Neutrino Physics Experimental - Part II

Benasque, 11 September 2024

TAE 2024 - International Workshop on High Energy Physics Patricia Sanchez-Lucas, Universidad de Granada Centro de Ciencias Pedro Pascal

Why do we study neutrinos?

Many different (6)sources

Not fully understood yet

(1) Fundamental Particle

Massive particle more abundant in Nature

Difficult but not impossible to catch

The weight almost nothing

Key to understand the Universe

Are neutrino and anti-neutrino the same particle?

Why do we study neutrinos?

Many different sources

Mysterious

Not fully understood yet

Fundamental Particle

Massive particle more abundant in Nature

Difficult but not impossible to catch

The weight almost nothing

8 Key to understand the Universe

Are neutrino and anti-neutrino the same particle?

Open questions in neutrino physics

1) Is the CP phase non-zero? What it its value? Mixing

2) What is the mass ordering?

What are the absolute values of the neutrinos masses?

3) Are neutrinos its own anti-particle? Are they Dirac or Majorana particles?

4) Are there any other types of neutrinos?

Many projects ahead to answer these questions

CP violation and neutrino mass ordering

Next generation oscillation experiments

• Future long baseline (LBL) experiments will have to close the three-flavour oscillation framework. Meaning:

i) determine the mass ordering

ii) study the existence of CP violation in the neutrino sector

$$egin{bmatrix}
u_{
m e} \
u_{
m \mu} \
u_{ au} \end{pmatrix} = egin{bmatrix} 1 & 0 & 0 \ 0 & c_{23} & s_{23} \ 0 & -s_{23} & c_{23} \end{bmatrix} egin{bmatrix}
c_{13} & 0 & s_{13}e^{-i\delta_{
m CP}} \ 0 & 1 & 0 \ -s_{12} & c_{12} & 0 \ 0 & 0 & 1 \end{bmatrix} egin{bmatrix}
u_1 \
u_2 \
u_2 \
u_3 \end{bmatrix}$$

Including matter effects (MSW), there is an interplay between mass ordering and CP-phase in the 3-flavour oscillation probability for $\nu_{\mu} \longrightarrow \nu_{e}$ and $\bar{\nu_{\mu}} \longrightarrow \bar{\nu_{e}}$

- propagation in matter is different due to scattering of neutrinos in matter (in electrons particularly) - If $\delta_{CP} \neq 0$ neutrinos and antineutrinos behave in a different way $P(\nu_{\mu} \longrightarrow \nu_{e}) \neq P(\bar{\nu_{\mu}} \longrightarrow \bar{\nu_{e}})$

Matter effects and δ_{CP} in oscillation experiments

Sign change

Matter effects and δ_{CP} in oscillation experiments

$$P(\overline{\nu}_{\mu}) \rightarrow \overline{\nu}_{e}) = \sin^{2} \theta_{23} \sin^{2} 2\theta_{13} \frac{\sin^{2}(\Phi_{31} - aL)}{(\Phi_{31} - aL)^{2}} \Phi_{31}^{2} \qquad \text{for } \nu_{e} \text{ and } \overline{\nu}_{e}$$

$$+ \sin 2\theta_{23} \sin 2\theta_{13} \sin 2\theta_{12} \frac{\sin(\Phi_{31} - aL)}{(\Phi_{31} - aL)} \Phi_{31} \frac{\sin(aL)}{(aL)} \Phi_{21} \cos(\Phi_{31} \pm \delta_{CP})$$

$$+ \dots \qquad \text{Interplay between mass}$$

$$\Phi_{ji} = \frac{1.27\Delta m_{ji}^2 L}{E_{\nu}} \quad a = \pm \frac{G_{\rm F} N_e}{\sqrt{2}}$$

Sign change

Interplay between mass ordering and CP-phase

Current knowledge (NOvA & T2K)

NOvA + T2K combined results (Neutrino2024)

NOvA only: Phys. Rev. D106, 032004 (2022) T2K only: Eur. Phys. J. C83, 782 (2023)

- Preference for NO with $\pi/2 < \delta_{CP} < \pi$
- Different trends NO and IO

