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WHY?



THE SM
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THE GOOD
THE STANDARD MODEL



THE STANDARD MODEL. THE GOOD.

The Standard Model (SM) of particle physics explains nature to very 
short distances.  

It is a local quantum field theory (QFT)  

‣ Renormalizable (operators up to mass dimension 4) 

‣ Based on the gauged global symmetry  

‣ With three families of chiral fermions  

‣ And the spontaneous symmetry breaking  

In July 2012, the last missing piece was discovered at CERN: the Higgs 
boson. Englert and Higgs got the nobel prize for it!

SU(3)C ⊗ SU(2)L ⊗ U(1)Y
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THE STANDARD MODEL. THE GOOD. 7

1949 - QED

1965 - TOMONAGA, SCHWINGER, FEYNMANN

1967 - EW 
THEORY

1979 - GLASHOW, SALAM, WEINBERG

1957 - YANG, LEE

1956 - WU EXPERIMENT 
- PARITY VIOLATION



THE STANDARD MODEL. THE GOOD. 8

71, 75 - RENORMALIZATION 
GROUP

1982 - WILSON

1973 - QCD

2004 - GROSS, POLITZER, WILCZEK

1999 - T ‘HOOFT, VELTMAN

1971/2- 
RENORMALIZATION 
OF YANG-MILLS 
THEORIES
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1960 - SPONTANEOUS  
SYMMETRY BREAKING

2008 - NAMBU, KOBAYASHI, MASKAWA

1973 - THREE FAMILIES 
AND CP VIOLATION

2013 - ENGLERT, HIGGS

1964 - HIGGS MECHANISM

1984 - RUBBIA, VAN DER MEER

1983 - DISCOVERY OF THE 
W AND Z



THE STANDARD MODEL. THE GOOD.

The SM has been confirmed experimentally by a plethora of 
experimental data (LEP, LEP II, Tevatron, LHC, …) 

There is currently no serious anomaly that the SM fails to accommodate
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THE BAD
THE STANDARD MODEL



THE STANDARD MODEL. THE BAD.

There are several observed phenomena which can not be explained 
within the SM. More explicitly: 

‣ Neutrino oscillations  

‣ Dark Matter 

‣ Matter — antimatter asymmetry  

This is not a matter of taste. These are experimental facts that can not be 
reproduced in the SM. This is terrible, I assure you.
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THE UGLY
THE STANDARD MODEL



THE STANDARD MODEL. THE UGLY.
There are several SM ‘features’ which are kind of ugly: 

1. It features an elementary scalar. This is weird (as hell) and has never 
been seen before. 

This is also known as the hierarchy problem. An elementary scalar is 
quadratically sensitive to mass thresholds.  

Other way to put it would be: why is the scale of gravity so much weaker 
than the electroweak scale?
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THE STANDARD MODEL. THE UGLY.
Let us consider the following toy model 

  

 

If we compute the one-loop corrections to  in dimrec @ MSbar 

 

 

ℒ =
1
2

(∂μϕ)2 +
1
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(∂μΦ)2 + ψ̄i∂ψ −
1
2

m2
ϕϕ2 −

1
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m2
ΦΦ2 − mψψ̄ ψ
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λϕ2Φ2 − yϕϕψ̄ ψ − yΦΦψ̄ ψ
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ϕ
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THE STANDARD MODEL. THE UGLY.
Let us consider the following toy model 

  

 

Let us now compute the correction to the fermion mass  

 

This is VERY different, because the corrections to the fermion mass are 
proportional to the fermion mass itself

ℒ =
1
2

(∂μϕ)2 +
1
2

(∂μΦ)2 + ψ̄i∂ψ −
1
2

m2
ϕϕ2 −

1
2

m2
ΦΦ2 − mψψ̄ ψ

−
1
4

λϕ2Φ2 − yϕϕψ̄ ψ − yΦΦψ̄ ψ

mψ

δmψ = mψ [ 5
4

−
3
2
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Φ
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ψ /m2

Φ)] + (Φ → ϕ)
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THE STANDARD MODEL. THE UGLY.
Let us consider the following toy model 

  

 

Let us now compute the correction to the fermion mass  

 

This is VERY different, because the corrections to the fermion mass are 
proportional to the fermion mass itself 

I TOLD YOU THAT THIS WAS WEIRD!

ℒ =
1
2

(∂μϕ)2 +
1
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(∂μΦ)2 + ψ̄i∂ψ −
1
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m2
ϕϕ2 −
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m2
ΦΦ2 − mψψ̄ ψ

−
1
4

λϕ2Φ2 − yϕϕψ̄ ψ − yΦΦψ̄ ψ

mψ

δmψ = mψ [ 5
4

−
3
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Φ)] + (Φ → ϕ)
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THE STANDARD MODEL. THE UGLY.
This is related to the notion of technical naturalness: 

A small value of a dimensionless parameter is said to be technically 
natural, if the symmetry of the theory is enhanced when the parameter 
goes to zero 

Let us check-it with the fermion masses. 

 

The theory is invariant under a global      . 

However, in the massless case both rotations can be made independent 
. The symmetry is now  

So, fermion masses are technically natural!

ℒ = ψ̄Ri∂ψR + ψ̄Li∂ψL − [mψ̄LψR + h . c . ]
U(1)L+R ψL → eiαψL, ψR → eiαψR

ψL → eiαLψL, ψR → eiαRψR U(1)L ⊗ U(1)R
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THE STANDARD MODEL. THE UGLY.
There are several SM ‘features’ which are kind of ugly: 

2. It has another tiny parameter which is not technically natural neither: 

  where  

This is called the strong CP-problem.  

3. Although technically natural, we do not know why the fermion masses 
span so many orders of magnitude and why the quark masses and 
mixing angles are so hierarchical (the flavor puzzle) 

ℒ ⊃
gsθ̄

32π2
Ga

μνG̃aμν | θ̄ | ≲ 10−10
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THE STANDARD MODEL. THE UGLY.
There are several SM ‘features’ which are kind of ugly: 

4. The SM hints to some gauge unification at higher energies 
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THE STANDARD MODEL. THE UGLY.
There are several SM ‘features’ which are kind of ugly: 

5. The vacuum of the universe seems to be meta-stable
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BEYOND THE STANDARD MODEL

Going beyond the SM implies doing any of these things: 

1. Changing the matter content (aka ‘adding new particles’) 

2. Enlarging the gauge group (aka ‘adding new interactions’) 

3. Adding operators with mass dimension bigger than four (aka ‘let’s not 
care about renormalizability’) 

Model builders typically do #1 and/or #2. Other approach is just go for 
the #3 the SMEFT.
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BEYOND THE STANDARD MODEL. AN EXAMPLE.

Let us consider e.g. neutrino oscillations. One easy way to explain 
neutrino oscillations is via neutrino masses.  

However, in the SM we only have LH neutrinos in . 

‣ With just one Weyl spinor we can just build Majorana masses but with 
the fields and the symmetries of the SM we need to go to (mass) dim 5 

 ,       with              (#3) 

‣ If we want to generate such operator at tree-level with heavy fields (#1) 
we need to add heavy fermions or scalars. Since  

,    

    we can add a singlet or a triplet.

