

Deconfinement as percolation of electric center fluxes in QCD

Benasque, 12 February 2025

Lorenz von Smekal

Milad Ghanbarpour, Quark Numbers and Percolation in QCD, PhD thesis, JLU, Dec. 2024

PRD 106 (2022) 054513

Hilbert Space

• Form of states:

Kogut & Susskind, PRD 11 (1975) 395

$$|\psi
angle = \sum \left(f(U)\otimes |\psi_F
angle
ight)$$

• Implement Gauss law (physical States):

• transform at single site:

$$\begin{split} \hat{\rho}(\Omega) &\to \hat{\Pi}_{i}(\Omega) \prod_{j \sim i} \hat{\Pi}_{\langle i,j \rangle}(\Omega) \\ \hat{Q}_{i}^{a} & \uparrow \\ \hat{C}_{i}^{a} & \hat{E}_{\langle i,j \rangle}^{a} & \hat{I}_{\langle i,j \rangle} & \begin{pmatrix} \hat{\Pi}_{\langle i,j \rangle}(\Omega) f \end{pmatrix}(U) = \\ & \begin{cases} f(\{\dots, \Omega^{\dagger}U_{\langle i,j \rangle}, \dots\}) \\ f(\{\dots, U_{\langle j,i \rangle}\Omega, \dots\}) \end{cases} \end{split}$$

• generated by:

color-electric fluxes

Hilbert Space

local Gauss law:

$$\hat{Q}_i^a = -\sum_{j\sim i} \hat{E}^e_{\langle i,j\rangle}$$

in physical states

but charges/fluxes not gauge invariant, and don't commute

• restrict to Z₃ center:

$$\hat{Q}_i^z = \hat{\Pi}_i(z) \qquad \hat{E}_{\langle i,j\rangle}^z = \hat{\Pi}_{\langle i,j\rangle}(z) \qquad z \in \{1, e^{\frac{2\pi}{3}i}, e^{\frac{4\pi}{3}i}\}$$

gauge invariant and commute

• local center charge and flux:

 $q, e \in \{0, 1, 2\}$

$$\hat{Q}_{i}^{z} |q,e\rangle = z^{q_{i}} |q,e\rangle \qquad \hat{E}_{\langle i,j\rangle}^{z} |q,e\rangle = z^{e_{\langle i,j\rangle}} |q,e\rangle$$

• decompose:

$$\mathcal{H} = \oplus_{\{q,e\}} \mathcal{H}_{\{q,e\}}$$

Physical States

Bundesministerium für Bildung

und Forschung

• local Z₃ Gauss law:

$$q_i + \sum_{j \sim i} e_{\langle i, j \rangle} = 0 \mod 3$$

$$\mathcal{H}_{\mathrm{phys}} = \oplus_{\{q,e\}_{\mathrm{phys}}} \mathcal{H}_{\{q,e\}}$$

• mesonic state:

Physical States

• project onto these sectors:

$$\hat{P}_{i}(q) = \frac{1}{3} \sum_{z \in Z_{3}} z^{-q} \, \hat{Q}_{i}^{z} \qquad \qquad \hat{P}_{\langle i,j \rangle}(e) = \frac{1}{3} \sum_{z \in Z_{3}} z^{-e} \, \hat{E}_{\langle i,j \rangle}^{z}$$

• use Z₃ Gauss law:

$$\underbrace{\prod_{i \in V} \hat{Q}_i^z |\psi}_{= \hat{Q}_V^z} = \underbrace{\prod_{\langle i,j \rangle \in \mathcal{S}^*} \hat{E}_{\langle j,i \rangle}^z |\psi}_{= -\hat{\Phi}_{\mathcal{S}=\partial V}^z}$$

to implement charges via fluxes

• define projection operator

flux e through $\mathcal{S} = \partial V$

$$\hat{P}_{\mathcal{S}}(e) = \frac{1}{3} \sum_{z \in Z_3} z^{-e} \hat{\Phi}_{\mathcal{S}}^z$$

