Heavy-ion collisions. The Quark Gluon Plasma

A. Marin

TAE 2024- International Workshop on High Energy Physics Benasque Science Center, Sep 1-14, 2024

Table of Contents

- Introduction. History of HIC.
- The LHC experiments: ALICE, LHCb, CMS and ATLAS Physics observables:
- Global properties
- Heavy quarks and high $p_{\rm T}$
- Quarkonia
- Photons and dileptons

EPJC (2024) 84:813

Bibliography

- Ultra-relativistic Heavy-Ion Collisions. Ramona Vogt.
- Introduction to High-Energy Heavy-Ion Collisions, C.Y. Wong, World Scientific, 1994
- The Physics of the Quark-Gluon Plasma, S. Sarkar, H. Satz and B. Sinha, Lecture notes in physics, Volume 785, 2010
- Heavy Ions, F. Bellini, CERN Summer Student Lectures 2024
- Heavy-Ion Physics, K. Reygers, HASCO Summer School 2024
- Modern aspects of Quark Gluon Plasma, Stachel, Braun-Munzinger, Reygers, SS2023 Uni Heidelberg
- A journey through QCD, ALICE Collaboration, arXiv: 2211.04384, EPJC (2024) 84:813

Goals of High Energy Heavy-Ion Collisions

- Understand two basic properties of the strong interaction: (de)confinement, chiral symm. breaking/restoration
- Probe conditions quark-hadron phase transition in primordial Universe (few μsec after the Big Bang)
- Study the phase diagram of QCD matter: produce and study the QGP

Quantum Chromodynamics (QCD)

• QCD:

Gauge field theory describing the strong interaction of colored quarks and gluons

- QCD potential
 - $V = -\frac{4}{3}\frac{\alpha_s}{r} + kr$
 - Asymptotic freedom at short distance: for large Q exchange processes
 - Confinement at large distance: ordinary matter (colorless hadrons)

Phys. Rev. D 110, 030001 (2024)

Lattice QCD: Pressure and energy density

Allows for calculations in the non-perturbative regime of QCD (2+1) flavor QCD Two light (u,d) + one heavir quark (s)

Transition to QGP (cross-over):

 $T_c = 156.5 \pm 1.5 \text{ MeV}, \ \varepsilon_c = 0.42 \pm 0.06 \text{ GeV/fm}^3$

Hot QCD Collaboration, PLB 795 (2019) 15

Above T_c the energy goes into more degrees of freedom

Transitions in the early universe

Electroweak transition: T ~ 100 GeV, t ~ 10^{-12} s

QCD transition: T ~ 150 MeV, t ~ 10^{-5} s

Phase transitions in the early and the present universe, Ann. Rev. Nucl. Part. Sci. 56, 441-500 (2006)

QGP in the laboratory

Key parameters: Bombarding energy and collision centrality

Time evolution of heavy-ion collisions

Courtesy C. Shen

AA collisions pA and pp : control and reference systems

- 1. Initial Nuclei Collide
- 2. Partons are Freed from Nuclear Wavefunction
- 3. Partons interact and potentially form a QGP
- 4. System expands and cools off
- 5. System Hadronizes and further Re-Scatters
- 6. Hadrons and Leptons stream towards our detectors

History of Heavy Ion Collisions

- Bevalac (LBL)
 - fixed target (1975-1986) √s <2.4 GeV
- SIS (GSI)
 - fixed target (1989-) \sqrt{s} <2.7 GeV
- AGS (BNL)
 - fixed target (1986-1998) \sqrt{s} <5 GeV
- SPS (CERN)
 - fixed target (1986-2003) \sqrt{s} <20 GeV
- RHIC (BNL)
 - collider (2000-) √s <200 GeV
- LHC (CERN)
 - collider (2008-) √s <5500 GeV
- FAIR (GSI)
 - fixed target (2027-) \sqrt{s} <9 GeV

"Livingston plot" J. Schukraft nucl-ex/0602014

Exploration of the QCD phase diagram

EPJC (2024) 84:813

Heavy-ion collisions

Explore and characterize phase diagram of QCD matter

QGP

- quarks and gluons are deconfined
- hot and dense thermalized medium
- strongly interacting
- existed few μs after the Big Bang
- predicted by lattice QCD above a critical energy density

Heavy ion collisions at LHC

	SPS	RHIC	LHC	
√s _{NN} (GeV)	17	200	2760(5500)	
dN _{ch} /dy	430	730	1584	
τ ⁰ _{QGP} (fm/c)	1	0.2	0.1	
T/T _c	1.1	1.9	3.0-4.7	
ε (GeV/fm³)	3	5	>18	
τ _{QGP} (fm/c)	≤2	2-4	≥10	
τ _f (fm/c)	~10	20-30	15-60	
V _f (fm³)	few 10 ³	few 10 ⁴	few 10 ⁵	

faster hotter denser longer

bigger

LHC: Entering a new regime

C W Fabjan 2008 J. Phys. G: Nucl. Part. Phys. 35, 104038

The LHC

The Large Hadron Collider

LHC experiments

Available energy \sqrt{s} for Fixed Target and Collider experiments

Fixed Target experiment:

 $m_1, E_1^{lab} \bullet _ \bullet m_2, p_2^{lab} = 0$

$$\sqrt{s} = \sqrt{m_{1}^{2} + m_{2}^{2} + 2E_{1}^{lab}m_{2}} \approx \sqrt{2E_{1}^{lab}m_{2}}$$

$$E_{1}^{lab} \gg m_{1}m_{2}$$

Collider experiment:

 $m_1, E_1^{lab} \bullet \longrightarrow m_2, E_2^{lab}$

$$\sqrt{s} = \sqrt{m_{1}^{2} + m_{2}^{2} + 2E_{1}^{lab}E_{2}^{lab} + 2p_{1}^{lab}p_{2}^{lab}} = 2E_{1}^{lab}$$

$$p_{1} = -p_{2}$$

$$m_{1} = -p_{2}$$

Kinematics, notations, conventions

c=ħ=1 ħc=197.3269631 MeV.fm

 $\frac{1eV}{k_{\scriptscriptstyle B}} = \frac{1.60217653(14) \times 10^{-19} \, J}{1.3806505(24) \times 10^{-23} \, J/K} = 11604.505(20)K$

$$y = \frac{1}{2} \ln\left(\frac{E+p_z}{E-p_z}\right) = \tanh^{-1}\left(\frac{p_z}{E}\right) \approx -\ln \tan\left(\frac{\theta}{2}\right) \qquad E = m_T \cosh y$$
$$p_x, p_y, p_z = m_T \sinh y$$
$$m_T = \sqrt{m^2 + p_x^2 + p_y^2}$$
$$y = \frac{1}{2} \ln\left[\frac{\sqrt{p_T^2 \cosh^2 \eta + m^2} + p_T \sinh \eta}{\sqrt{p_T^2 \cosh^2 \eta + m^2} - p_T \sinh \eta}\right]$$
$$\eta = \frac{1}{2} \ln\left[\frac{\sqrt{p_T^2 \cosh^2 y - m^2} + m_T \sinh y}{\sqrt{p_T^2 \cosh^2 y - m^2} - m_T \sinh y}\right] \qquad \frac{dN}{d\eta dp_T} = \sqrt{1 - \frac{m^2}{m_T^2 \cosh^2 y}} \frac{dN}{dy dp_T}$$

Pb+Pb collision at LHC at \sqrt{s} NN=2.76TeV

The ALICE 2 detector

ALICE PID and reconstruction capabilities

a.marin@gsi.de, TAE2024, Benasque (Spain)

The ALICE Collaboration

ALICE Run 3: Pb-Pb @ $\sqrt{s_{NN}} = 5.36$ TeV and pp @ √s = 13.6 TeV

ALICE centrality determination

ALICE-PUBLIC-2018-011

 N_{coll} : number of inelastic nucleon-nucleon collisions# N_{part} : number of nucleons that underwent at least one inelastic collision

Centrality	$\langle N_{\text{part}} \rangle$	RMS	(sys.)	$\langle N_{\rm coll} \rangle$	RMS	(sys.)	$\langle T_{\rm PbPb} \rangle$ (1/mbarn)	RMS (1/mbarn)	(sys.) (1/mbarn)
0-1%	401.9	7.55	0.46	1949	87	21.1	28.83	1.29	0.177
1-2%	393.9	10.2	0.496	1844	81.3	20.1	27.28	1.2	0.171
2-3%	384.4	11.7	0.752	1755	80.8	20.3	25.96	1.19	0.2
3-4%	373.9	12.5	0.762	1673	79.9	18.8	24.75	1.18	0.18
4-5%	362.9	13	0.738	1593	77.6	17.8	23.57	1.15	0.178

a.marin@gsi.de, TAE2024, Benasque (Spain)

Global properties

Charged-particle production

Increase of charged-particle production in nuclear collisions much faster with \sqrt{s} than in pp

More of the available energy used for particle production in heavy-ion collisions

ALI-PUB-104920

Charged particles pseudorapidity density

EPJC (2024) 84:813

Different level of agreement of models depending on η and system

Steep increase for most central 5% in the different systems

Initial energy density

arXiv:2211.04384

A factor ~10 increase from pp, peripheral pPb to Pb--Pb

Stronger energy density increase for AA than pA

Identified particle production

- π , K and p are the most abundant hadronic species produced in the collision
- Bulk of particles are soft and composed by light flavour hadrons
- Collective motion is observed

Particle production in Pb-Pb

PRC 101 (2020) 044907

- precise p_T and centrality differential measurements of various light-flavour particle species at highest Pb-Pb collision energy
- large number of multiplicity dependent measurements in pp and p-Pb

Identified particle spectra

Hydro gives a good description of the data at low p_T Coalescence important in the intermediate p_T and

Fragmentation at higher p_T

Statistical hadronization model (SHM)

- Assume chemically equilibrated system at freeze-out (constant T_{ch} and $\mu)$
- Composed of non-interacting hadrons and resonances
- Given T_{ch} and μ 's, particle abundances (ni's) can be calculated in a grand canonical ensemble

Partition function:
$$\ln Z_i = \frac{Vg_i}{2\pi^2} \int_o^\infty \pm p^2 dp \ln(1 \pm \exp(-(E_i - \mu_i)/T)))$$
Particle densities: $n_i = \frac{g}{2\pi^2} \int_0^\infty \frac{p^2 dp}{e^{(E_i(p) - \mu_i)/T} \pm 1}, \quad E_i = \sqrt{p^2 + m_i^2}$

Obey conservation laws: Baryon Number, Strangeness, Isospin

$$\mu = \mu_B B_i + \mu_S S_i + \mu_{I3} I_i^3, \qquad V \sum_i n_i B_i = Z + N, \qquad V \sum_i n_i S_i = 0, \qquad V \sum_i n_i I_i^3 = \frac{Z - N}{2}$$

• Short-lived particles and resonances need to be taken into account

Measure particle ratios \rightarrow Extract T_{ch} and μ \rightarrow Calculate particle ratios Compare particle abundancies Predict

SHM yields

Statistical hadronization model

PRL133,092301(2024)

Nature 561 (2018) 321

Smooth evolution of μ_B with $\sqrt{s_{NN}}$

Strangeness enhancement

Phys. Rev. Lett. **48**, 1066 (1982)

Strangeness Production in the Quark-Gluon Plasma

Johann Rafelski and Berndt Müller.

