QCD Thermodynamics Explored with Chiral Fermions

Yasumichi Aoki

Field Theory Research Team RIKEN Center for Computational Science (R-CCS)

Confinement and symmetry from vacuum to QCD phase diagram @ Benasque Science Center, Feb.10, 2025

R-CCS: hosting Japanese flagship machine:

Supercomputer Fugaku: 富岳

Test operation started in 2020 Full operation from 2021-. 富人

Members of Field Theory Research Team

Regular Members

I. Kanamori

J. Goswami

K. Nakayama

Y. Nakamura (concurrent)

Xiaoyang Wang (concurrent)

Visiting Affiliates

S. Aoki

S. Hashimoto

M. Fukuma

A. Tomiya

Former Members (since 2018)

Z. Yu T. Ishikawa

R. Tsuji

A. Portelli

Members of Field Theory Research Team

Regular Members

Y. Aoki

I. Kanamori

K. Nakayama

Y. Nakamura (concurrent)

Xiaoyang Wang (concurrent)

Visiting Affiliates

S. Aoki

S. Hashimoto

K. Nitadori

(concurrent)

M. Fukuma

A. Tomiya

Z. Yu T. Ishikawa

R. Tsuji

J. Goswami

https://www.r-ccs.riken.jp/labs/ftrt/

Pushing forward the reach of quantum field theories meson/ CKM nucleon lx: o unitarity o inclusive ex: structure radius method algorithm exclusive code computer State of matter Real time dynamics ex: QCD phase transition Scattering etc.

Pushing forward the reach of quantum field theories - current

- Use of chiral fermions for fine lattices
 - QCD phase transition
 - heavy quark physics (B mesons)
- Beyond conventional LQCD "measurements"
 - towards nucleon properties on Big lattices -
 - coarser lattices, new scheme proton decay –
 - QED and isospin breaking effects \rightarrow B meson –
- Beyond conventional LQCD "simulations"
 - Tensor networks, higher dim., systematic error –
 - Al acceleration, new alg. (world volume)
 - Quantum
- Beyond Fugaku:
 - FugakuNEXT Feasibility Study -
- Beyond conventional data share:
 - JLDG (Japan Lattice Data Grid) & ILDG (International Lattice Data Grid) → ILDG 2.0

Nakamura, Kanamori, Nitadori,,,

- LOCD frameworks
 - OWS:
 - Grid/Hadrons:
 - Bridge++:
 - BQCD:

Portelli; tuning: Kanamori, Nakamura; new measurements: Zhang, *Kanamori, Goswami* et al, → DWF meas., R&D for multi-grid etc Nakamura et al.

Nakamura. Aoki

Goswami, Zhang, Kanamori, Nakamura, Aoki

Portelli, Aoki, et al

[Tomiya], [Fukuma]

R. Tsuji (JRA), Aoki, with PACS

Nakayama, Nakamura, [Lin]

Goswami, Nakayama, Wang

Aoki, Kanamori, Nakamura, Nitadori

Aoki, et al & Aoki, Shintani, Tsuji,,

Aoki, Kanamori, Nakamura

Pushing forward the reach of quantum field theories – current \rightarrow near term

- Accelerating Simulation / Computation in LQCD
 - *R&D for AI acceleration for LQCD Tomiya w/ couple of Grad students*
- Beyond $\mu = 0 \rightarrow \mu \neq 0$
 - seeking seeds in new methods -
- Target Physics Computation of Tensor Network Lin, Nakayama
 - seeking good model to study –
- Quantum Computing
 - seeking seeds towards particle physics
 - to be discussed
- Beyond Fugaku:
 - FugakuNEXT codesign (using Bridge++)- Kanamori, Nakamura, Nitadori
 - \rightarrow online ~2030-

Fukuma et al

"Columbia Plot" is often used to discuss QCD phase

- for arbitrary values of u=d, s quark masses
- phase structure itself is interesting object
- help understand the physical point
- Focus: **chiral** regime: $m \rightarrow 0$

• This is the plot many of us would have drawn a few years ago

- "Columbia Plot" is often used to discuss QCD phase
 - for arbitrary values of u=d, s quark masses
 - phase structure itself is interesting object
 - help understand the physical point
 - Focus: **chiral** regime: $m \rightarrow 0$

