1704.02196v2 [hep-ph] 18 Jul 2017

arXiv

Charm-beauty meson bound states from B(B*)D(D*) and B(B*)D(D*) interaction

S. Sakai', L. Roca?, and E. Oset!
1) Departamento de Fisica Tedrica and IFIC, Centro Mizto Universidad de Valencia-CSIC
Institutos de Investigacion de Paterna, Aptdo. 22085, 46071 Valencia, Spain
2) Departamento de Fisica, Universidad de Murcia, E-30100 Murcia, Spain
(Dated: July 19, 2017)

We evaluate the s-wave interaction of pseudoscalar and vector mesons with both charm and beauty
to investigate the possible existence of molecular BD, B*D, BD*, B*D*, BD, B*D, BD* or B*D*
meson states. The scattering amplitude is obtained implementing unitarity starting from a tree level
potential accounting for the dominant vector meson exchange. The diagrams are evaluated using
suitable extensions to the heavy flavor sector of the hidden gauge symmetry Lagrangians involving
vector and pseudoscalar mesons, respecting heavy quark spin symmetry. We obtain bound states
at energies above 7 GeV for BD (J¥ = 0%), B*D (1%), BD* (17) and B*D* (0T, 1%, 2T), all in
isospin 0. For BD (0%), B*D (1), BD* (1*) and B*D* (0", 17, 27) we also find similar bound
states in I = 0, but much less bound, which would correspond to exotic meson states with b and &
quarks, and for the I = 1 we find a repulsive interaction. We also evaluate the scattering lengths in
all cases, which can be tested in current investigations of lattice QCD.

PACS numbers:

INTRODUCTION

The present situation of the mesons with one quark of
type b and an antiquark of type ¢, B. mesons, is still
at an early beginning. There are just two states re-
ported in the PDG (Particle data Book) [1], the B,(6275)
and the B.(25)(6842). This contrasts with the situation
in the bottom strange sector, where we have the states
B,(5367), BX(5415), Bs1(5830), Bs2(5840), Bs2(5850)
and in the charm strange sector where there are al-
ready ten Dy states reported, with an average separa-
tion between the masses of about 100 MeV. By con-
trast, the only two B, states reported are separated by
nearly 600 MeV. Lattice QCD has also made a contri-
bution to the heavy meson sector, investigating possible
tetraquarks or molecular states @4@], however, none of
them deals with the BD quantum numbers.

It is clear that many states are missing which most
hopefully will be discovered in coming years. An idea of
the advance made in time is the addition of three new D
states since the 2008 edition of the PDG [7] and one B
state. Yet, the advent of LHCb has made the prognosis
brighter, one recent example being the determination of
five new Q. states [g].

Although some of the states expected should corre-
spond approximately to the ¢g standard structure of the
mesons, the irruption of so many XYZ states E], which
do not fit into the traditional ¢g picture, motivated a
large number of theoretical studies that go beyond this
picture, invoking especial quark configurations m, ],
tetraquarks ﬂﬂ] or meson meson molecules [16-34].
Mixtures of charmonium states and molecules have also
been investigated @] and methods to disentangle the na-
ture of the states have been suggeste]. Reviews
on these issues are available in Refs. 43).

In the present work we take the case of the interaction

of B(B*) and D(D*) mesons, an also the corresponding
cases with D(D*). Given the analogy of the B meson
with a K meson, the states we study have an analogy
with the DK, DK*, D*K interactions. According to
Ref. @] the DK channel is the main building block of
the DZ,(2317), something that is corroborated by the
analysis of lattice QCD results in the light-heavy sec-
tor M] Similarly, the D* K component appears as the
main building block of the D, (2460) in Ref. [45], which is
again corroborated by the lattice QCD study of Ref. @]
And in Ref. [45] one also finds that the Dy (2536) reso-
nance is mostly formed from the DK™ component. Simi-
larly the D* K* interaction appears as the main building
block of the D%,(2573) in Re]. The D*D* inter-
action is also studied in Ref. [21] and bound states are
reported there. In view of that, it is reasonable to ex-
pect bound states of the B(B*)D(D*) systems, which
we study in the present work. The formalism that we
use is the local hidden gauge approach @@], which
combines pseudoscalar and vector mesons, properly ex-
tended to the heavy quark sector [21]. The interaction
stems from the exchange of vector mesons between the
interacting mesons, and in the limit of small momen-
tum transfers this gives rise to the chiral Lagrangians
in the light quark sector. An example for the interac-
tion of vector-pseudoscalar is given in Ref. @] where
it is shown that it gives rise to the chiral Lagrangian
of Ref. ﬂﬂ] It is also interesting to mention that the
exchange of light vector mesons between hadrons involv-
ing heavy quarks respects heavy quark symmetry @] as
shown in Refs. [24, 53)].