Institut für Theoretische Physik, Johann Wolfgang Goethe-Universität, D-6000 Frankfurt am Main, Germany (Received 11 January 1982)

Rates are calculated for the processes $gg \rightarrow s\overline{s}$ and $u\overline{u}, d\overline{d} \rightarrow s\overline{s}$ in highly excited quarkgluon plasma. For temperature $T \ge 160$ MeV the strangeness abundance saturates during the lifetime (~ 10⁻²³ sec) of the plasma created in high-energy nuclear collisions. The chemical equilibration time for gluons and light quarks is found to be less than 10⁻²⁴ sec.

In the QGP:

In collisions of hadrons:

Example 1:

 $p+p
ightarrow p+K^++\Lambda, \quad Q=m_\Lambda+m_{K+}-m_ppprox$ 670 MeV

Example 2: $p + p \rightarrow p + p + \Lambda + \overline{\Lambda}, \quad Q = 2m_{\Lambda} \approx 2230 \text{ MeV}$
Integrated particle yields

 Continuous evolution of strangeness production between different collision systems and energies

- Hadron chemistry driven by multiplicity
- Magnitude of strangeness enhancement grows with strange quark content:

37

Radial flow

Collective motion is superimposed to the thermal motion of particles

Spectral shape different for particles with different mass Main parameter: expansion velocity β

Radial Flow

PRC 101 (2020) 044907

Blast-wave: A hydrodynamic inspired description of spectra

$$E\frac{d^3N}{dp^3} \propto \int_0^R m_{\rm T} I_0\left(\frac{p_{\rm T}\sinh(\rho)}{T_{\rm kin}}\right) K_1\left(\frac{m_{\rm T}\cosh(\rho)}{T_{\rm kin}}\right) r \, dr$$

The velocity profile ρ is given by

$$\rho = \tanh^{-1} \beta_{\mathrm{T}} = \tanh^{-1} \left[\left(\frac{r}{R} \right)^n \beta_{\mathrm{s}} \right],$$

• (β_T) increases with centrality

•Similar evolution of fit parameters for pp and p-Pb

•Thermalization in pp?

•At similar multiplicities, $<\beta_T>$ is larger for smaller systems

Anisotropic flow

Fourier analysis of particle distribution:

- v_1 : directed flow
- v_2 : elliptic flow
- v_3 : triangular flow ...

$$\frac{\mathrm{d}N}{\mathrm{d}\varphi} \propto 1 + 2\sum_{n=1}^{\infty} v_n \left[\cos(n(\varphi - \Psi_n))\right]$$

Sensitivity to early expansion

Elliptic flow in Pb-Pb, and in pp, p-Pb

arXiv: 2206.04587

Low p_T : Mass ordering \rightarrow hydrodynamic flow

Intermediate p_{T} :

Baryon vs meson grouping : in Pb-Pb, and high multiplicity pp & p-Pb

 \rightarrow quark-level flow + recombination

v₂ excitation function

PRL105(2010)252302, arXiv2211.04384

• \sqrt{s}_{NN} < 2 GeV: In-plane, rotation-like emission

•2 < \sqrt{s}_{NN} < 4 GeV: Onset of expansion and presence of spectator matter inhibits in plane particle emission ("squeezeout")

• \sqrt{s}_{NN} > ~ 4 GeV: Initial eccentricity leads to pressure gradients that cause positive v_2

30% larger $v_{\rm 2}$ at LHC compared to RHIC

Hydrodynamics

Energy momentum conservation and current conservation

$$\nabla_{\mu}T^{\mu\nu} = 0 \qquad \nabla_{\mu}J^{\mu}_{B} = 0$$

Corrections for bulk and shear viscosity, and charge diffusion

$$T^{\mu\nu} = \epsilon u^{\mu} u^{\nu} - (P - \zeta \Theta) \Delta^{\mu\nu} - 2\eta \sigma^{\mu\nu}$$

$$J^{\mu} = q u^{\mu} + \kappa \nabla^{\mu}_{\perp}(\mu/T)$$

Higher order flow coefficients in Pb-Pb: v_n

50

n = 4

n = 5

PRC95, 064913 (2017)

IP-Glasma+MUSIC+UrQMD Inclusion of bulk and shear viscosity

Good description of data by viscous hydrodynamics

n = 6

Constraining initial condition and QGP medium properties

- near T_c, shear viscosity/entropy density close to AdS/CFT lower bound $1/4\pi$ rising with temperature in QGP
- bulk viscosity/entropy density peaks near T_c

Constraining initial condition and QGP medium properties

Accessing initial conditions: $v_2 - [p_T]$ correlations

PLB 834 (2022) 137393

$$\rho(\boldsymbol{v}_n^2, [\boldsymbol{p}_T]) = \frac{\operatorname{Cov}(\boldsymbol{v}_n^2, [\boldsymbol{p}_T])}{\sqrt{\operatorname{Var}(\boldsymbol{v}_n^2)}\sqrt{c_k}},$$