Mack, PLB 78 (1978) 263 Kijowski & Rudolph, J. Math. Phys. 43 (2002) 1796; *ibid*. 46 (2005) 032303

Transfer Operator

$$Z(\beta,\mu) = \operatorname{Tr}\left(e^{\beta\mu\hat{N}_q}\hat{T}^{N_4}\hat{P}_0\right)$$

Lüscher, Com. Math. Phys. 54 (1977) 283

Borgs & Seiler, Com. Math. Phys. 91 (1983) 329

JUSTUS-LIEBIG-

🗐 UNIVERSITÄT

GIESSEN

Palumbo, NPB 645 (2002) 309

Mitrjushkin, NPB (PS) 119 (2003) 326

project on gauge-invariant states (with Gauss' law)

$$\hat{P}_0 |\psi\rangle = \int \mathcal{D}h \,\hat{\varrho}(h) \,|\psi\rangle$$

• transfer operator:

$$\hat{T}(f(U) \otimes |\psi_F\rangle) = \int \mathcal{D}U' K(U, U') (f(U') \otimes |\psi_F\rangle)$$

• with kernel:

$$\begin{split} K(U,U') &= T_F^\dagger(U) T_G^\dagger(U) S(U,U') T_G(U') T_F(U') & \text{symmetric, Lüscher} \\ K(U,U') &= S(U,U') T_G^\dagger(U') T_G(U') \tilde{T}_F(U') & \text{asymmetric, Milad} \end{split}$$

same PI representation of partition function hermitian (Wilson fermion) Hamiltonian in time-continuum limit

• apply center-flux operator:

$$\begin{split} \big(\hat{E}_{\langle i,j \rangle}^{z} K \big) (U,U') &= S(U^{z},U') T_{G}^{\dagger}(U') T_{G}(U') \tilde{T}_{F}(U') \\ & \uparrow \\ & \text{only acts on spatial link variables here,} \quad U^{z} = \begin{cases} & \{\dots, z^{*} U_{\langle i,j \rangle}, \dots\} \\ & \{\dots, U_{\langle j,i \rangle} z, \dots\} \end{cases} \end{split}$$

• EVs of center-flux configurations:

$$\left\langle \prod_{\langle i,j\rangle\in\mathcal{S}^*} \hat{E}^z_{\langle i,j\rangle} \right\rangle = \frac{1}{Z} \operatorname{Tr}\left(\left[\prod_{\langle i,j\rangle\in\mathcal{S}^*} \hat{E}^z_{\langle i,j\rangle} \right] e^{\beta\mu\hat{N}_q} \hat{T}^{N_4} \hat{P}_0 \right)$$

single plaquette flip for
$$\langle \hat{E}_{\langle i,j \rangle}^{z} \rangle$$

$$= \int \mathcal{D}[\dots] e^{-S_{G}^{z}(U,\{z\})} e^{-S_{F}(\overline{\psi},\psi,U,\mu)}$$
flip all temporal plaquettes $U_{p} \rightarrow z^{*}U_{p}$
with spatial link in S^{*}

 $\langle i,j
angle$: forward

backward link

Closed Center Vortex Sheets

• pure gauge theory remove with variable transform

heavy-dense limit of QCD
 static formion determinant

static fermion determinant

• Z₃-Fourier transform over closed center vortex sheets

fix electric flux through $S = \partial V$

or net quark number mod. 3 inside

Quarks in a Finite Volume

• with arbitrary spatial hops

(anti-)quarks/diquarks can hop in and out of V

• introduce between all time slices

 $N_{ au}$ closed center-vortex sheets

• Z₃-Fourier transforms

over $N_{ au}$ closed center-vortex sheets

→ selective static membrane at $S = \partial V$ (only hadrons can pass)