- ► T2K only:

NOvA + T2K combined: Mild preference for IO

Future LBL experiments needed to reach a conclusion

Some tension in the value of δ_{CP} for NO

- Preference for NO with $\delta_{CP} \sim -\pi/2$ - Same trends NO and IO

Hyper-Kamiokande

- ► Natural evolution of Super-Kamiokande (T2K —> T2HyperK)
- ► **Upgrade:** neutrino beam > 1.3 MW, off-axis angles, larger FD
- ▶ **Baseline:** 295 km (same)
- Fiducial volume: 200 kton pure water (8 times SK)
- Possibility to add a second FD in Korea (baseline 1100 km)
- Aiming to start operations in 2027

GOAL: Minimise matter effects + maximise statistics to focus on δ_{CP}

 $> 5\sigma$ CPV sensitivity in 10 years for 60% of the δ_{CP} values

Hyper-K collaboration (Neutrino2024)

DUNE (Deep Underground Neutrino Experiment)

A leading-edge international neutrino accelerator experiment based at Fermilab

Muon neutrino beam

- 1.2 MW beam power
- Upgradeable up to 2.4 MW

- Near Detector (ND)
 - 574m from the beam
 - Unoscillated flux monitoring
 - ν Ar cross-section measurements

11

DUNE Physics

A leading-edge international neutrino accelerator experiment based at Fermilab

Measurement of v_e appearance and v_μ disappearance for a wide range of neutrino energies [0-10 GeV]

- 5σ measurement of the neutrino mass ordering
- Discovery potential for CP violation (wide range of $\delta_{ ext{CP}}$)
- Precise measurements of neutrino mixing parameters

DUNE: beam and oscillation probability

Precision measurements of the parameters that govern:

 $\nu_{\mu} \longrightarrow \nu_{e} \qquad \bar{\nu_{\mu}} \longrightarrow \bar{\nu_{e}}$

▶ The beam will provide neutrinos and antineutrinos with energies peaked at 2.5 GeV but with a broad range

 \blacktriangleright With a baseline of 1300 km, the oscillation probability has a strong dependence on both $\delta_{\rm CP}$ and the mass ordering

Access to different oscillation maxima to improve the sensitivity

DUNE: Far Detector (FD) LArTPCs: liquid argon time projection chambers - 4 modules: 70 kton total mass -

- Sanford Underground Research Facility (SURF)
- 1500 m underground (4300 m.w.e.)
- 4 detectors in 2 caverns
- Detector deployment in stages:
 - DUNE PHASE-I (Modules 1 & 2)
 - DUNE PHASE-II (Modules 3 & 4)

Phase-I: detector installation by 2026 beam data by 2031

DUNE: Near Detector (ND)

- Main Goal: constrain uncertainties for oscillation measureme
 - Un-oscillated neutrino flux monitoring
 - v-Ar cross section measurements
 - Three different detection systems on and off axis:

1) Liquid Argon Detector (50t FV)

- Primary target, same technology as the far detector
- 2) Temporary muon spectrometer (TMS)
 - Measure muons escaping the first detector
- 3) SAND (tracker surrounded by an electromagnetic calorimeter and magnet) - Control the stability of the neutrino beam

574m from the beam & 60m underground

Working principle of LArTPC

Example of single phase & horizontal drift

g principle of LArTPC

DUNE:ProtoDUNE-SP Run 5772 Event 15132

0 20 30 Sample time [μs]

40

50

17

DUNE sensitivity

Eur. Phys. J. C 80, 978 (2020)

Best case scenario ($\delta_{CP} = -\pi/2$)

 $> 5\sigma$ mass ordering sensitivity in 1 year

 $> 3\sigma$ CPV sensitivity in 3.5 year

Worst case scenario ($\delta_{CP} \neq -\pi/2$)

 $> 5\sigma$ mass ordering sensitivity in 3 year

 $> 3\sigma$ CPV sensitivity in ~13 year

DUNE collaboration (Neutrino2024)

18

JUNO (Jiangmen Underground Neutrino Observatory)

- Next-generation Large Liquid Scintillator detector (à la KamLAND)
- ▶ It is a LBL reactor experiment in China. Baseline 50 km
- ▶ Fiducial volume: 20 kton
- Increased light yield for a better energy resolution (3% at 1 MeV)
- End of the construction + filling in 2024

MAIN GOAL: Mass ordering sensitivity

Design to reach 3σ precision on mass ordering determination after 6 years

JUNO collaboration (Neutrino2024)

Neutrino Nature: Dirac or Majorana particle?