We find that all the four systems lead to bound states
in I = 0, and in the case of B*D* there are three spin
states, degenerate in energy within the model. We also
study the B(B*)D(D*) systems and here we find that
there is attractive interaction in I = 0 and repulsive in-
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FIG. 1: BD interaction via vector-meson exchange

teraction in I = 1. In the case of I = 0 we also find bound
states which would be neatly exotic since they contain a
b and a ¢ quark.

We also evaluate the scattering lengths in all cases,
since lattice QCD calculations start providing such ob-
servables in the heavy quark sector @ﬁ] and they have
proved useful to constraint parameters in effective theo-
ries 5.

FORMALISM
Elementary interaction via vector-meson exchange

One of the most successful realizations of chiral sym-
metry when vector mesons are involved is the hidden
gauge symmetry (HGS) formalism [47-50], where the
vector meson fields are gauge bosons of a hidden lo-
cal symmetry transforming inhomogeneously, and is the
most natural way to account for vector meson dominance.
The extension of the HGS approach to the charm ﬂﬂ, @]
and beauty quark sector ﬂﬂ, 23, @] has turned out to be
very useful to deal with meson-meson and meson-baryon
interactions involving hidden and open charm and beauty
mesons and baryons. Furthermore it has been also shown
in Refs. m, @] that HGS respects the heavy quark spin
symmetry (HQSS), which is the symmetry of QCD by
means of which for heavy quarks their interaction is in-
dependent of the spin.

Let us illustrate the formalism with the BD channel,
since the other ones are analogous and the peculiarities of
the different channels will be pointed out when necessary.
In the HGS approach, the BD interaction would proceed
through the exchange of a vector meson, as depicted in
Fig. @l The exchange of light vector mesons, p and w
are by far the dominant ones since the vector propagator
contributes as 1/m#, and thus possible exchange of vector
mesons containing heavy flavors are very suppressed. We
thus need the vector-pseudoscalar-pseudoscalar (V PP)
Lagrangian

ﬁVPP = —Z'g<V“[P, 8#P]> ) (1)

where g = My /2f, My is the vector meson mass, with
f =93 MeV the pion decay constant, and (---) stands
for SU(4) trace. Since the strange quark is not needed

FIG. 2: Elementary isospin I = 1 BD and BD diagrams at
quark level which show why the interaction is zero for BD
and not for BD.

in the present work, it is sufficient to write the P matrix
in Eq. @) in SU(4) (u, d, ¢ and b flavors) and is given by

0 0 BT D°

0 0 BD-
P=1pB-5 0 B | (2)

D° Dt Bf 0

where we do not show the light pseudoscalars which are
not relevant for the present work. Analogously, for the
vector mesons we have

(0] _
T
- w0 B0 pr—
v=| r SB-wBDT| @
B*~ B*0 0 B~
D D Bt 0

Since both D and B are isospin I = 1/2 states, the
total BD isospin can be 0 and 1. However, the I =1 in-
teraction is very small since, from the above Lagrangians,
it can be obtained that the p and w exchange contribu-
tions for this isospin channel have different sign and they
cancel among themselves, up to the small difference be-
tween the masses squared of the p and w. This is not
the case for the BD interaction in I = 1, where p and w
contributions have the same sign. This can also be un-
derstood at the quark level by looking at the diagrams of
Fig.[2l where one can see that for the BD case in [ = 1 it
is not possible to exchange a vector meson at first order,
while for BD it is allowed via uu exchange.