ℓi
L = (νi

L, ei
L)T

ℒ ⊃
cij

MN
(ℓ̄i

LH̃)(H̃†ℓjC
L ) H̃ = iσ2H*

ℓ̄i
LℓjC

L H̃†ℓjC
L ∈ 2 ⊗ 2 = 1 ⊕ 3
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BEYOND THE STANDARD MODEL. AN EXAMPLE.
,  .  We should add a singlet or a triplet: 

‣ Singlet. We can add RH neutrinos which are full singlets of the SM 

 which leads after EWSB to 

 where , , . If we 

assume that  we get the type-I seesaw. 

‣ Triplet. We can add a scalar or a fermion triplet (type-II or III seesaw)

ℓ̄i
LℓjC

L H̃†ℓjC
L ∈ 2 ⊗ 2 = 1 ⊕ 3

ℒ ⊃ − [(yD)ijℓ̄i
LH̃ν j

R + h . c . ]−
1
2

(mM)ijν̄iC
R ν j

R

ℒ ⊃ −
1
2

N̄LℳNC
L NL = (νL, νC

R )T ℳ = (
0 mD

mT
D mM) mD =

v

2
yD

mM ≫ mD
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BEYOND THE STANDARD MODEL 

‣ We just saw that the EFT approach can be complementary to the model 
building one. It gives you insights about what to do. 

‣ Some UV theories are not renormalizable neither. 

‣ Specific UV models will lead to correlations between Wilson 
coefficients.  

‣ The EFT approach can be useful to know if a model is viable quickly. 
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BEYOND THE SM



BEYOND THE UGLY



THE HIERARCHY PROBLEM
Let us come back to the hierarchy problem for a while. Let us consider  

,    with ,  

and . 

We will compute the top contributions as an exercise 

 

After performing a Wick rotation  the above integral 
becomes 

ℒ = |DμH |2 − V(H) − [ytq̄LHtR + h . c . ] V(H) = − μ2 |H |2 + λ |H |4

H =
1

2 ( 2ϕ+

v + h + iϕ0)

−i δm2
h top

= (−1)Nc ∫
d4k

(2π)4
Tr [(−i

yt

2 ) i
k − mt (−i

yt

2 ) i
k − mt ] = (−1)Nc

y2
t

2 ∫
d4k

(2π)4
Tr [ (k + mt)(k + mt)

(k2 − m2
t )2 ] = − 2Ncy2

t ∫
d4k

(2π)4 [ k2 + m2
t

(k2 − m2
t )2 ]

k0 = ik0
E, k = kE, k2 = − k2

E

−i δm2
h top

= 2iNcy2
t ∫ dΩ∫

∞

0

dkE

(2π)4
k3

E [ k2
E − m2

t

(k2
E + m2

t )2 ] = 2iNcy2
t (2π2)∫

∞

0

dk2
E

2(2π)4
k2

E [ k2
E − m2

t

(k2
E + m2

t )2 ]
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THE HIERARCHY PROBLEM
After simplifying and setting a hard cut-off , we get 

 

Finally, changing variables to  results in  

 

We still see that the Higgs mass is quadratically sensitive to the high scales.  

Depending on the regulator used, the hierarchy problem will show up 
differently but it will always be there (for you).  

Let me show you a possible solution.

Λ

−i δm2
h top

=
iNcy2

t

8π2 ∫
Λ2

0
dk2

E [ k2
E(k2

E − m2
t )

(k2
E + m2

t )2 ]
x = k2

E + m2
t

δm2
h top

= −
Ncy2

t

8π2 ∫
Λ2+m2

t

m2
t

dx (1 −
3m2

t

x
+

2m4
t

x2 ) = −
Ncy2

t

8π2 [Λ2 − 3m2
t log ( Λ2 + m2

t

m2
t ) +

2m2
t Λ2

m2
t + Λ2 ]
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THE HIERARCHY PROBLEM
Let us focus on the top contribution to the Higgs mass. Imagine that we have N 
scalars particles  and  with the following interactions 

 

We will get tadpole and bubble contributions. The tadpole correction reads:  

 

  

leading to 

 

ϕL ϕR

ℒ ⊃ −
λ
2

h2( |ϕL |2 + |ϕR |2 ) − h (μL |ϕL |2 + μR |ϕR |2 ) − m2
L |ϕL |2 − m2

R |ϕR |2

−iδm2
h

tad

= (−iλ) N ∑
X=L,R

∫
d4k

(2π)4

i
k2 − m2

X
= − iλN ∑

X=L,R
∫

d4kE

(2π)4

1
k2

E + m2
X

= − iλN(2π2) ∑
X=L,R

∫
Λ2

0

dk2
E

2(2π)4

k2
E

k2
E + m2

X
= − iλN ∑

X=L,R

1
(4π)2 ∫

Λ2+m2
X

m2
X

dx (1 −
m2

X

x )

δm2
h

tad
= λN

1
(4π)2 [2Λ2 − m2

L log ( Λ2 + m2
L

m2
L ) − m2

R log ( Λ2 + m2
R

m2
R )]
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THE HIERARCHY PROBLEM
On the other hand, the bubble correction leads to 

 . 

Summing the contributions to the one of the top, we obtain 

 

 

‣ The quadratic piece vanishes if  and  

‣ The logarithmic piece vanishes if on top of that  and 
 

δm2
h

bubble

h
= − N

1
(4π)2 [μ2

L log ( Λ2 + m2
L

m2
L ) + μ2

R log ( Λ2 + m2
R

m2
R ) + …]

δm2
h =

Λ2

16π2 [ − 2Ncy2
t + 2Nλ]

+
1

16π2 [ − N(λmL + μ2
L)log( Λ2 + m2

L

m2
L ) + (L ↔ R) + 6Ny2

t m2
t log( Λ2 + m2

t

m2
t )] + …

N = Nc λ = y2
t

mL = mR = mt
μL = μR = 2λmt
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THE HIERARCHY PROBLEM
We have just seen that  

‣ The quadratic piece vanishes if  and  

‣ The logarithmic piece vanishes if on top of that  and 
 

There is a symmetry that guarantees this to happen. It is called 

N = Nc λ = y2
t

mL = mR = mt
μL = μR = 2λmt
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THE HIERARCHY PROBLEM
We have just seen that  

‣ The quadratic piece vanishes if  and  

‣ The logarithmic piece vanishes if on top of that  and 
 

There is a symmetry that guarantees this to happen. It is called 

SUPERSYMMETRY 
Roughly speaking, supersymmetry relates fermions and bosons. These scalars 
are called stops (s - supersymmetric partner) and they appear from 
supermultiplets. 

So we have just saw one way of solving the hierarchy problem: using 
symmetries.  

N = Nc λ = y2
t

mL = mR = mt
μL = μR = 2λmt
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SUPERSYMMETRY





WEYL SPINORS. VAN DER WÆRDEN NOTATION 

It will be useful to remind you of Weyl spinors. Let us introduce 

 

Lorentz scalars are build of  or  where 

,  with  

. 

We introduce the standard shorthand notation  

,            ,  

so that  with 

right − handed : η̄ ·α, ·α = 1,2. left − handed : χα, α = 1,2.