 This is the plot many of us would have drawn a few years ago

- Pisarski and Wilczek PRD 1984
 - effective model / ε expansion
 - 1st order expected near origin ($N_f=3$ chiral limit)
- Columbia group: Brown et al PRL 1990
 - first lattice QCD computation

$N_f=3$ chiral limit is a hot topic

- related non-lattice studies
 - G. Fejos, PRD 22
 - Kousvos and Stergiou, SciPost Phys. 23
 - Pisarski and Rennecke, PRL 23
 - Fejos and Hatsuda PRD 24

"Columbia Plot" is often used to discuss QCD phase

- for arbitrary values of u=d, s quark masses
- phase structure itself is interesting object
- help understand the physical point
- Focus: **chiral** regime: $m \rightarrow 0$

• This is the plot many of us would have drawn a few years ago

Diagonal search: Fate of the chiral 1st order region

- Wilson Fermion: Kuramashi et al (2020)
 - 1^{st} order observed for a > 0
 - region shrinks towards $a \rightarrow 0$

 ∞

"Columbia Plot" is often used to discuss QCD phase

- for arbitrary values of u=d, s quark masses
- phase structure itself is interesting object
- help understand the physical point
- Focus: **chiral** regime: $m \rightarrow 0$

Diagonal search: Fate of the chiral 1st order region

"Columbia Plot" is often used to discuss QCD phase

- for arbitrary values of u=d, s quark masses
- phase structure itself is interesting object
- help understand the physical point
- Focus: **chiral** regime: $m \rightarrow 0$

 This is the plot many of us would have drawn a few years ago

Diagonal search: Fate of the chiral 1st order region

- Wilson Fermion: Kuramashi et al (2020)
 - 1^{st} order observed for a > 0
 - region shrinks towards $a \rightarrow 0$
- Naive Staggered Fermion: Cuteri et al (2021)
 - no 1st order region for $N_f = 3$
- HISQ (improved staggered): Dini et al (2022)
 - consistent with no 1st order (critical scaling)
- We tackle this problem with "Chiral Fermion"

Each fermion has its pros and cons

- chiral: domain wall fermion (DWF), overlap fermion
- non-chiral: Wilson fermion, staggered fermion

Flavor, chiral symmetries for N_f number of flavors: 2 for u,d, 3 for u,d,s

 $SU(N_f)_L \times SU(N_f)_R = SU(N_f)_V \times SU(N_f)_A$

 $SU(N_f)_A$ is broken at low T by QCD dynamics, but formulation should have the symmetry how are they intact for each fermions - in very rough image: staggered tastes

We use **domain wall** fermions (best practical); cons = computationally demanding

• N_f=3 phase hunting

YA⁽¹⁾, S. Hashimoto⁽²⁾⁽³⁾, I. Kanamori⁽¹⁾, T. Kaneko⁽²⁾⁽³⁾⁽⁴⁾, Y. Nakamura⁽¹⁾, Y. Zhang⁽⁵⁾

 \bullet $N_f{=}2{+}1$ thermodynamics with line of constant physics

```
YA<sup>(1)</sup>, H. Fukaya<sup>(6)</sup>, J. Goswami<sup>(1)</sup>,
```


S. Hashimoto⁽²⁾⁽³⁾, I. Kanamori⁽¹⁾, T. Kaneko⁽²⁾⁽³⁾⁽⁴⁾, Y. Nakamura⁽¹⁾, Y. Zhang⁽⁵⁾

- (1): RIKEN Center for Computational Science
- (2): KEK
- (3): SOKENDAI
- (4): Kobayashi-Maskawa Institute, Nagoya Univ.
- (5): Bielefeld University
- (6): Osaka University

QCD phase hunting

- T>0 QCD using fine lattice chiral fermions: domain-wall (DWF) [JLQCD]
 - $N_f=3$ hunting QCD phase boundary
 - Columbia plot: a long-standing problem in Lattice QCD
 - $m \simeq 220 MeV$: crossover !