It might look that we are making use of SU(4) sym-
metry by using Egs. (@) and (), but actually writing the
Lagrangian in this form is only a practical way to obtain
the couplings of the heavy mesons to the light vectors,
that we can also obtain in a very simple picture where
the heavy quarks are spectators, in the spirit of the heavy
quark formalism, and we are only making use of SU(2)
symmetry. Indeed, we can write the p°, w, sources (¢ is
not present in our case) as

g—(ua — dd) , for p° exchange,

g—(ua + dd) , for w exchange, (4)

Sl =Sl



and taking into account the vector type coupling we
would have the operator

1 B B _ _
~9%5 (uduu — dyun) — (ddyd — dudd)) . (5)

Let us study, as an example, the cases of B°B%p°,
DT D% p? and the other cases follow directly from them.
The heavy mesons are B” = bd, DT = ¢d and, since the
heavy quarks are spectators, we have the matrix elements

_ 1 _ o
~(bdlg— ((udya — Oyu) — (dy,d — d,d d)) |bd)

1 . .
= - E(—Zpu —ip),) (6)
for BYB%p% and
€
V2
1 . .
= —gﬁ(wu +ipy,) (7)

—(cd|g—= (w8, — Opu i) — (dO,d — 0,d d)) |cd)

for DTDTp°, where p (p') is the light quark initial (final)
momentum. In the limit of B at rest, p, +pj, will become
2mg0,0, with m, the mass of the light quark. Let us com-
pare this with the coupling of K°K%p° (K = 3d), which
in the limit of the K" at rest gives us the same contri-
bution 2m46,,0. This means that in the spectator picture
for the b or s quarks the matrix element for B°B%p°,
KO9K%p0 are the same at the microscopic quark level.
However, when we write the amplitudes at macroscopic
hadron level, we must take into account that the S-matrix
has the field normalization factors \/%TH @] for each ex-
ternal hadron (H) (see Egs. (14)-(16) of ref. @]) Hence,
at the macroscopic level we would have at threshold
tgo BOpO Mp

=— 8
K000 My ( )
Since
. 1 . .
— ZtK“K“p“,u = _gﬁ(_ZMK - ZMK)(S#O, (9)
then
. 1 . .
—ztBoBopo# = —g%(—ZMB _1MB)6uOu (10)
and in covariant form
. 1 . .
—itgogopo , = —gﬁ(—zp# —zp#), (11)
and this is what we get straightforwardly from the use
of the Lagrangian of Eq. (). It is also interesting to
see that the relative sign between B°B%p% and D+t D p°

comes because in BY we have a d quark and in Dt we
have a d quark and we have the operator ¢0,q — 9,4 4.

FIG. 3: Vector meson exchange contribution for BD interac-
tion in isospin I = 0.

One can immediatly see that if we consider BYB%w
and DYD%w couplings, using Eq. @), we would get
opposite sign to the cases B°B%p° and DTDtp". One
can see that all other cases follow automatically and one
obtains exactly the same results as with the Lagrangian
of Eq. (@) with SU(4) matrices of Eqs. (&) and @)). It is
interesting to see that the same arguments used for the
D* — Drm and B* — B coupling @] lead to results
in agreement with experiment and lattice QCD results

respectively ﬁl, 552, @] .

In order to evaluate the I = 0 BD interaction we
need the I = 0 combination, with the doublets (B, B),
(DT, -DY%),

BD)(I=0) — —% (IB*D% + [B°DYY)  (12)

and therefore the I = 0 amplitude can be written as

(1=0) 1
lppsBD = 5 (tB+po—B+po +tp+popop+

+tpop+B+po +tpopt_pop+) (13)

The amplitudes in the bracket in the previous equation
account for the diagrams in Fig.