χαξα ψ̄ ·αη̄ ·α

χα = εαβχβ, (χα = εαβ χβ), ψ̄ ·α = ε ·α ·βψ̄
·β, (ψ̄ ·α = ε ·α ·βψ̄ ·β)

εαβ = − εβα, ε12 = − ε12 = 1, ε ·α ·β = − ε
·β ·α, ε

·1 ·2 = − ε ·1 ·2 = 1, εαβεβρ = δα
ρ

ηχ ≡ ηα χα = χαηα η̄χ̄ ≡ η̄ ·α χ̄ ·α = χ̄ ·αη̄ ·α

(ηχ)† = (ηα χα)† = (χα)*(ηα)* = χ̄ ·αη̄ ·α = χ̄η̄ χ̄ ·α ≡ (χα)*, η̄ ·α = (ηα)*.
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WEYL SPINORS. VAN DER WÆRDEN NOTATION 

We will also introduce  

  

and , such that .   

One can also define 

,         . 

Dirac fields can be written as  

 

With kinetic terms .

(σμ)α ·β = (1, ⃗σ)α ·β, (σ̄μ)
·βα = (1, − ⃗σ) ·βα

Aα ·β = Aμ(σμ)α ·β Aμ =
1
2

Aα ·β(σ̄μ)
·βα

σμν ≡
1
4 (σμσ̄ν − σνσ̄μ) σ̄μν ≡

1
4 (σ̄μσν − σ̄νσμ)

ΨD = ( χα

ψ̄ ·α)
iχ̄ ·β(σ̄μ)

·βα∂μ χα + iψα(σμ)α ·β∂μψ̄
·β
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SUPERSYMMETRY
Supersymmetry (SUSY) is interesting per se. People became interested in 
extending the Poincaré symmetries in the 60s.  

 

 

 is the generator of translations while  generate the group of 

rotations and  the boosts. There are two Casimir invariants 

 

Coleman and Mandula proved that, under certain assumptions, the only 
symmetry of the S-matrix that included the Poincaré symmetry was the direct 
product of the Poincaré symmetry with some internal symmetry group. 

This was a no-go theorem, but … 

[Pμ, Pν] = 0, [Pμ, Jρσ] = i(gμρPσ − gμσPρ),

[Jμν, Jρσ] = i(gνρJμσ − gμρJνσ − gνσJμρ + gμσJνρ)

Pμ Jk =
1
2

ϵklmJlm

Kk = J0k = − Jk0

m2 = PμPμ, W2 = WμWμ = − m2 ⃗J 2, Wμ = −
1
2

ϵμνρσJνρPσ .
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SUPERSYMMETRY
One of the assumptions of the Coleman-Mandula theorem is that the 
generators of the symmetry formed a Lie algebra.  In the case where they 
formed a graded-Lie algebra (or superalgebra) one could allow for a symmetry 
between bosons and fermions. 

In addition to the usual Poincaré generators we add complex, anticonmuting 
Weyl spinors  and their conjugates  (where ):  

 

 

We can express 

 

If SUSY is unbroken,  and . Otherwise 

Qα Q̄ ·α Q̄ ·α = (Qα)† = (εαβQ†
β )

{Qα, Qβ} = {Q̄ ·α, Q̄
·β} = 0, {Qα, Q̄ ·α} = 2σμ

α ·αPμ, [Pμ, Qα] = [Pμ, Q̄ ·α] = 0

[Jμν, Qα] = i(σμν) β
α Qβ, [Jμν, Q̄ ·α] = i(σ̄μν) ·α ·βQ̄

·β .

H = P0 =
1
4 (Q1Q†

1 + Q†
1 Q1 + Q2Q†

2 + Q†
2 Q2)

Qα |0⟩ = (Qα)† |0⟩ = 0 Evac = 0 Evac > 0.
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SUPERSYMMETRY

Single particles fall into irreps of the SUSY algebra - supermultiplets.  

‣ Since  commutes with  and  all the states contained in 
the supermultiplets share the same mass.  

‣ Since the gauge generators also commute, all these states also have the 
same gauge charge.  

‣ However, since  massive irreducible superalgebra 
representations must contain particles different spins.  

‣  and  change fermion number by one unit  
Then  and  
for the states of the supermultiplet with fixed . Then , each 
supermultiplet contains the same amount of bosons and fermions.

m2 = PμPμ Qα Q̄ ·α

[W2, Qα] ≠ 0

Qα Q̄ ·α (−1)NfQα = − Qα(−1)Nf

Tr((−1)Nf{Qα, Q̄ ·α}) = 0 ⇒ Tr((−1)Nf Pμ) = 0 Tr((−1)Nf) = 0
Pμ nB = nF
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SUPERSYMMETRY
In SUSY we introduce the concept of superspace. Consider one supercharge (  
SUSY). Any finite element of the group can be written as 

, where  and  are 

Grassmann variables . 

One can prove that  

 

Therefore, the superspace transformations 

 

 

add supersymmetry to the Poincaré transformations (translations and Lorentz).. 

𝒩 = 1

G(xμ, θ, θ̄) = exp[i(θαQα + θ̄
·βQ̄ ·β − xμPμ] θα θ̄

·β = (θβ)*

{θα, θβ} = {θ̄ ·α, θ̄
·β} = {θα, θ̄

·β} = 0

G(xμ, θ, θ̄)G(aμ, ϵ, ϵ̄) = G(xμ + aμ + iϵσμθ̄ − iθσμϵ̄, θ + ϵ, θ̄ + ϵ̄)

(xμ, θα, θ̄ ·α) → (xμ + δxμ, θα + δα, θ̄ ·α + δθ̄ ·α)
δθα = ϵα, δθ̄ ·α = ϵ̄ ·α, δxμ = iϵσμθ̄ − iθσμϵ̄,
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SUPERSYMMETRY
The most general superfield with no external indices looks like 

 

These superfields are not irreducible representations of the superalgebra. We 
should impose constraints: 

‣ Vector superfields  

‣ Chiral superfields  (or anti-chiral ) 

where  

S(x, θ, θ̄) = ϕ + θψ + θ̄ψ̄ + θ2F + θ̄2G + θαAα ·βθ̄
·β + θ2(θ̄λ̄) + θ̄2(θρ) + θ2θ̄2D

S = S†

D̄ ·αΦ = 0 DαΦ̄ = 0

Dα =
∂

∂θα
− iθ̄ ·α∂α ·α, D̄ ·α = −

∂
∂θ̄ ·α

+ iθα∂α ·α, {Dα, D̄ ·α} = 2i∂α ·α .
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SUPERSYMMETRY
Vector superfields read: 

 

                         

with 

‣ ,  and  are real bosonic fields, while  is complex. 

‣  and  are fermions. 

Only orange fields are physical:  (a vector and a fermion). For instance, 
from the same vector superfield we get the W and wino (fermion).

V(x, θ, θ̄) = C + iθχ − iθ̄χ̄ +
i

2
θ2M −

i

2
θ̄2M̄ − 2θαθ̄ ·αvα ·α

+[2iθ2θ̄2(λ̄ ·α −
i
4

∂ ·ααχα) + h . c . ]+ θ2θ̄2(D −
1
4

∂2)

C D vμ =
1
2

(σμ) ·ααvα ·α M

χ λ

vμ, λα
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SUPERSYMMETRY
Defining  by  

 

 

the condition for chiral superfields will be easier to impose since 
. Then chiral superfields read 

 

‣ It contains real scalars  and F (this not propagating) and a fermion  

‣ For instance, we get the top and the stop (scalar), … 

xμ
L , xμ

R

(xL)α ·α = xα ·α − 2iθαθ̄ ·α, xμ
L = xμ − iθα(σμ)α ·αθ̄ ·α

(xR)α ·α = xα ·α + 2iθαθ̄ ·α, xμ
R = xμ + iθα(σμ)α ·αθ̄ ·α

D̄ ·αxμ
L = 0, Dαxμ

R = 0

Φ(xL, θ) = ϕ(xL) + 2θαψα(xL) + θ2F(xL)

ϕ ψα
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THE MSSM 51



THE MSSM 52



THE MSSM 53

Supersymmetry is a brilliant idea but once you start model building, things 
become ugly. It is a bit like parenting: 



THE MSSM 54

Some features of the MSSM: 

‣ SUSY has to be broken softly. 