RIKEN

- $m \simeq 40 \; MeV$: crossover !
- $m \simeq 4 MeV$: crossover likely
- [PoS Lattice 2021, 22, 23, 24]

QCD phase hunting: ③ T=120 MeV

DWF and Overlap Fermion

- DWF: 4D + extra 1D formulation
- $\mathsf{DWF}(\mathsf{L}_{\mathsf{s}} \rightarrow \infty) \rightarrow \mathsf{Overlap}$
- DWF: small residual breaking *m*_{res}
 - $m_{res} \sim 1/L_s$
- Overlap: exact symmetry: $m_{res} = 0$

5.5 $\chi_{\rm disc}^{\overline{\rm MS}}(\mu = 2\,{\rm GeV})[{\rm GeV}^2]$ φ 54.5 $N_s^3 \times N_t \times L_s = 36^3 \times 12 \times 16$ $N_s^3 \times N_t \times L_s = 24^3 \times 12 \times 16$ 3.53 2.52 1.51 0.52 10 12 16 200 8 18 $(m_q + m_{\rm res})^{\overline{\rm MS}}(\mu = 2\,{\rm GeV})\,[{\rm MeV}]$

same $L_s=16$, different V

testing the effect of finite L_s

- $L_s=16$ (main)
 - $am_{res} = 0.00613(9)$
 - $m_{res}^{MS} = 7.2(1) \text{ MeV}$
- L_s=32
 - $m_{res}^{MS} \simeq 4 \text{ MeV}$
- Susceptibility: consistent
 - finite L_s effect properly captured

QCD phase hunting: ③ T=120 MeV

Light quark $\Sigma = -\langle \overline{\psi}\psi \rangle$: no power div. in disconnected susceptibility

•
$$\chi_{disc} = \langle \overline{u}u \cdot \overline{d}d \rangle - \langle \overline{u}u \rangle \langle \overline{d}d \rangle$$

- power divergence in $\langle \overline{\psi}\psi
 angle$ cancels out
- no new divergence over $\boldsymbol{\Sigma}$ because no new contact terms
- needs multiplicative renormalization for logarithmic divergence
- $Z_S(\beta) = 1/Z_m(\beta)$
- we stick for now on this quantity \rightarrow See next talk (Kanamori)

•
$$\chi_{total} = \langle \overline{\psi}\psi \cdot \overline{\psi}\psi \rangle - \langle \overline{\psi}\psi \rangle \langle \overline{\psi}\psi \rangle$$

- has power divergence everywhere
- needs to understand the power divergence of $\Sigma = -\langle \overline{\psi}\psi \rangle$ first

$N_f=3$, $N_t=12$ chiral condensate

• only multiplicative renormalization applied
• quark mass:
$$m_{res}$$
 shift applied to x axis
• @T=0: $m_{\pi} \rightarrow 0$, $(m_q + m_{res}) \rightarrow 0$
• $L_s=16$
• three volumes: 24³, 36³, 48³
• $L_s=32$
• smaller m_{res} , 24³
• Intercept = $C_D \frac{-(1-x)m_{res}}{a^2} < 0$
• need to be subtracted

Light quark
$$\Sigma = -\langle \overline{\psi}\psi \rangle$$
: residual power divergence

• $\Sigma|_{DWF} = C_D \frac{m_f + \chi m_{res}}{a^2} + \Sigma|_{cont.} + \cdots$ S. Sharpe (arXiv: 0706.0218)

 $m_{res} \neq x m_{res}; \quad x = O(1) \neq 1$

• "Since x is not known, this term gives an uncontrolled error in the condensate. It can be studied and reduced only by increasing L_s - a very expensive proposition." – S. Sharpe.

• $N_f = 3$ case

- T>0 problem @ $\beta = 4.0$
- T=0 exercise @ β=4.0, 4.1, 4.17
- T>0 div free Σ

Nf=3, T=0 chiral condensate

•
$$\Sigma(m) = C_0 + C_1 m + C_2 m^2$$
 fit

- $C_1 = \frac{C_D}{a^2} + C_R$
 - C_D/a^2 : divergent, C_R : regular

- $\Sigma|_{DWF} = C_D \frac{m_f + xm_{res}}{a^2} + \Sigma|_{cont.} + \cdots$
- $C_D + C_R a^2$
 - $C_D = 0.37(2)$ from linear fit

$N_f=3$, $N_t=12$ chiral condensate

- $m_{pc} \simeq 4 \text{ MeV}$
- $m < m_{pc}$: high T "phase"

