Evidence for a second finite temperature QCD transition from center vortices + some speculations

Chris Allton¹, Ryan Bignell², Derek Leinweber³, Jackson Mickley³

(1) Swansea University, U.K.(2) Trinity College, Dublin, Ireland(3) University of Adelaide, Australia

FASTSUM Collaboration

Overview

- FASTSUM approach
 - Anisotropic
- Maximal Centre Gauge
 - Vortices Faber, Greensite, Olejník Phys.Lett.B 474 (2000) 177
- Measurements
 First study of Centre Vortices in thermal QCD
 - Vortex & Branching Point Density
 - Cluster Extent
 - Correlations
- 2 Transition(s) in QCD ?
- Some Speculations

FASTSUM Approach: Anisotropic Lattice

 \mathcal{T}

FASTSUM Approach: Lattice Parameters

FASTSUM Phys.Rev.D105(2022)3, 034504

Maximal Centre Gauge

Conservation of Flux modulo 3

0. Visualisation Space-Space-Space

0. Visualisation Space-Space-Space

O. Visualisation Space-Space-Time

0. Visualisation Space-Space-Time

Connection with Percolation and Area Law

Engelhardt, Langfeld, Reinhardt, Tennert Phys.Rev.D 61 (2000) 054504 Mickley, Kamleh, Leinweber 2405.10670

Nt=64 T=95MeV

Nt=8 T=760MeV

1. Temporal Vortex Correlators

2. Cluster Extent Space-Space-Time

Maximal Centre Gauge Anisotropic Lattices

FASTSUM Phys.Rev.D 105 (2022) 3, 034504

3. Vortex Density Fits around transitions

4. Secondary Clusters

5. Branching Point Density Number per 3-Volume

5. Branching Point Density Number per 3-Volume

6. Linear Branching Point Density Number of branches per unit vortex length

Estimates of "Transition" Temperatures

Quantity	Fit	T_1/T_c	$T_1 ~({ m MeV})$	T_2/T_c	$T_2 ({\rm MeV})$
$ ho_{ m vortex}$	Space-space	0.981(8)(18)	163.9(1.3)	1.913(6)(34)	319.7(1.0)
	Space-time	0.983(8)(18)	164.1(1.4)	1.983(6)(36)	331.4(1.0)
$ ho_{ m branch}$	Temporal slices	0.982(8)(18)	164.1(1.3)	1.881(5)(34)	314.3(0.9)
	Spatial slices	0.983(8)(18)	164.2(1.3)	1.915(6)(34)	320.0(0.9)
$\lambda_{ ext{branch}}$	Temporal slices	0.984(9)(18)	164.5(1.6)	1.921(7)(35)	321.0(1.2)
	Spatial slices	0.983(9)(18)	164.3(1.6)	1.935(8)(35)	323.4(1.4)

10 measurements of 7 properties

$$T_d$$
 = 321(6) MeV = 1.92(5) T_c (i.e. $N_{ au}^d pprox$ 19)

T_C from Chiral Condensate FASTSUM Phys.Rev.D 105 (2022) 3, 034504

Proposed QCD Phase Diagram

Overview Part 1

- FASTSUM approach
 - Anisotropic
- Maximal Centre Gauge
 - Vortices
- Measurements
 - Temporal Correlations
 - Cluster Extent
 - Vortex Density
 - Secondary Clusters
 - Branching Point Density
 - Linear Branching Point
 - Chain Length Probability
- Transition(s) in QCD ?
 - Recent Proposals of new QCD phase

 a_s

Speculative Entropic Arguments

Consider Lattice QCD as a Stat Mech model.

1d Ising Model: $Z = \sum e^{-\beta S}$ where $S = -J \sum_{\langle ij \rangle} s_i s_j$

Peierls argument: consider kink:

Speculative Entropic Arguments Centre Vortices in QCD

J. Greensite, Progress in Particle and Nuclear Physics 51 (2003) I-83 Kinks in 1D Ising model are equivalent to Centre Vortex clusters i.e. dominant states are (closed) loops of vortices

• Simplest:

i.e. plaq (in dual lattice)

- Energy \propto Length
- Large loops have more d.o.f.

- *i.e. much higher multiplicity*

Connected versus Disconnected Centre Vortices in QCD

Consider 2 disconnected clusters:

Can represent these in terms of connection matrix:

Connected versus Disconnected Centre Vortices in QCD

Vortex cluster is a cluster in \mathscr{C}_{ii} connecting (non-zero) elements

Now consider larger cluster of length $L = L_1 + L_2$

i.e. Percolation

Speculative Entropic Arguments Continuum Limit in QCD

Above was Stat Mech, *L* in lattice units

Write $L^{phys} = L a$ = fixed and multiplicity $N(L) = e^{f(L)}$

Schematically:
$$Z = \sum_{L} e^{f(L) - \beta L} = \sum_{L} e^{f(L^{phys}/a) - \beta L^{phys}/a}$$

 $\approx \sum_{L} e^{f(L^{phys}/a) + (\ln a) L^{phys}/a}$

If $f(L) \nearrow$ sufficiently fast with $L \longrightarrow \exists$ percolation \longrightarrow Confinement

Speculative Entropic Arguments Finite Temperature

4d volume = $V_3 N_{\tau} = N_s^3 \times N_{\tau}$

(Fixed a) thermodynamic limit is $N_s \nearrow$ with $N_{ au}$ constant

Also require periodic boundary conditions

→ *Simplest* vortex loops tend to run parallel with temporal direction Consider adding more structure:

Since $N_s^3 \gg N_{\tau}$

----- Far higher multiplicity to add this structure in spatial direction

 \rightarrow Percolation remains in spatial direction after it switches off in temporal

Overview Speculative Entropic Argments

- Peierls Entropic Argument
 - Following Greensite
- Percolation in large dimension favoured
 - Large number of small clusters disfavoured
- Continuum Limit
 - Percolation always dominates?
- Finite Temperature
 - Percolation remains in spatial direction
 - \rightarrow We are expanding around wrong state
 - Topological Nature of vortex clusters
 - Multiplicity of vortex clusters

3. Vortex Density Number per Area