‣ Two Higgs multiplets: anomaly cancellation + holomorphic Yukawas 

‣ R-parity to avoid proton decay  LSP stable  DM candidate 

‣ Usual pheno consequences: 

‣ Pair production 

‣ Cascades 

‣ Missing energy 

⇒ ⇒



SUPERSYMMETRY 55



SUPERSYMMETRY

Bottom line. On paper, SUSY has a lot of nice features: 

‣ It is a renormalizable theory. 

‣ It provides the more general way of extending the symmetries of the 
Poincaré algebra. 

‣ It contains an U(1) symmetry, called R-parity, that can give you a dark 
matter candidate. 

‣ It is required for some string theories. 

‣ It helps with gauge unification 

‣ It solves the hierarchy problem. 

But unfortunately, data suggests that the symmetry is broken and that the 
SUSY breaking scale is rather heavy. 
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THE HIERARCHY PROBLEM

Another way of solving the hierarchy problem is by lowering the cut-off of the 
theory: 

‣ In composite Higgs models, the Higgs is not an elementary particle but 
the (pseudo)Nambu-Goldstone boson of some spontaneously broken 
global symmetry. Like e.g. the pions in QCD.  

‣ This models have an holographic dual where the Higgs is the scalar 
component of a five-dimensional gauge field (a five dimensional Lorentz 
vector is equal to a four dimensional Lorentz vector and a scalar) 

  

‣ In this picture, the Higgs can not get a mass due to the 5D gauge 
invariance. They are thus called models of gauge-Higgs unification. They 
can help with calculability.

𝔸a
M = (𝔸a

μ, 𝔸a
5)
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COMPOSITE 
HIGGS MODELS



COMPOSITE HIGGS MODELS

Rationale: elementary scalars are weird and should not exist. Scalars should 
only be composite objects: (pseudo-)Nambu-Goldstone bosons (like in 
condense matter). We will call them (p)NGBs. 

Goldstone theorem: in a theory with spontaneous symmetry breaking there 
are as many massless scalar bosons as generators of the Lie group ‘broken’. 

Consider the example of QCD:
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COMPOSITE HIGGS MODELS
Non-linear realizations of the spontaneous symmetry breaking of a global 
symmetry are very helpful to build an EFT for the pNGBs. 

Imaging  scalar fields transforming linearly and globally under some global 
group , , acquiring a VEV  only invariant under 

. We can trade  by 

‣ A field  that under  transforms linearly but  locally on  

  

‣ Goldstone bosons  transforming globally but non-linearly. If we define 

the matrix , under  it transforms  

 

If we do a transformation , .

n
G Φ(x) → D(g)Φ(x) ⟨Φ⟩ = Σ0

H ⊂ G Φ

Φ0 g ∈ G H ⊂ G

Φ0 → D(h(g, ξ(x)))Φ0

ξ(x)

U(χ) = exp(2i
ξa(x)T ·a

f ) g ∈ G

U(ξ) → D(g)U(ξ)D−1(h(g, ξ(x)))
h ∈ H Φ0 → D(h)Φ0, U(ξ) → D(h)U(ξ)D−1(h)
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Left cosets G/H are defined by . Two cosets are either 
identical or disjoint. At the end of the day we can divide the elements of G 

Every element  is a representative of the corresponding left coset. 
Any element of  can be pin-pointed by specifying a representative and its 
coordinates within the coset . To know anyone on a building you just need 
to know the flats in the building and who lives in each flat (e.g. the son of 
Pedro’s from the 3rd right). 

gH = {gh : h ∈ H}

g1, g2, …
G

ξ ·a

61



COMPOSITE HIGGS MODELS
One can see that if we define , where  

, we obtain 

,  

,      , 

. 

Notice that  is a H-covariant derivative. We can write H-invariant 

Lagrangians with all these symbols. The leading term is —  

  

ωμ = − iU−1∂μU = d ·a
μT ·a + Ei

μTi = dμ + Eμ
T ·a ∉ 𝔥, Ti ∈ 𝔥

Φ0 → D(h(g, ξ(x)))Φ0

dμ → D(h(g, ξ(x))) dμ D−1(h(g, ξ(x))) d ·a
μ ≈

2
f

∂μξ ·a(x) + 𝒪(∂μξ/f ⋅ ξ2/f 2)

Eμ → D(h(g, ξ(x))) Eμ D−1(h(g, ξ(x))) + iD(h(g, ξ(x)))[∂μD−1(h(g, ξ(x)))]
ℰμ ≡ ∂μ − iEμ

Tr(Ta ⋅ Tb) =
1
2

δab

ℒξ =
f 2

4
Tr(dμdμ) =

f 2

8
d ·a

μd ·aμ =
f 2

2
Tr( − iU−1∂μUT ·a)Tr( − iU−1∂μUT ·a)

=
1
2

∂μξ ·a∂μξ ·a + ∑
n

𝒪((∂μξ)2ξn/f n)
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COMPOSITE HIGGS MODELS
Sometimes, we want to couple this strongly interacting sector to some 
external gauge fields (aka, weakly gauge some subgroup ) 

Then, we need to replace  by  in the definition of  

 

The leading effective Lagrangian is then 

M ⊂ G

∂μ 𝒟μ = ∂μ − igAā
μTā ωμ

ω̄μ = − iU−1𝒟μU = d̄ ·a
μT ·a + Ēi

μTi = d̄μ + Ēμ

ℒξ,Aμ
=

f 2

8
Tr(d̄μd̄μ)
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COMPOSITE HIGGS MODELS. A MINIMAL EXAMPLE.
Let us consider a minimal example: 

 

‣ There are four generators   We expect four pNGBs 

‣ We will weakly gauge the subgroup 

G ≡ SU(3) → H ≡ SU(2) ⊗ U(1)

T ·a ∉ 𝔥 ⇒

H
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COMPOSITE HIGGS MODELS. A MINIMAL EXAMPLE.
Consider the usual Gell-Mann representation of : . 