•
$$\Sigma|_{DWF} \rightarrow C_D \frac{-(1-x)m_{res}}{a^2} + \Sigma|_{cont.};$$

 $(m_f \rightarrow -m_{res})$

- $\Sigma|_{cont.}=0$: renormalization cond.
 - applied to determine x
 - x = -0.6(1) from $24^3 \times 12 \times 16$

$N_f=3$, $N_t=12$ chiral condensate

- $m_{pc} \simeq 4 \text{ MeV}$
- $m < m_{pc}$: high T "phase"

•
$$\Sigma|_{DWF} \rightarrow C_D \frac{-(1-x)m_{res}}{a^2} + \Sigma|_{cont.};$$

 $(m_f \rightarrow -m_{res})$

- $\Sigma|_{cont.}=0$: renormalization cond.
 - applied to determine x
 - x = -0.6(1) from $24^3 \times 12 \times 16$
- subtraction using these to all sets
 - note: consistency $L_s = 16 < -> 32$

Renormalized chiral condensate

Subtracted chiral condensate vanishes in the chiral limit as expected since T> T_c

QCD phase and thermodynamics

Dark

1st order

 ∞

QCD phase

QCD

Standard

New Physics

Modes of Simulations

to locate phase transition

- tune parameters near transition
- ➤ T: fixed, change m
- ➤ m: fixed, change T

Modes of Simulations

to locate phase transition

- tune parameters near transition
- ➤ T: fixed, change m
- ➤ m: fixed, change T

Modes of Simulations

$N_f=2+1$ Möbius DWF LCP for 2023-

For the Line of Constant Physics: $am_s(\beta)$ with $a(\beta)$

- Step 1: determine $a(\beta)$ [fm] with t_0 (BMW) input
 - at $\beta = 4.0, 4.1^*, 4.17, 4.35, 4.47$
 - * β =4.0 new data, to add support at small β
 - * β =4.1 old pilot study data, removed small volume and statistics
- Step 2: determine $Z_m(\beta)$ using Non-Perturbative Renormalization results
 - at $\beta = 4.17, 4.35, 4.47; Z_m$ with \overline{MS} 2 GeV are available
 - NNNLO running: $\mu = 2 \text{ GeV} \rightarrow 1/a \& \beta$ polynomial fit & running back
 - use $Z_m(\beta)$ so obtained for $\beta \ge 4.0$: $\beta < 4.17$ region is extrapolation
 - $1/Z_m(\beta)$ will be used to renormalize scalar operator, **chiral condensate**
- Step 3: solve $am_s(\beta)$ with input (*quark mass input*):
 - $m_s^R = Z_m \cdot a m_s^{latt} \cdot a^{-1} = 92 \text{ MeV}$
 - $\frac{m_s}{m_{ud}} = 27.4$ (See for example FLAG 2019)
- See for details in Lattice 2021 proc by S.Aoki et al.

Do simulation

• Step 4: proper tuning of input mass: correct m_{res}

Do simulation 2nd round / correction with reweighting + valence meas.

Simulation plan: 2nd round w/ treatment of m_{res} effect 200 T [MeV] $L_{\rm s} = 12$ fixed throughout this study 150 • T1-(d) • T2-(c) • $N_t = 12$ • $N_t = 16$ 100 • $m_l = 0.1 m_s$ • $m_l = 0.1 m_s$ 4.1 • *m_{res}* shift by reweighting • $m_a^{input} = m_q^{LCP} - m_{res}$ • $V_{\rm s} = 32^3$ • $V_{\rm s} = 24^3$, 36^3 • T2-(q) • T1-(p) _× 0.001 • $N_t = 16$ • $N_t = 12$ 0.0001 • $m_l = m_{ud}$ • $m_l = m_{ud}$ • $m_a^{input} = m_q^{LCP} - m_{res}$ • $m_a^{input} = m_a^{LCP} - m_{res}$ 1e-05 • $V_{s} = 48^{3}$ • $V_{\rm s} = 36^3, 48^3$ 4.1