Double beta decays: introduction

Two-Neutrinos double beta decay $(2\nu\beta\beta)$

Extremely rare nuclear process, but allowed in the Standard Model

 $\Delta L = 0$

Observed in more that 10 nuclei: $T_{1/2} > 10^{18}$ years

⁴⁸Ca, ⁷⁶Ge, ⁸²Se, ⁹⁶Zr, ¹⁰⁰Mo, ¹¹⁶Cd, ¹³⁰Te, ¹³⁶Xe, ¹⁵⁰Nd, ²³⁸U

ν (Anti)Neutrinos

 $m(A, Z) > m(A, Z + 2) + 2m_{\rho}$

Predicted by Maria-Goeppert Mayer in 1935

Double beta decays: introduction

Neutrinoless double beta decay $(0\nu\beta\beta)$

Extremely rare nuclear process, NEVER OBSERVED BEFORE

- $\Delta L = 2$
- > Lepton number violation
- > Neutrinos are their own anti-particle (Majorana fermions)

 $m(A, Z) > m(A, Z + 2) + 2m_{\rho}$

Predicted by Maria-Goeppert Mayer in 1935

Expected $0\nu\beta\beta$ signal $2p + 2e^{-1}$ $2p \rightarrow 2n + 2e^+$ Sharp peak at the end of the $2\nu\beta\beta$ energy spectrum, Q-value

What do we need to observe this signal?

Large mass of a candidate isotope

tons of the active isotope

Different experimental techniques

Energy of the two electrons

GERDA MAJORANA LEGEND SuperNEMO (+tracking)

Charge

(*not a complete list)

Laura Baudis, Fermilab Talk 2020

Heat

CUORE CUPID

Light

KAMLAND-Zen SNO+

nEXO, NEXT (+tracks) DARWIN, PandaX-III

$0\nu\beta\beta$ experiments overview

Figure adapted from M. Agostini in TAUP2019

Different experiments with different isotopes

KamLAND-Zen 800 **Zero Neutrino Double Beta**

► Xe-loaded liquid scintillator: ~800 kg of ¹³⁶Xe contained in a 3.8 m diameter nylon ballon suspended at the centre of KamLAND

- Ballon surrounded by 1000 ton of pure LS
- Light detected by PMTs
- ▶ Energy resolution ~7% FWHM at Q-value
- ▶ **5 years** of data (Feb. 2019 Jan. 2024)

KamLAND detector

LEGEND-200

CUORE

- Closely packed array of 988 TeO2 crystals (750 g each) working as cryogenic calorimeters
- The absorbed energy is converted into a variation of the crystal temperature
- Operating temperature: ~10 mK
- ► Energy resolution at Q-value ~0.3 % FWHM
- ▶ Total mass of TeO₂: 742 kg (~**206 kg of ¹³⁰Te**)
- ▶ 6 years of data (May. 2017 Apr. 2023)

¹³⁰Te $T_{1/2} > 3.8 \times 10^{25}$ yrs

The NEXT-100 experiment at LSC (Spain)

- ► Energy resolution at Q-value ~1 % FWHM

EL: linear gain, no avalanche

Neus Lopez-March, LIDINE 2023

Although there are ionization and scintillation, the sensors only see light

High pressure (15 bar) gas xenon TPC

Comparison of the different experiments

From TAUP 2023 D. Moore

Comparison of the different experiments

Neutrino 2024

- **Future goal:** ~2 orders of magnitud improvement inT1/2 to cover the IO region and reach the NO
- Problem: Sensitivity rises with exposure, but strongly depends on backgrounds