with

• fix charge in V

Ghanbarpour, LvS, PRD 106 (2022) 054513

only in gauge action

JUSTUS-LIEBIG-

MUNIVERSITÄT

GIESSEN

$$Z(q_V \mod 3 = e) = \frac{1}{3^{N_\tau}} \sum_{\{z_\tau \in Z_3\}} \left[\prod_{\tau=1}^{N_\tau} z_\tau^{-e} \right] Z(\{z_\tau\})$$

total charge (net quark number) modulo 3 in sub-volume V, write $q_V =_3 e$

$$Z(\{z_{\tau}\}) = \int \mathcal{D}[\ldots] e^{-S_G(\{z_{\tau}\}, U) - S_F(U, \overline{\psi}, \psi)}$$

twisted plaquette action

Heavy-Dense QCD

• effective Polyakov-loop theory

(1 flavor Wilson)

$$Z_{\mathsf{eff}} = \int \left(\prod_{i} \mathrm{d}L_{i} J(L_{i}) Q(L_{i})\right) \prod_{\langle i,j \rangle} \left(1 + 2\lambda \operatorname{Re}L_{i}L_{j}^{*}\right)$$

Fromm, Langelage, Lottini, Philipsen, JHEP 01 (2012) 042 Langelage, Neuman, Philipsen, JHEP 09 (2014) 131

leading order hopping expansion static fermion determinat → site factors

$$Q(L) = \left(1 + hL + h^2L^* + h^3\right)^2 \left(1 + \bar{h}L^* + \bar{h}^2L + \bar{h}^3\right)^2$$

where

Pietri, Feo, Seiler, Stamatescu, PRD 76 (2007) 114501

$$h(\mu) = e^{(\mu - m)/T}$$
$$\bar{h}(\mu) = h(-\mu)$$

Effective Potts Model

• for QCD at strong coupling

with static fermion determinant

$$\begin{split} Z_{\text{eff}} &= \mathcal{N} \sum_{\{z_i \in Z_3\}} \exp\left\{\sum_{\langle i,j \rangle} 2\gamma \operatorname{Re} z_i z_j^*\right\} \times \\ &\left(\prod_i \left(1 + h z_i + h^2 z_i^* + h^3\right)^2 \left(1 + \bar{h} z_i^* + \bar{h}^2 z_i + \bar{h}^3\right)^2\right) \\ & \text{ with } \quad \gamma = \frac{1}{3} \ln\left(\frac{1 + 2\lambda}{1 - \lambda}\right) \end{split}$$

• Roberge-Weiss symmetric

from global Z₃ symmetry

$$Z_{\rm eff}(T,\mu=i\theta T) \equiv Z_{\rm eff}^{I}(\theta) = Z_{\rm eff}^{I}(\theta+2\pi/3)$$

flux-tube model representation (dual)

Ghanbarpour, LvS, PRD 106 (2022) 054513

Bernard, DeGrand, DeTar, Gottlieb, Krasnitz,

Sugar, Toussain, PRD 49 (1994) 6051

Condella & DeTar, PRD 61(2000) 074023

analogous to:

$$Z_{\rm eff}(T,\mu) = \sum_{\{n,l\}_{\rm phys}} \exp\left\{-\beta \left(H(n,l) - \mu \sum_i q_i\right)\right\}$$
 analogous to:
Patel, NPB 243 (1984) 411

 ϕ_i

here with:

string tension $H(n,l) = \sum_{\langle i,j \rangle} \sigma |l_{\langle i,j \rangle}| + \sum_{i,s} m(n_{i,s} + \bar{n}_{i,s})$

fluxes represented by link variables:

$$l_{\langle i,j\rangle}\in\{-1,0,1\}$$

(anti-)quark occupation numbers:

• Z₃-Gauss' law:

(Poisson equation)

$$\sum_{j \sim i} l_{\langle i,j \rangle} - \sum_{s} (n_{i,s} - \bar{n}_{i,s}) = 0 \mod 3$$