- positive correlation observed
- almost no centrality dependence

Initial conditions: Trento \leftrightarrow IP - Glasma

IP-Glasma closer to data than Trento

 including these data in the Bayesian global fitting
 → better constraint on the initial state in nuclear collisions (Prerequisite for study of QGP transport properties)

Two-particle transverse momentum correlator G₂

PLB 804 (2020) 135375

Extraction of QGP transport characteristics

$$G_2(\Delta\eta,\Delta\varphi) = \frac{1}{\langle p_{\rm T} \rangle^2} \left[\frac{\langle \sum_{i}^{n_{1,1}} \sum_{j\neq i}^{n_{1,2}} p_{{\rm T},i} p_{{\rm T},j} \rangle}{\langle n_{1,1} \rangle \langle n_{1,2} \rangle} - \langle p_{{\rm T},1} \rangle \langle p_{{\rm T},2} \rangle \right]$$

- Sensitive to momentum currents transfer
- The longitudinal dimension provides fingerprints of this transfer
- The reach of the transfer ⇒ proxy for the shear viscosity η/s

Longitudinal width evolution with collision centrality $\Rightarrow \eta/s$

$$\sigma_c^2 - \sigma_0^2 = \frac{4}{T_c} \frac{\eta}{s} \left(\tau_0^{-1} - \tau_{c,f}^{-1} \right)$$

Gavin, Abdel-Aziz, PRL 97 162302 (2006) Sharma, Pruneau, PRC 79 024905 (2009) STAR, PLB 704, 467–473 (2011)

G₂ widths evolution: Pb-Pb, p-Pb and pp

Data seem to favour small η /s values

V. Gonzalez *et al.* EPJC 81 (2021) 5, 465

No evidence for shear viscous effects in pp & p–Pb based on $G_2^{CI}\sigma_{\Delta\eta}$ • System lifetime too short for viscous forces to play a significant role?

ALICE constraints on shear and bulk viscosity

arXiv: 2211.04384

Probing Hot QCD Matter with hard probes

Hard Probes:

"highly penetrating observables (particles, radiation) used to explore properties of matter that cannot be viewed directly!" p_T , m > 2 GeV $>>\Lambda_{QCD}$

Hard probes

p+p:

- parton scattering \rightarrow fragmentation \rightarrow jet
- can be calculated in perturbative QCD
- collinear factorization

A+A:

- partons traversing medium lose energy gluon radiation, elastic collisions
- energy loss different for g, light/heavy quarks (color factor, dead cone effect)

X.-N. Wang, M. Gyulassy, Phys. Rev. Lett. 68 (1992) 1480

Goal: Use in-medium energy loss to measure medium properties

$$\frac{d\sigma_{pp}^{h}}{dyd^{2}p_{T}} = K \sum_{abcd} \int \frac{dx_{a}dx_{b}f_{a}(x_{a},Q^{2})f_{b}(x_{b},Q^{2})}{Parton \text{ distribution function}} \frac{d\sigma}{d\hat{t}} (ab \rightarrow cd) \frac{D_{h/c}^{0}}{\pi z_{c}}$$

$$\frac{D_{h/c}^{0}}{\pi z_{c}}$$

Medium modifications

The Physics of the Quark-Gluon Plasma

Figure 3. Examples of hard probes whose modifications in high-energy AA collisions provide direct information on properties of QCD matter such as the $\langle \hat{q} \rangle$ transport coefficient, the initial gluon rapidity density dN^g/dy , and the critical temperature and energy density.

Any observed *enhancements* and/or *suppressions* in the $R_{AA}(s_{NN}, p_T, y,m; b)$ ratios can then be directly linked to the properties of strongly interacting matter.

Measurement in pp collisions is essential/ mandatory

Measurement in pp collisions is essential/mandatory.

Measurement in p-Pb (cold nuclear matter effects) collisions as control experiment

Goal: Use in-medium energy loss to measure medium properties

Discovery of jet quenching at RHIC

Hadrons are suppressed, direct photons are not

• The hadron spectra at RHIC from p+p, Au+Au and d+Au collisions establish existence of parton energy loss from strongly interacting, dense QCD matter in central Au-Au collisions

$$\varepsilon_{\rm loss} \approx 1 - R_{AA}^{1/(n-2)}$$

https://wiki.bnl.gov/TECHQM/index.php/Main_page Theory-Experiment Collaboration on Hot Quark Matter <q>^ = 4 - 13 GeV2 / fm dN^g/dy~1400+-200 5. Bass et al. PRC79 (2009) 024901

Discovery of jet quenching at RHIC

Fig. 14 Nuclear modification factors for high- $p_T \pi^0$ (*left*) and η (*right*) mesons at midrapidity in *d*Au collisions at $\sqrt{s_{NN}} = 200$ GeV [143, 144] compared to pQCD calculations [145, 146] with EKS98 [147] nuclear PDFs

No suppression in dAu. Evidence for final state effect.