LCP remarks for FT2023-

Features

- Fine lattice: use of existing results ($0.04 \le a \le 0.08$ fm)
 - Granted preciseness towards continuum limit
- Coarse lattice parametrization is an extrapolation
 - Preciseness might be deteriorated
 - Newly computing Z_m e.g. at $\beta = 4.0$ (lower edge) might improve, but not done so far
 - NPR of Z_m at $a^{-1} \simeq 1.4$ GeV may have sizable error (window problem) anyway
- Smooth connection from fine to coarse should not alter leading $O(a^2)$
 - Difference should be higher order
- Error estimated from Kaon mass (at physical point)
 - $\Delta m_K \sim \frac{10\%}{2}$ at $\beta = 4.0$ $(a \simeq 0.14 \text{ fm}) \rightarrow \Delta m_K \sim \text{a few \%}$
 - $\Delta m_{K} \sim a \text{ few \% at } \beta = 4.17 \ (a \simeq 0.08 \text{ fm})$

Domain wall fermions

- Möbius DWF \rightarrow OVF by reweighting
 - Successful (w/ error growth) at β = 4.17 (a \simeq 0.08 fm)
 - See Lattice 2021 JLQCD (presenter: K.Suzuki)
 - Questionable for
 - Coarser lattice: rough gauge, DWF chiral symmetry breaking
 - Finer lattice: larger V (# sites)
- Chiral fermion with continuum limit
 - A practical choice is to stick on DWF
- Controlling chiral symmetry breaking with DWF
 - WTI residual mass m_{res} : $m_{\pi}^2 \propto (m_f + m_{res})(1 + h.o.)$
 - Understanding $m_{res}(\beta)$ with fixed L_s (5-th dim size)
- $m_{res}[MeV] \sim a^X$, where $X \sim 5$
 - Vanishes quickly as $a \rightarrow 0$
 - 1st (dumb) approximation: forget about m_{res}
 - Better : $m_f^{cont} \leftrightarrow (m_f + m_{res})$ but, this is not always enough

QCD phase transition near and on the physical point

- $N_f=2+1$, 2 fine lattice DWF simulation and reweighting to overlap [PRD(2021), PTEP(2022)]
 - Profound relation among: chiral symmetry, axial anomaly and topological susceptibility
- R & D for the $N_f\!\!=\!\!2\!+\!1$ thermodynamics with Line of Constant Physics (LCP)
 - Codes: Grid, Hadrons, Bridge++
 - LCP / Reweighting

אוא אוא

- Chiral order parameter and renormalization
- Quark number susceptibility
- $N_f=2+1$ thermodynamics with LCP (mass = ms/10 = about 3 x physical ud quark mass)
 - 2 step renormalization for chiral condensate (power and log divergence) with an xm_{res} correction
 - 2 lattice spacings N_t=12, 16
 - 3 volumes $N_s/N_t=2$, 3, 4
 - No phase transition !
 - T_{pc} determined $T_{pc} = 165(2)$ MeV
 - PPR-Fugaku FY2020-2022
 - [PoS Lattice 2021, 2022]
- Physical point study
 - PPR-Fugaku 2023- preliminary results \rightarrow

Chiral susceptibility (disconnected) $m_l = 0.1m_s$ (about 3 time larger than physics u,d mass)

- no subtraction needed in addition to vacuum subtraction
- peak position : mild volume dependence \rightarrow infinite volume limit
- observing no dependence for $N_t\!\!=\!\!12$ and 16 (LT=2)
- $T_{pc} = 165$ (2) MeV from the disconnected chiral condensate

Disconnected chiral susceptibility at average **physical** u and d quark mass

Likely **NO phase transition** at **physical point** with chiral fermions. No surprise happened so far..

$$m_l = m_s/10$$

- d1,d2,d3 : $N_t = 12$, LT=2,3,4
 - almost no volume dependence \rightarrow cross over

• c1 :
$$N_t = 16$$
, LT=2

• good scaling $N_t = 12$ -16 observed for LT=2

 $m_l = m_{ud}$

- p2,p3: N_t =12, aspect ratio LT = 3, 4
 - Statistics is ~20,000 MDTU for LT=3, sampled every 10 MDTU
 - LT=4 very preliminary, currently running to get to planned satat.
- $T_{pc} = 151$ (3) MeV (preliminary) on $36^3 \times 12$, compared with
 - T_{pc} = 155 (1)(8) w/ DWF (N_t=8) by HotQCD (2014)
 - $T_{pc} = 156.5 (1.5) \text{ w/ HISQ}$ by HotQCD (2019) (\simeq disconnected)
 - $T_{pc} = 158.0 (0.6)$ w/ stout staggered, Budapest-Wuppertal (2020)

