~ δ(p2) 

→  Broadened peak structure around                                                
     the T = 0 singularity p2 = 0

● ρG(ω,p) very similar to vacuum resonance state, except the width γ = γ(T ) 
arises from collisional processes with the medium, not mixing effects     
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Summary & outlook 

● Goldstone’s theorem in vacuum has well-known consequences, but at finite 
temperature there still remain open questions

● One can use the non-perturbative constraints imposed by causality to gain 
new insights → ρ( ,ω p) have spectral representations

● This narrows down the potential excitations that can exist in a thermal          
medium → particle-like excitations: “Thermoparticles”

● SSB for T > 0 implies existence of Goldstone modes which have the structure 
of massless thermoparticles → these modes can persist at any temperature, 
even if the symmetry is restored  

● We find evidence for the existence of such modes                                      
in the U(1) complex scalar field theory on the lattice

→  Suggests pions in QCD could remain important                                   
      degrees of freedom in chiral limit for T > Tc        
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Backup: Rigorous definition of SSB

● In order to define SSB rigorously one needs to define a regularised charged 
operator QR, and this only converges for R→∞ within commutator [QR, A]

● The condition: limR→∞ <[QR, A]>=q  is then always well-defined, and q=0 is 
a necessary and sufficient condition for the existence of a unitary charge 
operator Q , defined by: <u,Qv> := limR→∞ <u,QRv>

→  If this is non-vanishing for any A then no such charge exists, i.e. SSB! 

● The condition for SSB reduces to:

● In the vacuum case this implies: D(+)(u,s) → iq (2π)3/2 δ(u)δ(s) 

● Whether q vanishes or not is determined by functional form of D(+)(u,s)     

(i) g(x)=1 for |x| 1, ≤ g(x)=0 for |x|  1+  ≥ ε

(ii) fd(x0) has compact support, and fd(x0)→δ(x0) for d→0    

~

~
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● How might one resolve inconsistencies of T > 0 perturbation theory?

● In the vacuum theory we know that the basis of perturbation theory is the 
Gell-Mann/Low formula [Landsman, Ann. Phys. 186, 141 (1988)]: 

● Correlation functions of interacting fields can be computed from correlators of 
free fields → This is derived from the fact that at large times the interactions 
between fields diminish: the asymptotic fields/states are free! 

● The standard perturbative series is defined by expanding the exponential in 
the evolution operator as a series in the coupling parameter → each term in 
the expansion is determined by the propagators of the asymptotic fields  

Backup: Perturbation theory

Key point: free field propagators form the basis of perturbation theory at 
T = 0 because the large-time states experience no interactions  
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● Standard approach: extract ρΓ( ,ω p) from temporal correlator CΓ(τ,p)  

● Instead, one can use the spatial correlator, where one integrates CΓ(τ,x) over 
{τ,x,y} and fixes a spatial direction z    

● It turns out that if thermoparticles exist, then                                                 
they will give a distinct contribution to C(z)

 

 

             

→ Problem is ill-conditioned,   
     need more information!

Backup: Thermoparticles in QCD data

~

[P.L., PRD 106 (2022); P.L., O. Philipsen, JHEP 10, 161 (2022)]   

→ This component can be extracted directly from data 

Goal: Extract information about the finite T spectral function ρΓ( ,ω p) from 
data of Euclidean correlator                                  OΓ = scalar operator  
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Given a specific QFT, what form should the damping factors take?

Idea: thermal scattering states are defined by imposing an asymptotic field 
condition [Bros, Buchholz, (2002)]:

    

● Since thermoparticles dominate the large-time behaviour of correlators, they 
are natural candidates for describing such states. It turns out that their 
damping factors Dm,β(u) are uniquely fixed by the asymptotic condition 

● In Φ4 theory one finds (where  κ is a thermal width): 

 

Asymptotic fields Φ0 are assumed to satisfy 
dynamical equations, but only at large x0

In Φ4 theory

~

For g < 0: For g > 0:

Backup: Thermoparticle characteristics
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● The robustness of the thermoparticle hypothesis can also be tested by 
comparing with different causal models, e.g. a Breit Wigner

● Same procedure as with the thermoparticle case: (i) extract the width 
parameter Γ and coefficient from the spatial lattice data (ii) use this to 
predict the corresponding temporal correlator

             

→ Data is not consistent with a Breit-Wigner-type ground state! 

Backup: Robustness of spectral approach
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● The standard textbook derivation (e.g. Peskin & Schroeder) depends on 
inserting a complete set of states 

        

 

● Note: the splitting                                    does not uniquely relate the (p-space) 
two-point function to the spectral function ρ( ,ω p)  

● But... if we impose the spectral condition ⇒

Field locality ⇒
[Φ(x),Φ(y)]=0 
for (x-y)2< 0   “Jost-Lehmann-Dyson (JLD) representation” 

Lorentz invariance ⇒

[R. Jost, H. Lehmann Nuovo Cim. 5, 1957;  F.J. Dyson, Phys. Rev. 110, 1958]  

→ But this assumes one knows what the spectrum is!

← KL representation for ρ( ,ω p)

Instead: use QFT constraints: (i) field locality, (ii) Lorentz invariance, (iii) spectral condition 

Backup: Vacuum spectral representations

When T>0 
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