Charged particles *R*_{AA}

JHEP11(2018)013

 $R_{pPb} \sim 1$: small cold-nuclear effects $R_{PbPb} < 1$: suppression Larger for more central Pb--Pb collisions

Colorless probes are unaffected: γ, and W, Z bosons

Open heavy-flavor production: D⁰, D⁺, D^{*+}

20

JHEP 01 (2022) 174

Precise R_{AA} and elliptic flow (v_2, v_3) non-strange D mesons \rightarrow constraints on to charm quark energy loss models

• Intermediate and high p_{T} :

Radiative energy loss important

• Low/intermediate p_T :

Charm-quark hadronisation via recombination essential

Spatial diffusion coefficients: 1.5 < 2 π D_s T_c < 4.5 \rightarrow relaxation time of $\tau_{charm} \sim$ 3-8 fm/c

a.marin@gsi.de, TAE2024, Benasque (Spain)

Charm Diffusion coefficient: T dependence

Temperature dependence of D_s constrained by ALICE measurement for various models

Probing ΔE dependence of parton species

JHEP01(2022)174

v₂ across particle species

Clear quark flavor hierarchy observed in the low p_T

Significant v_2 for open and hidden charm hadrons

Open beauty hadrons exhibit flow

Quark-mass dependence of energy loss

Energy loss predicted to depend on QGP density, but also on quark mass $\Delta E_{c} > \Delta E_{b}$

Less suppression for (non-prompt) D mesons from B decays than prompt D mesons

ALI-PUB-501659

- Data described by models that include collisional and radiative energy loss, and recombination
- Valley structure at low p_T mainly due to formation of D via quark coalescence

Jet transport coefficient

PRC104, 024905 (2021)

arXiv: 2211.04384

Quarkonia

Quarkonia

Quarkonia are heavy quark antiquark bound states, i.e. ccbar and bbar.

Stable with respect to strong decay into open charm or bottom.

 $M_{\rm ccbar}$ < 2 $M_{\rm D}$ and $M_{\rm bbbar}$ < 2 $M_{\rm B}$

State	J/ψ	χc	ψ'	γ	χb	Υ'	χ_b'	Υ''
Mass (GeV)	3.10	3.53	3.68	9.46	9.99	10.02	10.36	10.36
ΔE (GeV)	0.64	0.20	0.05	1.10	0.67	0.54	0.31	0.20
Radius (fm)	0.25	0.36	0.45	0.14	0.22	0.28	0.34	0.39

Quarkonia in Heavy-Ion Collisions

Quarkonia $(J/\Psi, Y)$:

26 years ago: Matsui & Satz (Phys. Lett. B178(1986) 416)

color screening in deconfined matter $\rightarrow J/\Psi$ suppression = "smoking gun"

• Sequencial dissociation versus T in QGP (Matsui/Satz)

Can be used as thermometer of the medium

PRD 64 (2001) 094015

Recombination

PLB 490 (2000) 196 NPA 789 (2006) 334 PLB 652 (2007) 259

Total ccbar cross section in pp collisions needs to be known

a.marin@gsi.de, TAE2024, Benasque (Spain)

Where does all the charm goes?

Total ccbar cross section in pp collisions needs to be known

PRD 105 (2022) L011103

~40% increase driven by observed baryon enhancement Data on the upper edge of FONLL and NNLO calculations

J/Y suppression: Energy and centrality dependence

arXiv: 2211.04384

RHIC:

 R_{AA} (J/ Ψ) decreases with centrality at RHIC

LHC:

 $R_{AA}(J/\Psi) \sim 1$ in central Pb--Pb Less suppression in more central Pb--Pb collisions Less suppression than at RHIC

Charmonium dissociation and regeneration

 J/ψ suppression due to color screening in the QGP reduced at low p_T and central rapidity by $c\overline{c}$ regeneration ~ 100 $c\overline{c}$ pairs per central Pb-Pb

$$R_{\rm AA} = \frac{1}{\langle N_{\rm coll} \rangle} \frac{dN/dp_{\rm T}|_{\rm PbPb}}{dN/dp_{\rm T}|_{\rm pp}}$$

PLB 805 (2020) 135434

Charmonium dissociation and regeneration

• J/ ψ suppression due to color screening in the QGP Reduced at low p_T and central rapidity by cc regeneration

~ 100 cc pairs per central Pb-Pb

- New result: measured $\psi(2S) \simeq x$ 10 lower binding energy !
- To pin down the role of these two mechanisms

arXiv: 2210.08893

 ψ (2S) x2 more suppressed than J/ ψ Hint of regeneration at low $p_{\rm T}$

a.marin@gsi.de, TAE2024, Benasque (Spain)

Bottomonia Y(nS) PRL133 (2022)022302 PbPb 1.61 nb⁻¹, pp 300 pb⁻¹ (5.02 TeV) pp 300 pb⁻¹ (5.02 TeV) ×10³ PbPb 1.61 nb⁻¹ (5.02 TeV) ×10³ 1.2 p_ < 30 GeV/c 200 CMS $p_{-} < 30 \, \text{GeV/c}$ Data |y| < 2.4|y| < 2.4180- — Total fit Supplementary Centrality 0-90% ···· Signal

Electromagnetic radiation

Thermal electromagnetic radiation

Thermal emission rates:

Dileptons:

$$\frac{dR_{ee}}{d^4q} = \frac{-\alpha^2}{\pi^3 M^2} f^{B}(q_0;T) \rho_{em}(M,q;\mu_B,T)$$

Photons:

$$q_0 \frac{dR_{\gamma}}{d^3q} = \frac{-\alpha}{\pi^2} f^B(q_0;T) \rho_{em}(M=0,q;\mu_B,T)$$

Depends on the mass and on q

 $M \rightarrow 0$, depends only on q

Photons: p_T Dileptons: M, p_T

 p_{T} : sensitive to temperature and expansion velocity, affected by "Doppler" blue shift

M: only sensitive to temperature (Lorentz invariant)

A. Drees Nucl. Phys. A830 (2009) 435

hadron gas

Invariant mass allows separation of different collision stages:

• M < 1 GeV: hadronic

hadrons in medium, in medium modifications of vector mesons, chiral symmetry restoration

• M > 1 GeV: partonic

early temperature, partonic collectivity, thermal radiation

Dileptons: Signal and background

R. Bailhache, HP2023

- Radiation from hot-hadronic matter Sensitive to in-medium spectral function of *ρ* meson
- Invariant mass not affected by radial flow
 - \rightarrow Access to average QGP temperatures without blue-shift

Large combinatorial and physics backgrounds

Dielectron production in central Pb-Pb at $\sqrt{s_{NN}}$ = 5.02 TeV

Comparison to hadronic cocktail, including:

- N_{coll} -scaled HF measured in pp at \sqrt{s} = 5.02 TeV Phys. Rev. C 102 (2020) 055204
- \rightarrow Vacuum baseline
- Include measured R_{AA} of $c/b \rightarrow e^{\pm}$
- Phys. Lett. B 804 (2020) 135377
- \rightarrow Modified-HF cocktail

Intermediate-mass region (IMR) from $1.1 < m_{ee} < 2.7 \text{ GeV}/c^2$ \rightarrow Consistent with HF suppression & therm. radiation from QGP

Excess mass spectrum: central Pb–Pb at $\sqrt{s_{NN}}$ = 5.02 TeV

Significance of excess in $0.18 < m_{ee} < 0.5 \text{ GeV}/c^2$

1.8 σ w.r.t. N_{coll} -scaled cocktail 1.5 σ w.r.t. R_{AA} -modified cocktail

Compared with sum of 2 contributions:

- p meson produced thermally in hot hadronic matter
- Thermal radiation from QGP

Consistent with thermal radiation from hadronic matter via $\pi^+\pi^- \rightarrow \rho \rightarrow e^+e^-$ in 0.18 < m_{ee} < 0.5 GeV/ c^2

NA60 In-In $\sqrt{s_{NN}}$ =17.3 GeV : Inclusive excess mass spectrum

Eur. Phys. J. C 59 (2009) 607-623 CERN Courier 11/2009, 31-35 Chiral 2010, AIP Conf.Proc. 1322 (2010) 1-10

all known sources subtracted
integrated over p_T
fully corrected for acceptance
absolutely normalized to dN_{ch}/dη

M < 1 GeV ρ dominates, 'melts' close to T_c best described by H/R model

M > 1 GeV, QGP thermometer ~ exponential fall-off

 $dN/dM \propto M^{3/2} \times \exp(-M/T)$

range 1.1-2.0 GeV: T=205±12 MeV 1.1-2.4 GeV: T=230±10 MeV T>T_c: partons dominate

only described by R/R and D/Z models

Photon sources

Decay photons: ٠

• π⁰, η, ω

• Direct photons:

- Hard:
 - Direct:
 - qg Compton Scattering
 - qq Annihilation _
 - Fragmentation •
- Pre-equilibrium
- Thermal:
 - QGP
 - Hadron Gas
- Hard+thermal:
 - Jet-γ-conversion:
 - $q_{hard} + q_{QGP} \rightarrow \gamma + q$ $q_{hard} + q_{QGP} \rightarrow \gamma + g$
 - Medium induced γ bremss. •

Large background from neutral meson decays. **Difficult measurement**

Photon production: Feynman diagrams

Hadron gas: $-\frac{\pi^{+}}{\mu} - \frac{\gamma}{\mu} - \frac{\pi^{+}}{\mu} - \frac{\rho^{0}}{\mu} - \frac{\pi^{+}}{\mu} - \frac{\gamma}{\mu} - \frac{\pi^{+}}{\mu} - \frac{\gamma}{\mu} - \frac{\pi^{+}}{\mu} - \frac{\gamma}{\mu} - \frac{\gamma}{\mu$

Methods to measure direct photons

- Statistical subtraction method
 - Measure inclusive photons and subtract photons from hadron decays
- Virtual photons ($\gamma^* \rightarrow e^+e^-$): PHENIX
- Isolation + (shower shape in case calorimeter is used)
- Tagging method
 - Remove decay photons by tagging decay photons
- Hanbury Brown-Twiss Method
 - Bose-Einstein correlation expected for direct photons
 - Direct photon yield from correlation strength

Direct photons: statistical subtraction method and double ratio

Subtraction method:

$$\gamma_{direct} = \gamma_{inc} - \gamma_{decay} = (1 - \frac{\gamma_{decay}}{\gamma_{inc}}) \cdot \gamma_{inc} = (1 - \frac{1}{R_{\gamma}}) \cdot \gamma_{inc}$$

Inclusive photons: All produced photons Decay photons: Calculated from measured particle spectra with photon decay channels $(\pi^0, \eta, ...)$

Double ratio:

$$rac{\gamma_{inc}}{\pi^0} / rac{\gamma_{decay}}{\pi^0_{param}} \sim rac{\gamma_{inc}}{\gamma_{decay}} > 1$$

>1 if direct photon signal

Advantage: Cancellation of uncertainties

To obtain γ direct spectrum add systematic uncertainties of the inclusive photon spectrum which canceled in the double ratio

Rγ at **RHIC** by **PHENIX**

PRC 109 (2024) 044912

Thermal emission at RHIC

Direct photon puzzle

Measured direct photon yield above model predictions at RHIC ... but discrepancy PHENIX and STAR