 $q_i \mod 3$

 $n_{i,s} \in \{0, \ldots, 3\}$ and $\bar{n}_{i,s} \in \{0, \ldots, 3\}$

flux from volume around site i

net-quark number modulo 3

spin s = {↑,↓}

Ensembles with Fixed Flux

• Z₃-Fourier transform

$$Z(q_V =_3 e) = \frac{1}{3} \sum_{z \in \mathbb{Z}_3} z^{-e} Z_S(z)$$

Z₃-flux ensembles

Z₃-interface ensembles

interface ensembles

$$s_{\langle i,j\rangle} = \begin{cases} 1, & \langle i,j\rangle \in \mathcal{S}^* \\ -1, & \langle j,i\rangle \in \mathcal{S}^* \\ 0, & \text{otherwise} \end{cases}$$

Test in (1+1)d

• net quark number density

 $L=20\,,~\sigma a/m=0.3$

12 February 2025 | Lorenz von Smekal | p. 15

Bundesministerium für Bildung und Forschung

• expectation value:

electric center-flux through link $\langle i,j
angle$

$$\left\langle \hat{E}^{z}_{\langle i,j \rangle} \right\rangle = \frac{1}{Z} \operatorname{Tr} \left(\hat{E}^{z}_{\langle i,j \rangle} e^{\beta \mu \hat{N}_{q}} \hat{T}^{N_{4}} \hat{P}_{0} \right)$$

• probability:

of obtaining value $\ e \in \{0,1,2\}$

$$p(e_{\langle i,j\rangle}) = \left\langle \hat{P}_{\langle i,j\rangle}(e) \right\rangle = \frac{1}{3} \sum_{z \in Z_3} z^{-e} \left\langle \hat{E}^z_{\langle i,j\rangle} \right\rangle$$

$$=\frac{1}{3}\sum_{z\in Z_3} z^{-e_{\langle i,j\rangle}} \left\langle e^{\frac{2}{g^2}\operatorname{ReTr}\left([z^*-1]U_p\right)} \right\rangle$$

• bond probability:

$$p_b = 1 - p(e_{\langle i,j \rangle} = 0)$$
$$= \frac{2}{3} \left\langle 1 - \cosh\left(\frac{\sqrt{3}}{g^2} \operatorname{Im}\operatorname{Tr} U_p\right) e^{-\frac{3}{g^2}\operatorname{Re}\operatorname{Tr} U_p} \right\rangle$$

Bond Probability in QCD

Bundesministerium

für Bildung

und Forschung

strong-coupling limit:

 $p_b \to 0$

 $< p_c$, never have percolation, confinement

• at weak coupling, high T:

$$p_b \to \frac{N_c - 1}{N_c} = \begin{cases} 1/2, & N_c = 2\\ 2/3, & N_c = 3\\ 1, & N_c \to \infty \end{cases}$$

asymptotically larger than p_c in all cases, percolating electric fluxes deconfinement

• spanning probability:

$$R_1(T,\mu,L) = \sum_{\{q,e\}\in\mathcal{R}_1} \frac{1}{Z} \operatorname{Tr} \left(\hat{P}_{\{q,e\}} e^{\beta\mu\hat{N}_q} \hat{T}^{N_4} \hat{P}_0 \right)$$

CRC-TR 211

$$\omega(\{s,b\}) = \prod_{\langle i,j \rangle} \left(e^{-K} \delta_{b_{\langle i,j \rangle},0} + (1 - e^{-K}) \delta_{b_{\langle i,j \rangle},1} \delta_{s_i,s_j} \right) \prod_i e^{h \delta_{s_i,0}}$$

site-bond representation

Edwards & Sokal, PRD 38 (1988) 2009

JUSTUS-LIEBIG-

UNIVERSITÄT

GIESSEN

• place bond: $b_{\langle i,j\rangle} \in \{0,1\}$ with probability $1-e^{-K}$

between like nearest-neighbor spins $s_i \in \{0, 1, \ldots q-1\}$

- infinite external field: $h \to \infty \iff$ bond percolation with bond probability $p = 1 - e^{-K}$, K = J/T controlled by temperature
- vanishing external field: h
 ightarrow 0,

if $p = p_c$ at $T = T_b > T_c \rightsquigarrow$ bond percolation in ordered phase below T_c

lose at Curie temperature T_c

CRC-TR 21

Percolation in Potts Model

JUSTUS-LIEBIG-UNIVERSITAT GIESSEN

• q-state Potts, 2 dimensions:

Blanchard, Gandolfo, Laanait, Ruiz, Satz, J. Phys. A 41 (2008) 085001

• spanning probability:

CRC-TR 21

$$R(T,\mu,L) = \frac{1}{Z_{\text{flux}}} \sum_{\{n,l\}\in\mathcal{R}} \exp\left\{-\beta \left(H(n,l) - \mu q\right)\right\}$$

set of percolating configs \mathcal{R} :

contain at least one cluster of bond configurations spanning the entire volume in at least one direction

• simulate with worm algorithm

Prokof'ev & Svistunov, PRL 87 (2001) 160601 Korzec & Vierhaus, 2011, CPC 182 (2011) 1477 Delgado, Evertz, Gattringer, CPC 183 (2012) 1920 Rindlisbacher, Akerlund, de Forcrand, NPB (2016) 542

• measure with fully-dynamic connectivity algorithm

Holm, Lichtenberg, Thorup, J. ACM 48 (2001) 723 Alexandru, Bergner, Schaich, Wenger, PRD 97 (2018) 114503

JUSTUS-LIEBIG-

UNIVERSITÄT

GIESSEN

- infinitely heavy quarks
 - Z₃-Potts (1st order transition)

Bundesministerium

für Bildung

und Forschung

• infinitely heavy quarks

Z₃-Potts (1st order transition)

massless limit

bond percolation (2nd order)

JUSTUS-LIEBIG-

Wang, Zhou, Zhang et al., PRE 87 (2013) 052107

massless limit

bond percolation (2nd order)

 $m=0,\ \mu=0$ 1 $\nu^{-1} = 1.1410(15)$ 2^{nd} order FSS $p_{\rm c} = 0.24881182(10)$ 0.8 $\rightsquigarrow (\beta \sigma a)_{\rm c} \approx 1.7981$ $R(\beta\sigma a,L)$ 0.6 $0.4 \notin L = 16$ L = 20L = 24 \longrightarrow $0.2 \downarrow L = 32$ $L = 40 \quad \longrightarrow$ L = 52L = 640 -220 6 8 -6-44 $(\beta\sigma a - (\beta\sigma a)_{\rm c}) \cdot L^{1/\nu}$

12 February 2025 | Lorenz von Smekal | p. 25

Bundesministerium für Bildung und Forschung

• fairly light quarks

smooth Z₃-Potts crossover

• fairly light quarks

smooth Z₃-Potts crossover

• medium heavy quarks

medium heavy quarks

still in Z₃-Potts crossover region

• universal scaling function

Summary

und Forschung

• Quarks and triality in a finite volume

from FTs over stacks of closed center vortex sheets

• Proof in two ways:

[see Ghanbarpour & LvS, PRD 106 (2022) 054513]

1. dualization of quark action

Gattringer & Marchis, NPB 916 (2017) 627 Marchis & Gattringer, PRD 97 (2018) 034508

2. transfer matrix approach

Lüscher, Com. Math. Phys. 54 (1977) 283, Borgs & Seiler, Com. Math. Phys. 91 (1983) 329 Palumbo, NPB 645 (2002) 309, Mitrjushkin, NPB (PS) 119 (2003) 326 effective theory dual to flux-tube model $\Delta F/m$

Summary & Outlook

Percolation of electric fluxes in effective theory

geometric deconfinement phase transition at strong coupling with static fermion determinant

expect: geometric deconfinement phase transition

have: gauge invariant definition of fluxes and spanning probability

Thank you for your attention!

Bundesministerium für Bildung und Forschung