, , ,  

, , ,  

They satisfy commutation relations , with

 

We can see that in particular  : 

  

SU(3) Ta =
λa

2
, a = 1,…,8

λ1 = (
0 1 0
1 0 0
0 0 0) λ2 = (

0 −i 0
i 0 0
0 0 0) λ3 = (

1 0 0
0 −1 0
0 0 0) λ8 =

1

3 (
1 0 0
0 1 0
0 0 −2)

λ4 = (
0 0 1
0 0 0
1 0 0) λ5 = (

0 0 −i
0 0 0
i 0 0 ) λ6 = (

0 0 0
0 0 1
0 1 0) λ7 = (

0 0 0
0 0 −i
0 i 0 )

[Ta, Tb] = ifabcTc

f123 = 1, f458 = f678 =
3

2
, f147 = f165 = f246 = f257 = f345 = f376 =

1
2

[Ti, Tj] = iϵijkTk, [Ti, T8] = 0, i, j, k ∈ {1,2,3}

SU(2) ⊗ U(1) ⊂ SU(3)
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COMPOSITE HIGGS MODELS. A MINIMAL EXAMPLE.
We can define , with , .  One gets  

,   

 where . Then, defining  and  analogously we obtain that 

 

We have therefore the right quantum numbers to get the SM Higgs doublet. In 
the unitary gauge,  we obtain  

Tϕ = (T+

T0) T+ ≡
T4 − iT5

2
T0 ≡

T6 − iT7

2

[Ti, Tϕ] = −
σi

2
Tϕ [Y, Tϕ] = −

1
2

Tϕ

Y ≡
1

3
T8 ξ+(x) ξ0(x)

ϕ(x) = (ξ+(x)
ξ0(x)) ∼ 21/2

ξ6 ≡ h, ξ4,5,7 = 0,

U(x) =
1 0 0
0 cos(h /f ) i sin(h /f )
0 i sin(h /f ) cos(h /f )
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COMPOSITE HIGGS MODELS. A MINIMAL EXAMPLE.
The pNGB EFT reads 

 

At this point the Higgs is massless. However, the weakly gauging of the EW group 
will generate a Higgs potential at the loop level and, together with the fermion 
contributions (partial compositeness), will trigger EWSB. 

After the Higgs get a VEV, , we obtain the W and Z masses 

 

 

It leads to  — it does not have Custodial Symmetry 

ℒ =
f 2

8
Tr(d̄μd̄μ) =

1
2

∂μh∂μh +
g2

4
f 2 sin2( h

f )W+
μ W−μ +

g2

32c2
W

f 2 sin2( 2h
f )ZμZμ + …

⟨h⟩ = v

m2
W =

g2

4
f 2 sin2( v

f ) =
g2

4
v2(1 −

v2

3f 2
+ 𝒪(v4/f 4))

m2
Z =

g2

16c2
W

f 2 sin2( 2v
f ) =

g2

4c2
W

v2(1 −
4
3

v2

3f 2
+ 𝒪(v4/f 4))

ρ ≡
m2

W

m2
Zc2

W
= 1 +

v2

f 2
+ 𝒪(v4/f 4)
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COMPOSITE HIGGS MODELS. A MINIMAL EXAMPLE. 68

For simplicity we define , with  the H-preserving 
vacuum. 

This object transform as  

 

Since  is invariant under ,   and  

 

The gauge boson matrix  transforms the same 

  

For convenience we add an spectator group  with gauge boson 

Σ = U(ξ)Σ0U(ξ)−1 Σ0 ≡ T8/ 3

Σ → D(g)U(ξ)D−1(h(g, ξ(x)))Σ0D(h(g, ξ(x)))D−1(g)

Σ0 h ∈ H D(h(g, ξ(x)))Σ0D−1(h(g, ξ(x))) = Σ0

Σ → D(g)U(ξ)Σ0U−1(ξ)D−1(g) = D(g)ΣD−1(g)

Aμ = Wi
μTi +

1

3
BμT8 + A ·a

μT ·a

Aμ → D(g)AμD−1(g)

U(1)X Xμ = Bμ
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At the quadratic level in the gauge fields and in momentum space, the most 
general H-invariant Lagrangian is 

 

with . The form factors  encode the 

dynamics of the strong sector. After making  we obtain 

 

 

where , .

ℒ = (𝒫T)μν[ 1
2

ΠX
0(q2)XμXν + Π0(q2)Tr(Aμ ⋅ Aν) + Π1(q2)Tr([Aμ, Σ]†[Aν, Σ])]

(𝒫T)μν = ημν −
pμpν

p2
ΠX

0(q2), Π0(q2), Π1(q2)

A ·a
μ ≡ 0

ℒ = (𝒫T)μν[(Π0(q2) +
Π1(q2)s2

h

4 )W+
μ W−

ν +
1
2 (Π0(q2) +

Π1(q2)s2
hc2

h

4 )W3
μW3

ν

+
1
2 ( Π0(q2)

3
+ ΠX

0(q2) +
Π1(q2)s2

hc2
h

4 )BμBν −
Π1(q2)s2

hc2
h

4
W3

μBν]
sh = sin(h /f ) ch = cos(h /f )



COMPOSITE HIGGS MODELS. A MINIMAL EXAMPLE. 70

For simplicity, let us forget right now about the hypercharge. Then 

V(h) =
6
2 ∫

∞

0

d4pE

(2π)4
log(1 +

1
4

Π1(−p2
E)

Π0(−pE)2
sin2(h /f ))



COMPOSITE HIGGS MODELS. PARTIAL COMPOSITENESS. 71

‣ Weakly gauging  generates a potential at one loop. 

‣ However, as pointed out by Witten, gauge contributions alone can not 
trigger EWSB.  

‣ We need thus something else. What can it be? We still need to give 
masses to fermions! 

The solution to all our problems is called partial compositeness: 

,     with ,  

inducing at low energies 

SU(2) ⊗ U(1)

ℒmix = λqq̄L𝒪q + λtt̄R𝒪t + h . c . ⟨0 |𝒪q |Qn⟩ = Δn ⟨0 |𝒪t |Tn⟩ = Γn

ℒmix = λqΔ1q̄LQ1R + λtΓ1t̄RT1L + h . c. + …
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The solution to all our problems is called partial compositeness: 

,     with ,  

inducing at low energies  

They contribute to the Higgs potential  

And generate the light fermion masses

ℒmix = λqq̄L𝒪q + λtt̄R𝒪t + h . c . ⟨0 |𝒪q |Qn⟩ = Δn ⟨0 |𝒪t |Tn⟩ = Γn

ℒmix = λqΔ1q̄LQ1R + λtΓ1t̄RT1L + h . c. + …

mt ∼
v

2

λqΔ1

mQ1

λtΓ1

mT1

Y
f
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The solution to all our problems is called partial compositeness: 

‣ It gives a contribution to the Higgs quartic with the opposite sign to that 
of the gauge bosons! 

‣ It correlates the Higgs mass with the top one. Indeed, the top mass 
triggers EWSB. 

‣ The Higgs potential is dynamically generated, not postulated as in the 
SM 

‣ It helps with the flavor puzzle. 

‣ Due to the large top mass, one typically expects light fermionic 
resonances, aka top partners. 
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Taken from 1410.8555, JHEP 05 (2015) 022
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Taken from ATLAS-CONF-2021-024
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Partial compositeness solves the flavor puzzle 

,          with        

The naive estimate of the quark masses read 

,       with   

Therefore,  

 

The RGE of  reads 

ℒint =
λq

Λγq
UV

q̄L𝒪q +
λt

Λγt
UV

t̄R𝒪t [𝒪q,t] = 5/2 + γq,t 𝒪q,t ∼ ΨΨΨ

mq ∼ g*v
NTC

16π2
λq(ΛIR)λt(ΛIR) m* ∼ g* f ∼

4π
NTC

∼ ΛIR

mq ∼ v
NTC

4π
λq(ΛIR)λt(ΛIR)

λq,t

μ
d

dμ
λ = γλ + c

NTC

16π2
λ3
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Partial compositeness solves the flavor puzzle 

 

The RGE of  reads 

 

‣  :   (Useful for light fermions) 

   

‣  : the RGE goes to an IR fixed point.           (Useful for the top) 

  

mq ∼ v
NTC

4π
λq(ΛIR)λt(ΛIR)

λq,t

μ
d

dμ
λ = γλ + c

NTC

16π2
λ3

γq,t > 0

λq,t(μ) = λq,t(Λ)( μ
Λ )

γq,t

⇒ mq ∼ v
NTC

4π ( ΛIR

ΛUV )
γq+γt

[γq,t < 0] ∧ [c > 0]

λ* ≅
−γ
c

4π
NTC

⇒ mq ∼ v
4π
NTC

γqγt



COMPOSITE HIGGS MODELS. EXTRA SCALARS. 78

As we have seen, the minimal non-custodial model is . 