Phys. Rev C 105 (2022) 014909

QGP thermal emission

$$R_{\gamma} = N_{\gamma, \text{inc}} / N_{\gamma, \text{dec}} \approx \left(\frac{N_{\gamma, \text{inc}}}{\pi^0}\right)_{\text{meas}} / \left(\frac{N_{\gamma, \text{dec}}}{\pi^0}\right)_{\text{sim}}$$

$$R_{\gamma}^{\rm pQCD} = 1 + N_{coll} \cdot \frac{\gamma_{\rm pQCD}}{\gamma_{\rm decay}}$$

At low p_{T} :

- thermal radiation should dominate
- R_γ is close to 1 → small thermal and pre-equilibrium photon contribution
- Models with thermal and pre-equilibrium photons, can describe the data better than the calculation including only prompt photons

For $p_T > 3$ GeV/c:

- can be attributed to prompt (hard scattering) photons
- data is consistent with NLO pQCD calculation of prompt photons in pp collisions, scaled with ${\cal T}_{\rm AA}$

Calculation by W. Vogelsang, using PDF: CT14, FF: GRV

QGP thermal emission

$$N_{\gamma,\text{dir}} = N_{\gamma,\text{inc}} - N_{\gamma,\text{dec}} = \left(1 - \frac{1}{R_{\gamma}}\right) \cdot N_{\gamma,\text{inc}}$$
$$\gamma_{\text{dir}} = \frac{\gamma_{\text{dir}}^*}{\gamma_{\text{incl}}^*} \cdot (\gamma_{\text{incl}})_{\text{real}}$$

New measurement of direct γ in Pb-Pb at 5.02 TeV

- Virtual γ method, 0-10% centrality
- Real γ (conversion method), other centralities

Low p_T ($p_T \lesssim 3$ GeV/c) – "thermal" photons

consistent with model with pre-equilibrium and thermal photons

High p_T ($p_T \gtrsim 3$ GeV/c) – prompt photons • consistent with pQCD expectations

Virtual photon method

QGP thermal emission: Pb-Pb at $\sqrt{s_{NN}}$ = 2.76 TeV

- Excess beyond known prompt yield $1 < p_T < 4$ GeV/c
- Models that include thermal +(pre-equilibrium) + prompt photons are able to describe the data
- Not yet possible to discriminate among different models

Direct photon puzzle in yields?

Ratio between direct photon production and their respective state-of the-art model calculation

Good agreement between ALICE data and model predictions Slight tension at low p_T for the PHENIX data Future: puzzle involving direct photon flow?

Direct γ v_{2:} **RHIC**, **LHC** and models

Direct photon puzzle

 $v_2^{\text{dir}} \approx v_2^{\pi}$ but not puzzle within exp. uncertainties

large v_2 values not reproduced by models

Thermal emission: RHIC and LHC

Increase in the effective temperature from RHIC to LHC

Conclusions

- Detailed insights into QGP properties gained during LHC Run1 and Run 2
- Run 3 ongoing after LS2 upgrades

ALICE beyond Run 4

• Letter of Intent for ALICE 3: CERN-LHCC-2022-009 , arXiv: 2211.02491

Recommendation to proceed with R&D

Extra slides

Direct photons

qg Compton Scattering

qq Annihilation

Bremsstrahlung, fragmentation

Cocktail generator: γ_{decay}

- γ_{decay} : obtained using a cocktail generator
- Fit to the measured $\pi^{0},\,\eta$ measured or parametrized from Kaons
- Other mesons using m_T-scaling,

The Idea: Kroll-Wada formula

Relation between photon production and associated e⁺e⁻:

$$\frac{1}{N_{\gamma}} \frac{dN_{ee}}{dm_{ee}} = \frac{2\alpha}{3\pi} \sqrt{1 - \frac{4m_e^2}{m_{ee}^2}} (1 + \frac{2m_e^2}{m_{ee}^2}) \frac{1}{m_{ee}} S$$
$$S = \left| F(m_{ee}^2) \right|^2 (1 - \frac{m_{ee}^2}{M^2})^3$$

- S=1 for direct photons and m_{ee}>>p_T
- Any source of real γ produces
 virtual γ with very low mass

Direct photons at RHIC

Phys. Rev. Lett.104 (2010) 132301

Cocktail normalized to data for m_{ee} < 0.03 GeV/c²

Fit range: $0.12 < m_{ee} < 0.3 \text{ GeV/c}^2$

Direct photons at RHIC

PHENIX Coll.: Phys. Rev. Lett. 104(2010) 132301

pp consistent with NLO pQCD calculations
AuAu larger than calculation for p_T<3.5GeV/c

Excess exponential in p_T (0-20%): T = 221 ± 23 (stat) ± 18 (sys) MeV

Jet quenching: extended reach in p_{T} and R

New ML method to subtract underlying Pb-Pb event fluctuations from jet energy: 2x better energy resolution

- Large reduction (factor 3-4) of jet yields, down to $p_T = 20 \text{ GeV}/c$
- Lost energy not recovered within the jet "cone"
- Suppression may be even larger for large-cone (R=0.6) low- p_T jets

Microscopic structure of the QGP: acoplanarity

Exploring angular dependence: groomed jet radius

PRL 128 (2022) 102001

- Suppression of large angles
- Enhancement of small angles

First experimental evidence for modification of angular scale of groomed jets in HIC

Dead- cone effect now exposed by ALICE

104

Charm splitting function in jets

arXiv: 2208.04857

Charm-tagged jets \rightarrow first direct experimental constraint of the splitting function of heavy-flavour quarks

- Z_g distribution appears steeper than that of light quarks and gluons
- heavy-flavour quarks on average have fewer perturbative emissions compared to light quarks and gluons a.marin@gsi.de, TAE2024, Benasque (Spain)

ALICE 3 detector

- Compact, ultra-lightweight all-silicon tracker $\rightarrow \sigma_{pT}/p_T \sim 1-2\%$.
- Vertex detector with unprecedent pointing resolution $\sigma_{\rm DCA} \simeq 10 \ \mu m$ ($p_{\rm T} = 0.2 \ {\rm GeV/c}$)
- Large acceptance $|\eta| < 4$, $p_T > 0.02 \text{GeV}/c$
- Particle identification \rightarrow

 $\gamma,\,e^\pm,\,\mu^\pm$, K $^\pm$, $\pi^{\,\pm}$

• Fast readout and online processing

Physics reach improves dramatically!