Light quark $\Sigma = -\langle \overline{\psi}\psi \rangle$: conventional and residual power divergence

- $\Sigma|_{DWF} \sim C_D \frac{m_f + xm_{res}}{a^2} + \Sigma|_{cont.} + \cdots$ S. Sharpe (arXiv: 0706.0218)
 - $m_{res} \neq xm_{res}; \quad x = O(1) \neq 1$
 - "Since x is not known, this term gives an uncontrolled error in the condensate. It can be studied and reduced only by increasing L_s a <u>very expensive proposition</u>." - S. Sharpe.
- cf: $m_{\pi}^2 \propto (m_f + m_{res})$ [1+h.o.]

•
$$\Sigma|_{DWF} \rightarrow C_D \frac{xm_{res}}{a^2} + \Sigma|_{cont.} + \cdots; (m_f \rightarrow 0)$$

•
$$\Sigma|_{DWF} \rightarrow C_D \frac{-(1-x)m_{res}}{a^2} + \Sigma|_{cont.}; \quad (m_f \rightarrow -m_{res})$$

Light quark
$$\Sigma = -\langle \overline{\psi}\psi \rangle$$
: residual power divergence

• $\Sigma|_{DWF} = C_D \frac{m_f + x m_{res}}{a^2} + \Sigma|_{cont.} + \cdots$ S. Sharpe (arXiv: 0706.0218)

 $m_{res} \neq x m_{res}; \quad x = O(1) \neq 1$

- "Since x is not known, this term gives an uncontrolled error in the condensate. It can be studied and reduced only by increasing L_s a very expensive proposition." S. Sharpe.
- (we proposed another way to utilize m'_{res} , which end up mixing T=0 C_R into high T)
- Yet another way of subtraction including xm_{res} using $N_f = 3$, $T = 0 \& T > T_c$ information \rightarrow see the talk by Yu Zhang
 - 1. Prepare several different lattice spacing for T = 0
 - 2. Compute coefficient linear in m_f : $\Sigma|_{DWF} \sim const. + (\frac{c_D}{a^2} + C_R)m_f + \cdots$
 - 3. Separate divergent term : *linear fit in a^2 of: C_D + a^2 C_R \rightarrow C_D = 0.37(2)*
 - 4. Estimate x using $T > T_c$ through $\Sigma|_{DWF} \rightarrow \frac{-C_D(1-x)m_{res}}{a^2} = 0$ $(m_f \rightarrow -m_{res})$ [ren.cond. $\Sigma|_{cont.} = 0$]
 - → $N_f = 3; \beta = 4.0$ estimate: x = -0.6(1)
 - In general, x may depend on $m{eta}$, for now use this value as a reference for all $m{eta}$
 - We also use C_D (single flavor normalization) of $N_f = 3$ for $N_f = 2 + 1$

test on $N_f = 2 + 1, T = 0$ measurements

test on $N_f = 2 + 1, T = 0$ measurements

Seemingly, both conventional and residual divergence are controlled, but

- need to check if x does not depend much on β
- refinement of precision and check applicability range of C_D necessary

Disconnected chiral susceptibility and chiral condensate

all divergences subtracted assuming x is universal

 $m_l = m_{ud}$

- p2,p3: N_t =12, aspect ratio LT = 3, 4
 - Statistics is ~20,000 MDTU for LT=3, sampled every 10 MDTU
 - LT=4 very preliminary, currently running to get to planned satat.
- $T_{pc} = 151 (3) \text{ MeV} (\text{preliminary}) \text{ on } 36^3 \times 12$

Likely NO phase transition at physical point with chiral fermions. No surprise happened so far..