The minimal custodial model is . 

Models that can be UV completed in 4D with new fermions (under some 
reasonable assumptions) require bigger cosets: 

‣  : .                 under  

‣  :  

‣  :  

‣ … 

So, light pNGBs which are singlets under the EW group a natural expectation in 
these scenarios (aka axion-like particles) 

SU(3)/[SU(2) ⊗ U(1)]
SO(5)/SO(4)

SU(5)/SO(5) 14 = 31 ⊕ 30 ⊕ 21/2 ⊕ 10 SU(2) ⊗ U(1)

SU(4)/Sp(4) 5 = 2 ⊕ 10

[SU(4) ⊗ SU(4)]/SU(4) 15 = 30 ⊕ 21/2 ⊕ 2′ 1/2 ⊕ 11 ⊕ 10 ⊕ 1′ 0
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Sorry but they only gave me two hours.  
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BEYOND THE SM



BEYOND THE BAD



NEW PHYSICS AFTER THE LHC NULL RESULTS

The LHC has not yet observed any sign of new physics (NP): 

‣ Naturalness might not be the lighthouse we thought it was. 

‣ There seems to be a significant mass gap between the EW scale and the 
scale of NP  Ideal for effective field theories (EFTs). 

‣ It is still possible for NP to be light but it would need to be very weakly 
couple  Searches for long-lived particles (LLP). 

We will see a few examples during this lecture. Since we have very limited 
time, we will just consider very few cases: 

Apologies if your favorite NP model is not mentioned!  

⇒

⇒

86



LONG-LIVED 
PARTICLES



LONG-LIVED PARTICLES 

Most of LHC experimental searches assume prompt decays of the particles 
involved or a sizable amount of missing energy. 

But life is not black and white, there are a lot of grays! Long-lived particles 
(LLPs) are predicted in many BSM scenarios 

‣ Particle decays mediated via heavy virtual mediators (e.g. heavy neutral 
leptons) —  

‣ Nearly mass degenerate states (e.g. compressed SUSY) 

‣ Small couplings to SM particles (e.g. dark mediators) —  small 

m ≪ M

g

1
τ

= Γ =
1

2m ∫ dΦ |ℳ |2 ∼
g2

(8π)a−1

m2

Mn−1
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LONG-LIVED PARTICLES 89

Taken from Heather Russel
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(see text for details)

Beyond the Standard Model

LONG-LIVED PARTICLES 90Taken from 2212.03883

There are plenty of possible LLPs, some of them in the SM. For instance 

, , , … cτ(K+) = 3.71 m cτ(D+) = 311.78 μm cτ(B+) = 491.06 μm



LLPS



A QCD-LIKE DARK SECTOR



DARK SECTORS 93

STANDARD 
MODEL

DARK SECTOR

PORTAL
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mN ≈ 1 GeV
nB/nγ ≈ 6 ⋅ 10−10

ΩB ≈ 0.046

COULD THE OBSERVED BARYONIC ABUNDANCE BE 
A THERMAL RELIC?

ρDM

ργ
∼

M
T0

nDM

nγ
∼

1
MPlσT0

If we plug  and  we get something  times smaller than 
the observed abundance. Baryons are not thermal relic. 

Why should DM be a thermal relic then?

M = mN σ ∼ m−1
π 10−8



ASYMMETRIC DARK MATTER 95

mN ≈ 1 GeV

If you look at baryons: 

mN ≈ 1 GeV
nB/nγ ≈ 6 ⋅ 10−10

ΩB ≈ 0.046

BARYONS ARE NOT THERMAL RELICS

We know that a small primordial excess of baryons over anti-baryons  was 
preserved until today because baryon number is conserved. 

Below  the protons and anti-protons annihilate efficiently and only the 
small excess remains! 

 

ηB

T ∼ mN

ηB =
nB − nB̄

nγ
= (6.15 ± 0.25) ⋅ 10−10



ASYMMETRIC DARK MATTER 96

mN ≈ 1 GeV

If you look at baryons: 

mN ≈ 1 GeV
nB/nγ ≈ 6 ⋅ 10−10

ΩB ≈ 0.046

BARYONS ARE NOT THERMAL RELICS

ηB =
nB − nB̄

nγ
= (6.15 ± 0.25) ⋅ 10−10

The primordial asymmetry requires Sakarov conditions: 

‣ Violation of B number 

‣ Violation of CP 

‣ Out-of-equilibrium dynamics
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mN ≈ 1 GeV

If you look at baryons: 

mN ≈ 1 GeV
nB/nγ ≈ 6 ⋅ 10−10

ΩB ≈ 0.046

BARYONS ARE NOT THERMAL RELICS

ηB =
nB − nB̄

nγ
= (6.15 ± 0.25) ⋅ 10−10

Let us apply the baryon example to DM  asymmetric dark matter.  

If ,  

 

⇒

ηDM/ηB = 𝒪(1)

ΩDM

ΩB
=

mDM

mN

ηDM

ηB
⇒ mDM ≈ 5mN ≈ 5 GeV



ASYMMETRIC DARK MATTER 98

A DM candidate of  is not the only possibility. If  is 
the consequence of weak sphalerons instead of some new interaction.  

If , with  the critical temperature below which sphalerons  
turn off the asymmetric DM abundance is Boltzmann suppressed: 

 

Example: DM is a bound state of fermions chiral under . 

mDM = 𝒪(5 GeV) ηB ∼ ηDM

mDM ≳ TEW TEW

ΩDM/ΩB ≈ e−TEW/mDMmDM/mN ⇒ mDM ≈ 8TEW ≈ 2 TeV

SU(2)L

sphalerons
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ADM models present several advantages over the WIMP paradigm: 

‣ Alternative explanation of the relic density 

‣ Avoids stringent direct/indirect limits (absence of  to co-annihilate) 

‣ Self interaction solves small scale structure problems 

‣ They show a different phenomenology 

There are plenty of ADM models. We will examine in more detail the 
example of a QCD-like dark sector (without entering into details of the 
asymmetry generation, asymmetry transfer, …).  