From the Lagrangian of Eq. (), the amplitude of
Eq. [@3) can be readily calculated, leading to

(1=0)

1
tep>BD = _2_f2(p + ')k + EH* (14)

where we have approximated m%, =m?2 ~m?2. In addi-

tion, in the derivation of Eq. (4], we have neglected the
momentum transferred in the vector meson propagator.
(The correction due to this effect will be taken into ac-
count below including form factors in the loop functions
that will appear in the unitarization procedure.)

There is still one more issue that should be discussed
since the heavy quark spectator hypothesis in the BBp
coupling has been challenged by some other approaches.
Indeed evaluations using the Dyson-Schwinger equation



[61] or QCD lattice simulations [62] lead to a value of
gppp about twice as big as gxx, = gpp, of Ref. @],
which we are using here in Eq. ([{l]. However, the cou-
plings go together with a form factor leading to a stronger
off-shell reduction than the one used here. A detailed
discussion of this issue and the added uncertainties to
our approach, extending the discussion to the B sector,
was done in section VII of Ref. ﬂﬂ], concluding that it
added extra uncertainties in the bindings, increasing the
binding by an amount which could be as large as 40%.
Although our system here is different than those studied
in M], it still deals with heavy mesons, and the exercise
done here serves to give an idea of possible uncertainties
and a hint that those considerations might increase the
binding that we get.

After projecting over s-wave, Eq. (I4) reads

(mp —mp)?

S
(15)
For the other channels we are considering in the present
work, B*D, BD*, B*D*, BD, B*D, BD* or B*D* the
formalism is analogous to the BD case with the following
particular features and considerations:

I=0, s-wav 1
t(BD—>BD = Y 3s —2(mp +mp) —

e B*D and BD*: The SU(4) matrices have the
same structure as in the previous case since the
quark content of B* is the same as B, and D*
the same as D. Furthermore in Ref. ﬂﬂ] it was
justified by using HQSS that in the heavy sec-
tor the vector-pseudoscalar interaction is the same
than pseudoscalar-pseudoscalar at leading order in
the inverse of the heavy quark mass. Therefore,
the only difference with the BD case is the vec-
tor character of the B* and D* which implies that,
neglecting terms of order ¢2/m?% [64], one has to
add an €- €’ factor in Eq. ([I3) (where €(€’) is
the initial(final) vector polarization vector) and the
masses must be replaced by mp+ or mp~ accord-

ingly.

e B*D*: Again the flavor structure is the same and
analogous arguments than before apply. In addi-
tion, a contact VVVV term from the HGS La-
grangian Ly yyy = % (VEVYVEVY —VYVEVEYVY)
would be present but is subdominant [65] and can
thus be neglected. Furthermore, all four external
particles are now vector mesons and thus it turns
out that we can use the same expression as Eq. (IH)
but adding a factor €« - €’5. €p~ - €. [66] and re-
placing mp and mp by mp+ and mp-.

e BD, B*D, BD* or B*D*: We can analogously cal-
culate the same interactions as before but substi-
tuting D and D* by D and D*. In this case we find

1500
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500 | BD—BD
t (I=0,s-wave)
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FIG. 4: tgpigp stppopp > anditgg o5 as func-
tions of 4/s. These kernels are dimensionless.

attractive potential for 7 =0

2 2 \2
(I=0, s-wave) 1 2 2 (mB — mD)
BD—BD - _8f2 |:3S—2(mB+mD)_ s
(16)

and repulsive for I = 1:

-1, s 1
W5l = gy |35~ 20mb -+ mb) -
(17)
and similarly for the vector meson cases substitut-
ing the corresponding masses.

The kernels 4 5% 550, #1120 5wav) ang 4121 swave)
as functions of /s are given in Fig. @l which shows the
attractive nature of the BD and BD (I = 0) interactions

and the repulsive one of BD (I = 1).