Plot by S. Biller

Absolute neutrino mass

33

Neutrino absolute mass

▶ 3 different approaches to obtain information about the neutrino mass

Direct measurements

spectrum of different beta decays

Neutrinoless double beta decay

if neutrinos are Majorana particles

From oscillations: $m_{\nu} > 0.05 eV$

Indirect Measurements

cosmological contrains

$$m=\sum_i m_{v_i}$$

$$m < 0.12 \ eV$$

PLANCK (2018)

34

Direct measurements: tritium beta decay

Measurement of effective mass m_{ν} based on kinematic parameters & energy conservation

$$R_{\beta}(E) \propto (E_0 - E_0)$$

KATRIN Experiment

KATRIN: Karlsruhe Tritium Neutrino Experiment

To achieve a resolution 1/20000 the spectrometer needs a diameter of 10 m

KATRIN results

2019: *m* < 1.1 eV (90% CL)

2022: *m* < 0.8 eV (90% CL)

Neutrino 2024:

- 259 measurement days
- 1757 β-scans

$m_{\nu} < 0.45 \,\mathrm{eV} \ (90 \,\% \,\mathrm{CL})$

Anomalies and sterile neutrinos

38

Sterile neutrinos

All the oscillation experiments seen so far explained their results with the standard 3-neutrino picture

Is the correct or the only possibility?

• Over the years, several experiments have observed anomalies not compatible with this theoretical framework

- Reactor neutrino anomalies
- Gallium anomaly
- LSND anomaly
- Are sterile neutrinos a reasonable possibility?
 - The simplest 3+1 model in tension to cover all the anomalies
 - An extra neutrino in severe tensión with the cosmology data

Sterile neutrinos

All the oscillation experiments seen so far explained their results with the standard 3-neutrino picture

Is the correct or the only possibility?

• Over the years, several experiments have observed anomalies not compatible with this theoretical framework

- Reactor neutrino anomalies
- Gallium anomaly
- LSND anomaly
- Are sterile neutrinos a reasonable possibility?
 - The simplest 3+1 model in tension to cover all the anomalies
 - An extra neutrino in severe tensión with the cosmology data

Gallium anomaly

Solar neutrino experiments GALLEX and SAGE were calibrated with intense ⁵¹Cr and ³⁷Ar sources **20 years ago**

$$e^{-} + {}^{51}Cr \longrightarrow {}^{51}V + \nu_e$$

$$e^{-} + {}^{37}Ar \longrightarrow {}^{37}Cl + \nu_e$$

$$\nu_e + {}^{71}Ga - \nu_e$$

- ▶ The measurements showed a deficit in the expected rates of ⁷¹Ge
- In 2022 the deficit was confirmed by the experiment BEST

$$\frac{r^{meas.}}{r^{pred.}}(average) = 0.80 \pm 0.05$$

- Such deficit can be interpreted in terms of oscillations. Data suggests $\Delta m^2 > 1 \text{ eV}^2$, but requires a very large mixing angle ~18°
- The anomaly seems real given the robustness of the experiments, but maybe it is not related to sterile neutrinos

 $\rightarrow^{71} Ge + e^{-1}$

LSND anomaly

- In the 90's, the LSND experiment observed an excess of $\bar{\nu}_e$ events in a $\bar{\nu}_\mu$ beam, (E_v ~30 MeV, L ~35m) • The excess is compatible with $\bar{\nu_{\mu}} \longrightarrow \bar{\nu_{e}}$ oscillations provided that $\Delta m^2 > 0.1 \ eV^2$
- ▶ The KARMEN collaboration (2002) did not confirm the LSND result, but could not fully exclude it

The MiniBooNE experiment

- ► Goal: Ultimate test of the LSND anomaly at Fermilab (2007)
- Searches for $\bar{\nu_{\mu}} \longrightarrow \bar{\nu_{e}}$ and $\nu_{\mu} \longrightarrow \nu_{e}$. Same L/E as the LSND experiment (E = 200 1250 MeV, L = 540m).
- Detector technology: Cherenkov detector with pure mineral oil
- Result: excess in both $\bar{\nu}$ and ν channels. In fact, oscillations compatible with the LSND results