DM

QCD DARK QCD

Scalar mediator 
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SM Dark QCD

confinement dark confinement

‣  gauge group, with  

‣  dark fermions  

‣  

‣

SU(ND) ND ≥ 3

ndf

mQ ≪ ΛdQCD

SU(nf )L ⊗ SU(nf )R → SU(nf )V

We expect efficient 
annihilation via 

 pDp̄D → πDπD



A QCD-LIKE DARK SECTOR. A VERY DIFFERENT PHENO. 101

Tracking 
Volume

Dark pions

QCD hadrons

‣ Dark hadrons decay after some lifetime 

‣ We end up with multiple displaced vertices within each jet 

‣ This is called an emerging jet 
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Tracking 
Volume

Dark pions

QCD hadrons

‣ Dark hadrons decay after some lifetime 

‣ We end up with multiple displaced vertices within each jet 

‣ This is called an emerging jet 
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Taken from JHEP 07 (2024) 142
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In the  case,  when , , we have  

 

by  , delivering 8 pNGBs 

ndf = 3 = ND mQ → 0 mχ → ∞

SU(3)L ⊗ SU(3)R → SU(3)V

⟨Q̄αQβ⟩ = δαβΛ3
dQCD
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Depending on the quantum numbers of the mediator we will have different 
phenomenology for the ‘dark pions’ (note that they are not really dark since 
they are unstable and decay into SM fermions). 

Schwaller, Renner ‘18

AC, Scherb, Schwaller ‘21
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Depending on the quantum numbers of the mediator we will have different 
phenomenology for the ‘dark pions’ (note that they are not really dark since 
they are unstable and decay into SM fermions). 

Schwaller, Renner ‘18

AC, Scherb, Schwaller ‘21
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mN ≈ 1 GeV
nB/nγ ≈ 6 ⋅ 10−10

Ωb ≈ 0.046

Depending on the quantum numbers of the mediator we will have different 
phenomenology for the ‘dark pions’ (note that they are not really dark since 
they are unstable and decay into SM fermions). 
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mN ≈ 1 GeV
nB/nγ ≈ 6 ⋅ 10−10

Ωb ≈ 0.046

We can study e.g. the phenomenology of these two. We can treat the matrix 
 as a spurion of the flavor group . In the 

alignment limit,  its vev lead to the breaking .
κT

αi ∼ (3, 3̄) SU(3)q ⊗ SU(3)Q
SU(3)q ⊗ SU(3)Q → SU(3)q+Q
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These dark mesons are essentially flavored axion-like particles (ALPs). 

ALPs = CP-odd pNGBs of a spontaneously broken global symmetry

nB/nγ ≈ 6 ⋅ 10−10

Ωb ≈ 0.046
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The EFT for ALPs above the EW scale is 

 

Dark QCD will typically give rise to ALPs with only couplings to fermions (at 
tree-level). For instance, in the case where , we obtain 

 

However, even if some Wilson coefficients are zero at the UV scale,                    
they will be generated by the running.  

ℒ =
1
2

∂μa∂μa −
m2

a

2
a2 +

∂μa
fa ∑

ψ
(cψ)ij

ψ̄iγμψj

−
a
fa [cGG

g2
3

32π2
Ga

μνG̃a μν + cWW
g2

2

32π2
WI

μνW̃I μν + cBB
g2

1

32π2
BμνB̃μν]

χ ∼ (3, 3̄,1, − 2/3)

ℒ =
1
2

(∂μa)(∂μa) −
m2

a

2
a2 +

∂μa
fa

(cuR)ij(ūRiγμuRj)



RUNNING UP THAT COUPLING



FLAVORED ALPS. RUN THROUGH THE HEP JUNGLE. 112

cqL
=

YucuR
Yu

32π2
ln ( ΛNP

μ2 )

(𝒪qL)ij
=

∂μa
ΛNP

(q̄LiγμqLj), 𝒪H =
∂μa
ΛNP

(H†iDμH)

cH =
3

8π2
Tr (YucuR

Yu) ln ( ΛNP

μ2 )

Top couplings will make a difference!
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The ADM paradigm fixes  and thus . But we want 
to be a bit more general here (e.g. DM could be made of dark pions).

ΛdQCD ∼ 5ΛQCD ma ≲ ΛdQCD
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The ADM paradigm fixes  and thus . But we want 
to be a bit more general here (e.g. DM could be made of dark pions). 

Flavor probes will compete or be complemented by astrophysical or 
cosmological bounds as well as by collider or fixed target experiments. 

ΛdQCD ∼ 5ΛQCD ma ≤ ΛdQCD
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 F=2 Neutral meson mixingΔ

 F=1 Rare meson decaysΔ
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FLAVORED ALPS. FIXED TARGET EXPERIMENTS. 117

Fixed target experiments: NA62, SHiP, CHARM. 

LHC forward detectors: FASER, FASER II, MATUSHLA.
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‣ We can probe charming ALPs above charm threshold.  

‣ Depending on the ALP lifetime we will go from ‘prompt decays’ to 
‘displaced vertices’.
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‣ We can probe charming ALPs above charm threshold.  

‣ Depending on the ALP lifetime we will go from ‘prompt decays’ to 
‘displaced vertices’.

Taken from CERN-EP-2024-086
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We are not forced to have ADM. Dark pions can also be DM.  

Since , the matrix  can be seen as the vev of an 
spurion transforming as  under the group . 
The vev breaks  

If , there is some conserved  symmetry. We have  
conserved flavor numbers and  stable dark mesons.  

For instance, let us focus on the  case. The pNGBs are a  of . 
We know that under ,  

  

This  is conserved by the vev of  and all SM fields are singlets. 
Therefore, the six pNGBs in  can not decay into any SM particle. 

ℒint = − καiψ̄iQα + h . c . κT
αi

κT
αi ∼ (3, n̄df ) SU(3)ψ ⊗ SU(ndf )Q

SU(3)ψ ⊗ SU(ndf )Q → U(1)ndf−3 .

ndf ≥ 4 U(1)ndf−3 ndf − 3
n2

df − 9 − (ndf − 3)

ndf = 4 15 SU(4)
SU(3) ⊗ U(1) ⊂ SU(4)

15 = 80 ⊕ 3 2/3 ⊕ 10

U(1) κT

3 2/3
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Let us focus on the  case. The pNGBs are a  of , decomposing 
under  as 

  

‣  The  can not decay into any SM particles and are thus stable. 

‣ The  will be able to decay into SM fields 

‣ Since there is a unique , the stable mesons  will always 
appear in pairs in the dark ChPT interactions.  

‣ In some basis, one can identify SM flavors with the first three dark ones:   

ndf = 4 15 SU(4)
SU(3) ⊗ U(1) ⊂ SU(4)

15 = 80 ⊕ 3 2/3 ⊕ 10

3 2/3

80 ⊕ 10

U(1) ⊂ SU(4) 3 2/3
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The interactions among the different dark mesons come through the dark 
ChPT Lagrangian: 

  

where  and . After expanding in power of  

 

ℒdChPT =
f 2
D

4
Tr(∂μU†

D∂μUD) +
f 2
DBD

2
mQTr(U†

D + UD)
UD = exp(2iΠD/fD) ΠD = πa

DTa ΠD

ℒdChPT ⊃
2

3f 2
D

Tr (Π2
D∂μΠD∂μΠD − ΠD∂μΠDΠD∂μΠD) +

m2
πD

3f 2
D

Tr(Π4
D)

(σv)lab = σ0ϵ1/2

ϵ = (s − 4m2
πD

)/(4m2
πD

)

σ0 ∝ m2
πD

/( f 4
Dn2

df)
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Remember that stable dark pions need to appear in pairs. Coannihilation 
and indirect detection goes via cascade decay. 