We can think of other elements that could be ex-
changed, apart from the vector mesons considered. A
thorough investigation of other possible mechanisms was
made in Refs. [67, [68] in the study of the DD* inter-
action with I = 1 and its relationship to the Z.(3900)
(or Z.(3885)) state in one case and in the study of BB*,
B*B* interaction with I = 1 and its relationship to the
7Z,(10610), Z;,(10650) states in the other case. This was
done because in these cases there is no light vector ex-
change and then one could only exchange J/¢ in one
case and Y in the other, which made the vector exchange
very small and gave chances to other mechanisms to con-
tribute. One of the possible mechanisms was the ex-
change of two pions, uncorrelated (non interacting) or
correlated (interacting). The case of two pion exchange
with interacting pions gives rise to “o” exchange in this
picture, as was shown in Ref. @] The conclusion of
Ref. ﬂ@] was that the two pion exchange still gave a fac-
tor of four smaller contribution than the DD* — 5.p
or DD* — m.J /v transitions that involve a D* exchange.
Considering that the light vector exchange potential gives
an m;2 dependence rather than mgf in the DD* — nep



transitions, this gives a suppression of a factor about 30
of the two pion exchange with respect to the light vector
exchange when it is allowed, as in the present case. Sim-
ilar conclusions can be reached from the results in the
B sector when one increases the B* exchange potential
in terms like BB* — pY by the ratio mQB*/mi to com-
pare the two pion exchange with an allowed light vector
transition.

Implementation of unitarity

Using the techniques of the coupled channels unitary
approach, exact unitarity can be implemented into the
BD interaction, which can be carried out by means of the
Bethe-Salpeter equation: (equivalent to the N/D [zd, [71]
or IAM @, ] methods)

T=[1-VG] 'V, (18)

where V' is the potential, or kernel of the unitarization
procedure, provided by Eq. ([IH) and G is the BD loop
function:

_; d*q 1 1
G = /( . (19)

2m)* @2 —m% +ie (g — P)2 —m% +ie

for a total initial four momentum P. The regularization
of the loop function G, which is logarithmically diver-
gent, has been usually done in the chiral unitary approach
by means of dimensional regularization or with a three-
momentum cutoff, gyax, and both usually provide equiv-
alent results. However, it was justified in Refs. ﬂﬂ, @, @]
that the cutoff method is more convenient in the heavy
flavor sector and, therefore, this is the regularization
method we will use in the present work. In terms of
a three-momentum cutoff, the loop function reads

gmax

a— d3q¢ wp+wp 1
N (27m)3 2wpwp (PY)2 — (wp +wp)? +ie

3

(20)

with wp(p)y = \/m% )+ ¢ 2. It was shown in ref. [z6]

that in order to respect heavy quark symmetry in the uni-
tarized hadron-hadron interaction a special G function
could be used which, however, was equivalent to stating
that in the cutoff method the same cutoff, independent
of heavy flavor, should be used. The same conclusion,
with different arguments, was reached in @] Hence we
use values of the same order as those used in BB @]
Therefore, we will consider values gmax € [400,600] MeV,
where the differences in the results by varying the cut-
off within this range can be considered as an estimation
of the uncertainty in our calculation. In Eq. (IH), V is
factorized out of the loop function since the momentum
in the propagator of the exchanged vector meson is ne-
glected. However the running momentum inside the loop

can reach values comparable to the exchanged vector me-
son mass. In Ref. ﬂﬂ] it was justified that this effect can
be taken into account by including a factor f2(g) in the
integrand of Eq. ([20), where f(¢) is the form factor

(21)

The factor corresponds to the propagator of the ex-
changed vector neglecting the energy exchange ¢°, which
is zero in the on shell diagonal transitions, BD — BD for
instance, and we also take it zero in the propagator of the
exchanged vector in the loops, following the on shell fac-
torization of the potential as discussed in Refs. @, |_Z_1|]
Eq. (2I) has assumed the external meson momentum to
be zero. We can improve upon that, by considering an av-
erage initial momentum of the order of p = /2uB where
B is the binding energy of the molecule and p the reduced
mass of its two components. Then ¢ in Eq. 2I) has to
be replaced by (p'— ¢). After projecting over s-wave, for
the new Eq. ([ZI) we obtain the factor
2 2 2
flg) = M [M%} , (22)
dpg L (p—q)* + mi,

Note that this factor is never singular because p is real,
as it corresponds to an average over the momentum dis-
tribution of the molecular state.