QCD phase hunting: outcome so far

topological susceptibility @ physical point

Recent Summary by Chen et al (TWQCD)

Chen et al: optimal DWF $N_f=2+1+1$ (yet another DWF)

• Crucial input to axion dark matter scenarios

N

• Large difference: blue (latest) <-> Red / Green

topological susceptibility

Chen et al: optimal DWF $N_f=2+1+1$ (yet another DWF)

topological susceptibility

Chen et al: optimal DWF $N_f=2+1+1$ (yet another DWF)

MDWF(JLQCD) χ_t at physical point

- inconsistent with Chen et al (optimal DWF)
- getting closer to BW[continuum] for $a \rightarrow 0$
- N_t =16 already ~continuum or even undershoot?
- more detailed study needed

Summary

- Chiral fermion simulation using domain wall fermions on Fugaku underway
- Finite temperature QCD studies are on-going
 - N_f=2+1 near physical point using LCP
 - N_f=3 phase hunting
 - $N_f=2, 2+1$: fate of U(1)_A and relation with topology with DWF \rightarrow Overlap Fermion
 - led by Hidenori Fukaya (Osaka)
 - $N_f=2$, 2+1: hadron correlation and extended symmetry at high T
 - Hidenori Fukaya (Osaka), David Ward (Osaka / R-CCS), et al
- These activities are done mostly with JLQCD collaboration
- controlling the residual symmetry violation promising recent progress
- With deep chiral simulations, no signal of 1st order transition so far

Outlook

- \bullet $N_f{=}2{+}1$ physical point \rightarrow continuum limit project underway \rightarrow FY2025
- thermodynamics observables : charge fluctuations are to be investigated (J. Goswami)
 - direct relevance to Heavy Ion Collision experiments
- Utilize "physical" ensemble for various physics directions
 - topology \rightarrow dark matter \rightarrow may eventually shed light on the current confusing status

(Middle)

Summary

- Chiral fermion simulation using domain wall fermions on Fugaku underway
- Finite temperature QCD studies are on-going
 - N_f=2+1 near physical point using LCP
 - N_f=3 phase hunting
 - $N_f=2, 2+1$: fate of U(1)_A and relation with topology with DWF \rightarrow Overlap Fermion
 - led by Hidenori Fukaya (Osaka)
 - N_f=2, 2+1: hadron correlation and extended symmetry at high T
 Hidenori Fukava (Osaka), David Ward (Osaka / R-CCS), et al
- These activities are done mostly with JLQCD collaboration
- controlling the residual symmetry violation promising recent progress
- With deep chiral simulations, no signal of 1st order transition so far

Outlook

- \bullet $N_f{=}2{+}1$ physical point \rightarrow continuum limit project underway \rightarrow FY2025
- thermodynamics observables : charge fluctuations are to be investigated (J. Goswami)
 - direct relevance to Heavy Ion Collision experiments
- Utilize "physical" ensemble for various physics directions
 - topology \rightarrow dark matter \rightarrow may eventually shed light on the current confusing status

 $N_f = 2$ screening mass

Rohrhofer et al PRD (2019)

(Middle)

$N_f = 2$ screening mass

Hidenori Fukaya David Ward

Rohrhofer et al PRD (2019)

(Middle)

 $N_f = 2$ screening mass

 $m_{ud} = 2.6 \text{ MeV}$

shaded bands: HISQ 2+1 HotQCD (2019)

 $m_{ud} = 2.6 \text{ MeV}$

ЛеV

Outlook:

•

- $N_f = 2 + 1$ similar computation
 - $N_f=2+1$ physical point investigation near T_{pc}

arXiv/2501.12675

Acknowledgements

Codes used:

- Grid
- BQCD (Measurements)

(HMC)

- Bridge++ (Measurements)
- Hadrons (Measurements)

Grants:

- KAKANHI (FY2020-2024) QCD phase diagram explored by chiral fermions 20H01907
- MEXT Program for Promoting Researches on the Supercomputer Fugaku
 - (FY2020-2022) Simulation for basic science: from fundamental laws of particles to creation of nuclei -JPMXP1020200105
 - (FY2023-2025) Simulation for basic science: approaching the new quantum era -JPMXP1020230411

Computers:

- RIKEN Hokusai BW
- Ito at Kyushu University (hp190124, hp200050)
- Polaire and Grand Chariot at Hokkaido University (hp200130)
- supercomputer Fugaku at R-CCS (hp210032,hp220108,hp220233; hp200130, hp230207)

Chiral condensate of DWF

Chiral Fermion

• **lattice** fermion formulation which preserves "chiral symmetry"

Fugaku

• Japanese flagship supercomputer with A64FX (Arm-based) CPU and Tofu network

Fugaku Tour @ CCP2023

Fugaku – A64FX

https://www.r-ccs.riken.jp/en/fugaku/

total 158,976 nodes

Courtesy of FUJITSU LIMITED