                                                                    

The coannihilation cross-section is velocity suppressed . 
This leads to weaker signals from objects with low DM velocity, such as 
dwarf galaxies. Good for indirect detection and CMB!

⟨σv⟩2DM→2dec
≈

2m2
πD

π3/2f4
D mπD

/T

⟨σv⟩2DM→2dec
∼ σ0v
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Direct detection goes through 

 

where . After expanding in powers of  we obtain,  

 

If we organize the stable dark pions into a  triplet , we can write 

 

                                                              

                                                     

ℒportal
dChPT = i

f 2
D

4m2
X

καiκ*βj {Tr(cβαU†
D∂μUD)(ψ̄iγμPRψj) + Tr(cβαUD∂μU†

D)(ψ̄iγμPLψj)}
(cβα)ρλ = δρ

αδλ
β ΠD

ℒportal
dChPT ⊃ −

1
2m2

X
καiκ*βj(T

c)αβ f abcπa
D∂μπb

D(ψ̄iγμψj),

SU(3) φ

ℒ ⊃ ∓
1

8m2
χ

κm1κ*n1[φ†
ni

↔
∂ μφm][q̄γμ(γ5)q]
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Direct 
Detection

cτ
=

10
cm

cτ
=

1
m

m

ΩπDM
> ΩDM

Ω
πDM = Ω

DM
Ω

πDM = 0.1 × Ω
DM

Indirect Detection
CMB
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Collider Pheno: we consider the production of two dark quarks and up to 
two SM quarks. Depending on the unstable dark mesons lifetime we get: 

‣ 4 prompt jets 

‣ Two jets + two emerging jets 

‣ Two jets + MET 

‣ Two semi-visible jets 



Taken from CERN-THESIS-2022-337 [S. Sinha]

127LLP MAYHEM
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Dark Sectors with  gauge group and  dark fermions 
experience a first order phase transition (FOPT). 

FOPT  Bubbles nucleate and expand.  

Bubble collisions  Gravitation waves. 

SU(ND) ndf ≥ 3

⇒

⇒

128
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PT controlled by few parameters: 

‣ Latent heat  

‣ Bubble wall velocity

α ≈
Ωvacuum

Ωrad
‣ Bubble nucleation rate   

‣ PT temperature 

β

T*



EFFECTIVE FIELD 
THEORIES



LIFE AFTER THE LHC 131

‣ The negative results at LHC strongly suggest that 

 

‣ The field is demanding more and more precision since if there is NP is 
going to be a matter of small deviations. 

‣ We need some way of ranking the ever-increasing amount of data and 
effectively connect it with new theories.  

v, mH, mt, mW, mZ ≪ ΛNP
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⇔ ⇔

DATA EFT BSM

EFTs are THE tool to parametrize in a model-independent way new physics 
and shed light on what is possible beyond the SM. 

‣ Data  EFT : It allows to interpret data in a consistent way [Bottom-up] 

‣ EFT  BSM : It allows to confront any new theory with data [Top-down]

→

←



BOTTOM-UP APPROACH 133Taken from 2105.14942 
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ℒUV(ϕ, Φ, …)

ℒEFT(ϕ, …)
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We can perform the tree-level matching for the following Lagrangian  

 

by using equations of motion 

 

which leads to  

 

 

and 

ℒUV(ϕ, Φ) = ℒSM(ϕ) + [Φ†F(ϕ) + h . c . ]+ Φ†[ − D2 − m2
Φ − U(ϕ)]Φ + 𝒪(Φ3)

[D2 + m2
Φ + U(ϕ)]Φc = F(ϕ) + 𝒪(Φ2

c)

Φc = [D2 + m2
Φ + U(ϕ)]−1F(ϕ) = m−2

Φ [1 + m−2
Φ (D2 + U(ϕ))]−1F(ϕ)

=
1

m2
Φ

−
1

m2
Φ

[D2 + U(ϕ)] 1
m2

Φ
F(ϕ) + …

ℒ(0)
EFT = ℒUV(ϕ, Φc(ϕ))
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Tree-level matching is not very tough and can be easily automated (see 
e.g. MatchingTools by J.C. Criado). 

Actually, one can classify all possible renormalizable BSM models that 
contribute to the SMEFT at the tree-level.  
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‣ Dimensionful couplings imply that particles with different spin can 
simultaneously contribute to  at tree-level 

 

‣ Only a subset of the irreps in the previous lists contribute 

‣ These mixed contributions complete the tree-level UV/IR dictionary.     
[Blas, Criado, Perez-Victoria, Santiago, ‘17]

ℒd=6
EFT

ℒNP = κϕ1ϕ2ϕ3 + κ′ VμDμϕ + κ′ ′ VμV′ μ + …
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Doing the same at one-loop is an extremely difficult task since: 

‣ It involves relatively complicated calculations 

‣ It has to be done for any renormalizable UV model 

As an example, the calculation of the arguably most simple case (SM+scalar 
singlet, [Jiang, Craig, Li, Sutherland, JHEP 2019]) involved more than 4000 
diagrams and required four authors.  

Eventually, we want to do something along these lines also for other EFTs, 
like the ALP EFT or the SMEFT at dimension 8.  

All of these requires automation.
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There are currently (almost) two computer tools to perform this task: 

1. MatchMakerEFT               AC, Lazopoulos, Olgoso, Santiago,  SciPost Phys. 12, 198 
(2022).                                                                      https://ftae.ugr.es/matchmakereft/

It performs tree-level and one-loop matching between arbitrary models and 
arbitrary EFTs. It also computes the one-loop RGEs. It follows the 
diagrammatic approach.

https://ftae.ugr.es/matchmakereft/
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There are currently (almost) two computer tools to perform this task: 

2. Matchete, Fuentes-Martin, König, Pagès, Eller Thomsen, Wilsch, Eur. Phys. J. C 83 
(2023) 7, 662

It performs tree-level and one-loop matching between arbitrary models and 
arbitrary EFTs (at the moment without vector bosons). It follows the 
functional approach.
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‣ Matching is performed off-shell & diagrammatically

‣ Off-shell matching involves less diagrams (only 1LPI diagrams 
contribute — i.e., no bridges of light particles) 

‣ However, we need to work with the so-called Green basis, where one 
needs to include redundant operators (related by EOMs).  

‣ We use the background field method. We split the gauge fields into 
classical backgrounds and quantum fluctuations, fixing the gauge just for 
the latter. Off-shell Green functions are then gauge invariant. 

‣ EFT amplitude computed at tree-level and solved for the Wilson 
coefficients. 

‣ We compute the hard region of the UV amplitude. 

A lot here taken from P. Olgoso 
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‣ Model creation (FeynRules): 

‣ Particle content 
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‣ Model creation (FeynRules): 

‣ Particle content 

‣ Lagrangian 
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‣ Model creation (FeynRules): 

‣ Particle content 

‣ Lagrangian 

‣ Feynman rules 
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‣ Model creation (FeynRules). 

‣ Generation of diagrams (QGRAF). 
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‣ Model creation (FeynRules). 

‣ Generation of diagrams (QGRAF). 

‣ Amplitude calculation (FORM). 
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‣ Model creation (FeynRules). 

‣ Generation of diagrams (QGRAF). 

‣ Amplitude calculation (FORM). 

‣ Solution  Canonical Normalization  Reduction to the physical basis 
(Mathematica) 

⊕ ⊕