On the other hand, in the evaluation of the B*D(D),
BD*(D*) and B*D*(D*) interaction, there are vector
mesons in the loop function whose polarization vectors
should be carefully treated in the resummation implicit
in the unitarization procedure. For the general vector-
pseudoscalar interaction this was done in Ref. ﬂﬂ], where
it was shown that, using the €- €’ structure in the poten-
tial, the same Bethe-Salpeter equation (I8) factorizing
€- €’ can be used, up to a correction in the loop function
of ¢%/(3m%) which we can safely neglect. Furthermore,
the masses in the loop function must be changed to m p-
and/or mp« accordingly for the corresponding channels.

Results

Since we are evaluating the interaction in s-wave, the
possible quantum numbers of the different channels are,
JP =07 for BD; 1% for B*D and BD* and degenerate
0F, 17, 2% for B*D*. (All in isospin I = 0 as explained
below Eq. @)). For BD, B*D, BD* and B* D* the spin-
parities are the same as for the B(B*)D(D*) case but
now the isospin can be 0 or 1 (see Eqs. (I6) and ().

By looking for poles in the second Riemann sheet of
the unitarized amplitudes, Eq. [I8), for Re{\/s} above
the threshold or in the physical sheet below, we can see
whether the interaction is strong enough to generate dy-
namically a resonance in the former case or a bound state



I1(J7) NG B g a [fm]
BD 0(0%)  |7133|7111] 15|38 |33484| 49867|-1.78|-1.45
B*D 0(1%)  |7179|7156| 15|38 |33742| 50243|-1.78|-1.45
BD* 0(1")  |7270|7247]| 16/39 [35171| 52262|-1.75|-1.45
B*D*|0(0%,1%,2%)|7316|7293 | 16|39 |35438| 52652 |-1.75|-1.45
BD o(0h) 7146|7140 |1.7|8.4|13225| 23296 |-3.77|-1.93
B*D o(1h) 7192|7186 |1.7|8.4|13357| 23494 |-3.74|-1.93
BD* o(1h) 7284[7277|2.1|19.5|14539| 24915 |-3.32|-1.83
B*D*|0(0",17,27)|7330|7322|2.1|9.5|14678| 25123|-3.31]-1.83
BD 1(0™) — — - -0.53]-0.46
B*D 1(17) — — — -0.53]-0.46
BD* 1(17) — — — -0.55/-0.46
B*D*|1(0",11,2T) — — — -0.55/-0.47

TABLE I: Positions of the bound states (,/5p), binding en-
ergies (B) and couplings (g) of the different channels. The
first number in the last four columns represents the result for
gmax = 400 MeV and the second for 600 MeV. All units are
in MeV except the scattering lengths, a, which are in fm.

in the latter one. In the present case, for all the chan-
nels with I = 0, we find poles in the physical sheet be-
low the threshold which thus correspond to bound states.
The position of these poles, /s, can be identified as the
mass of the generated bound state and are shown in table
[ for different values of the regularization cutoff, the first
number in the last four columns stands for the result for
Gmax = 400 MeV and the second one for 600 MeV. The
difference in the values obtained for both cutoffs should
be regarded as the main uncertainty in our model. In the
table we also show the corresponding binding energies
B = /Sthreshold — Vp and the values of the couplings of
the different poles to the corresponding channels, which
are defined considering that close to the pole

s (23)

)
S — Sp

T ~

and they can be obtained by evaluating the residue of T’
at the pole position.

We find bound states, poles below threshold, for all
the channels with I = 0 at energies ranging a few hun-
dred MeV above 7 GeV and binding energies of about
15-40 MeV for BD, B*D, BD* and B*D* interactions
and about 2-10 MeV for BD, B*D, BD* and B*D*. For
the latter channels, in I = 1 the interaction is repulsive
and, thus, no poles are found. Note that, despite the
large uncertainty in the binding energy, stemming from
the cutoff dependence, the absolute size of the binding
energy is small compared to the mass of the system and
is of the same order of magnitude as in other heavy fla-
vor systems @@, @] Note also that the binding ener-
gies are almost degenerate for all the channels. This is a
manifestation of the independence of the binding energy

on the heavy quark mass as a consequence of the HQSS
ﬂﬂ, @, @] For the BD, B*D, BD* and B*D* channels
in I = 0 the binding energy is very small, therefore the
claim of their correspondence to actual mesons should be
taken cautiously since further refinements of the model
could make the pole disappear. However, the fact that
we find poles for all the range of the cutoff considered is
a point in favor of their actual existence.