The MiniBooNE experiment

- Goal: Ultimate test of the LSND anomaly at Fermilab (2007)
- Searches for $\bar{\nu_{\mu}} \longrightarrow \bar{\nu_{e}}$ and $\nu_{\mu} \longrightarrow \nu_{e}$. Same L/E as the LSND experiment (E = 200 1250 MeV, L = 540M).
- Detector technology: Cherenkov detector with pure mineral oil
- Result: excess in both $\bar{\nu}$ and ν channels. In fact, oscillations compatible with the LSND results

PROBLEM: there was an excess of electron-neutrino-like events at low energies (below their analysis threshold) imposible to explain with oscillations

- possibly a systematic effect related to the mis-identification of electron and photons

independent confirmation required

The MicroBooNE experiment

- ▶ Goal: Ultimate test of the MiniBooNE anomaly at Fermilab (2021)
- Same location as MiniBooNE (72.5 m apart), same beam, different technology
- Detector technology: LArTPC, to distinguish electromagnetic showers started by photons vs. electrons
- **Result:** no evidence of v_e excess over SM prediction but imposible to reject the MiniBooNe result

The Short Baseline Neutrino Programa

- 3 LArTPCs in the same neutrino beam ($E_{\nu}^{\text{peak}} \sim 800 \text{ MeV}$)

• Goal: Investigate the eV-scale sterile neutrino oscillations (anomalies from LSND, MiniBooNE & MicroBooNE)

The Short Baseline Neutrino Programa

- 3 LArTPCs in the same neutrino beam ($E_{\nu}^{\text{peak}} \sim 800 \text{ MeV}$)

Looking forward to a final conclusion about this long-standing neutrino anomaly

• Goal: Investigate the eV-scale sterile neutrino oscillations (anomalies from LSND, MiniBooNE & MicroBooNE)

Summary and conclusions

48

Summary and Conclusions

- Neutrinos are one of the most interesting particles of the SM
 - They are abundant (many and diverse sources + very broad energy spectrum)
 - They are the only experimental evidence of physics beyond the SM
- Neutrinos do oscillate and this implies they have non-zero mass.
- ▶ The 3-flavour oscillation framework is firmly established and characterised (most of the parameters measured)
- ▶ The are still many questions that remain unsolved:

 - Do neutrinos and antineutrinos behave in the same way (CP violation? - What are the absolute values of the masses?
 - What is the mass ordering?
 - What is the origin of these small masses?
 - Are the neutrinos Majorana particles?
 - Are there more than 3 neutrinos?

Back Up

Matter effects and δ_{CP} in oscillation experiments

Neutrino propagation in Earth is very important for long-baseline neutrino experiments

$$P(\overline{\nu}_{\mu}) \rightarrow \overline{\nu}_{e}) = \sin^{2} \theta_{23} \sin^{2} 2\theta_{13} \frac{\sin^{2}(\Phi_{31} - aL)}{(\Phi_{31} - aL)^{2}} \Phi_{31}^{2} \qquad \text{for } \nu_{e} \text{ and } \overline{\nu}_{e}$$

$$+ \sin 2\theta_{23} \sin 2\theta_{13} \sin 2\theta_{12} \frac{\sin(\Phi_{31} - aL)}{(\Phi_{31} - aL)} \Phi_{31} \frac{\sin(aL)}{(aL)} \Phi_{21} \cos(\Phi_{31} \pm \delta_{CP})$$

$$+ \dots$$

$$\Phi_{ji} = \frac{1.27\Delta m_{ji}^{2}L}{E_{\nu}} \quad a = \pm \frac{G_{F}N_{e}}{\sqrt{2}} \qquad \text{Interplay between mass ordering and CP-phase}$$

Sign change

Project 8 experiment

Beta decay tritium next generation experiment

 Cyclotron Radiation Emission Spectroscopy (CRES), first demonstrated by the collaboration in 2014

- Decay electrons spiral around field lines

relativistic boost (electron energy)

Mass of lightest mass eigenstate (meV)

Neutrino mass mechanism

• The right-handed chiral neutrino states ν_R do not participate in any of the interactions of the SM \Rightarrow No direct evidence that they exist

• Neutrino oscillate \Rightarrow neutrinos do have mass \Rightarrow there must be a corresponding mass term in the Lagrangian

▶ In the SM, the gauge invariant Dirac mass term for the neutrino would be: $\mathscr{L}_D = -m_D(\bar{\nu}_R \nu_L + \bar{\nu}_L \nu_R)$. If this is the origin of neutrino masses $\Rightarrow \nu_R$ exist!

This mass spectrum suggest that another mechanism for generating neutrino mass might be present

Dirac or Majorana neutrinos

Most general Lagrangian: both types of neutrino masses (Dirac & Majorana)

$$\mathscr{L}_{DM} = -\frac{1}{2} [m_D \bar{\nu}_L \nu_R + m_D \bar{\nu}_R^c \nu_L^c + M \bar{\nu}_R^c]$$

Dirac term Majoran

- Neutrino Masses: If we take $M >> m_D ->$ we obtain a light and heavy neutrino states with masses:

$$m_{light} \approx rac{m_D^2}{M}$$
 $m_{heavy} \approx M$ see-sav

This mechanism provides an interesting hypothesis for the smallness of neutrino masses

 $\sum_{R=1}^{\infty} [\nu_R] + h \cdot c \cdot$

na term

Dirac particle: neutrino acquires mass as the other SM fermions, with Yukawa couplings unusally small

• Majorana particle: neutrinos are their own anti-particle and their mass is explained via the see-saw mechanism

The effective Majorana mass

The effective Majorana neutrino mass parameter: embeds all the dependance on neutrino quantities

 $|m_{\beta\beta}| = |m_1 U_{e1}^2 + m_2 U_{e2}^2 e^{2\phi_1} + m_3 U_{e3}^2 e^{2i(\phi_2 - \delta)}|$

• A mixture of m_1 , m_2 , m_3 with U_{ei}

▶ If neutrinos are Majorana particles, left- and right-handed fields are correlated. Hence only a common phase of three left-handed fields can be redefined. Two phases are allowed ($\alpha_1 \& \alpha_2$)

Note: for Dirac particles, no phases are needed

Current knowledge (NOvA & T2K)

T2K Preliminary, Neutrino2024

DUNE: Near Detector (ND)

• Main Goal: constrain uncertainties for oscillation measurements

Neutrino Masses

- The masses of the physical neutrino states will be the eigenvalues of the mass matrix in \mathscr{L}_{DM}
- In this model the masses of the neutrinos will b
- If we take $M \gg m_D \Rightarrow$ we obtain a light and heavy neutrino state as solutions with masses: $m_{light} \approx \frac{m_D^2}{M}$ and $m_{heavy} \approx M$ (Seesaw mechanism)
- The physical neutrino states, which are obtained from the eigenvalues of the mass matrix, are (in our case where $M \gg m_D$): $\nu \approx (\nu_L + \nu_L^c) - \frac{m_D}{M} (\nu_R + \nu_R^c) \text{ (same coupling as the SM neutrinos)}$ $N \approx (\nu_R + \nu_R^c) + \frac{m_D}{M} (\nu_L + \nu_L^c) \text{ (almost RH} \Rightarrow \text{ not participate in the weak currents)}$

$$m_{\pm} = \frac{M \pm M \sqrt{1 + 4m_D^2/M^2}}{2}$$

• The seesaw mechanism provides an interesting hypothesis for the smallness of neutrino masses

The NEXT-100 experiment at LSC (Spain)

- ► Energy resolution at Q-value ~1 % FWHM

EL: linear gain, no avalanche

LIDINE 2023 & Neutrino 2024

Although there are ionization and scintillation, the sensors only see light

High pressure (15 bar) gas xenon TPC

Comparison of the different experiments

¹⁶³Ho experiments

Other experiments with ¹⁶³Ho using low temperature calorimeters

- Holmes
- ECHo