In the last column of table [l we also show the values
of the s-wave scattering lengths

1
0= =T (Vo) (24)
with /s¢, the energy of the corresponding threshold,
(and where we have used the scattering length sign con-
vention pcotd = % + %ropQ).

It is worth stressing that the dynamics used here for
the interaction, based on the HGS approach, stems from
vector exchange. One can see that the source of attrac-
tion from this source in systems of this type is much big-
ger than the one obtained from pion exchange, via two
step processes like BD — B*D* — BD @, ]. In view
of this it is not surprising that in @] no bound state
for the BD system was found using one pion exchange.
We would like to note here that the exchange of vector
mesons has also been introduced in quark models with
the name of extended chiral quark model, ﬂ&_ll—@] and its
effects have been found to be important.

The states found in the present work could in prac-
tice correspond to actual resonances with a narrow width
which would come from subdominant channels with
thresholds below the pole positions. It is worth men-
tioning that, according to the particle data table (PDG)
[1], no mesons with both charm and beauty (in addition
to the B (6275)(0) and the B.(25)"(6842)(07)) have
been experimentally discovered. It is also worth noting
that the poles in I = 0 for the BD, B*D, BD* and B*D*
would correspond to exotic mesons since they would con-
tain a b and ¢ quark at the same time. The findings in
the present work are an indication that there is still much
room to improve the so far scarce experimental evidence
of mesons with charm and beauty which would help un-
derstand the dynamics of the heavy flavor sector.

SUMMARY AND CONCLUSIONS

We have done a theoretical study of the BD, B*D,
BD*, B*D*, BD, B*D, BD* and B*D* interaction to
try to see the possible dynamical generation of mesons
with both charm and beauty flavors. We evaluate the
interaction starting from a tree level elementary process
obtained from suitable extensions of the hidden gauge
symmetry Lagrangians to heavy flavor, compatible with
the heavy quark spin symmetry of QCD, in order to eval-
uate the dominant mechanisms with a vector meson ex-



change. We made a derivation of the Lagrangians in the
heavy sector based on the hypothesis of having the heavy
quarks as spectators. We find an attractive and sizable
potential for the interaction in isospin I = 0 for all the
interactions. These potentials are used as the kernel of
the unitarization procedure using the techniques of the
coupled channels unitary approach which only depends
on one free regularization parameter. The dependence on
the model on this parameter, a three-momentum cutoff,
represents the main source of uncertainty of the model.
By looking for poles of the unitarized amplitudes we find
poles below the thresholds of the different channels with
I = 0 which thus correspond to bound states with quan-
tum numbers J© = 0T for BD; 1% for B*D and BD*
and degenerate 0%, 17, 2% for B* D*, at energies slightly
above 7 GeV and with binding energies of about 20-
60 MeV. Similarly, for the BD (0%), B*D (1), BD*
(1%) and B*D* (0%, 1%, 2¥) interaction we also find
bound states in I = 0 but the interaction is repulsive in
I = 1. These latter bound states would correspond to
exotic mesons with b and ¢ quarks.

We find several states of the type B. which do not
correspond to the only two B, states so far reported in
the PDG as the ground state B, and B.(25). They are
predictions that find an analogy with many states al-
ready found in the D; sector. On the other hand, we
also find six new states of B(B*)D(D*) type, with I = 0,
which are clearly exotic since they contain a bé pair of
heavy quark, and are not of the ¢q type. The results
obtained here and the similarity of the states found to
some already observed in the Dy states should stimulate
the experimental search of these states that should shed
valuable light on hadron dynamics.
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