ALICE 3 : Physics topics

- Precision differential measurements of dileptons
 - Evolution of the quark-gluon plasma
 - Mechanisms of chiral symmetry restoration in the QGP

- Systematic measurements of (multi-) heavy-flavoured hadrons down to low p_T
 - Transport properties in the QGP down to thermal scale
 - Mechanisms of hadronization from the QGP

- Hadron interaction and fluctuation measurements
 - Existence and nature of heavy-quark exotic bound states and interaction potential
 - Search for super-nuclei (light nuclei with c)
 - Search for critical behaviour in event-by-event fluctuations of conserved charges

Electromagnetic radiation

e⁺ QGP e⁻ Y^{*} y^{*} y^{*}

- Average *T* of the QGP with e^+e^- using thermal dielectron m_{ee} spectrum for $m_{ee} > 1.1 \text{ GeV}/c^2$ (QGP radiation dominated)
- Requirements:
 - Good e PID down to low p_{T}
 - Small detector material budget (γ background)
 - Excellent pointing resolution (heavy-flavour decay electrons)

Possible with ALICE 3 due to excellent pointing resolution and small material budget

Chiral symmetry restoration

Study chiral symmetry restoration (CSR) mechanisms using thermal dielectron spectrum $m_{ee} < 1.2$ GeV

ALICE 3 access to CSR mechanisms like ρ -a₁ mixing

Electromagnetic radiation

ALICE 3:

- Probe time dependence of T Double differential spectra: T vs mass, $p_{T,ee}$
- Access time evolution of flow

Dilepton v_2 vs mass and p_{Tee} possible

Expected statistical errors of T as a function of $p_{T,ee}$ ALICE 3 projection, one month Pb-Pb

Complementary measurements with real photons. Different systematic uncertainties \rightarrow reduce overall uncertainties

a.marin@gsi.de, TAE2024, Benasque (Spain)

R. Rapp, Adv. High Energy Phys. 2013 (2013) 148253 P.M Hohler and R. Rapp, Phys. Lett. B 731 (2014) 103 ALICE CERN-I HCC-2022-009

Heavy flavour transport

 $\frac{dN}{d\phi} \propto 1 + 2v_2 \cos 2(\varphi - \psi)$

Interactions with the plasma generate azimuthal anisotropy v2:

Understanding of transport properties of the QGP requires heavy-flavor probes Expect beauty thermalization slower than cham \rightarrow smaller v_2

Need ALICE 3 performance (pointing resolution , acceptance) for precision measurement of e.g. Λ_c , Λ_b , and multi-charm v_2

Mechanisms of hadron formation

Multi-charm baryons: test how independently produced quarks form hadrons

- Contribution from single parton scattering is very small
- Very large enhancement predicted by Statistical hadronization model in Pb-Pb collisions
- Progress relies on the reconstruction of complex decay chains

Large enhancements: unique sensitivity to thermalisation and hadronisation dynamics a.marin@gsi.de, TAE2024, Benasque (Spain)

Multi-charm baryon reconstruction in ALICE 3

First ALICE 3 tracking layer at 5 mm

• Track Ξ^- before it decays, Ξ^- pointing resolution Unique access with ALICE 3 in Pb-Pb collisions

Reconstruction of Ξ_{cc}^{++} decay in the ALICE 3 tracker

Blast-wave model parameters

A hydrodynamic inspired description of spectra

π^0 and η mesons

 $\pi^{0}: 0.2 \le p_{T} < 200 \text{GeV/c}$ $\eta: 0.4 \le p_{T} < 50 \text{GeV/c}$

π^0 and η mesons

•NLO using NNFF1.0 FF describes the π^0 spectrum •PYTHIA overshoots data and does not describe shape of spectra •New FF are needed for the η meson

a.marin@gsi.de, TAE2024, Benasque (Spain)

π^0 and η mesons

Production of charmonia

Table 1 Masses, binding energies, and radii of the lowest $c\bar{c}$ and $b\bar{b}$ bound states [3]; the listed radii are $1/2 \sqrt{\langle r_i^2 \rangle}$, given by Eq. (3)

State	J/ψ	Χc	ψ'	γ	χb	Υ'	χ_b'	Υ''
Mass (GeV)	3.10	3.53	3.68	9.46	9.99	10.02	10.36	10.36
ΔE (GeV)	0.64	0.20	0.05	1.10	0.67	0.54	0.31	0.20
Radius (fm)	0.25	0.36	0.45	0.14	0.22	0.28	0.34	0.39

•ccbar production
•color octet to color single (color neutralization)
•physical bound state (J/Ψ)

Fig. 10 Lowest order Feynman diagram for $c\bar{c}$ production through gluon fusion

Fig. 12 J/ψ production in a nuclear medium

Hadronization of charm quarks from pp...

PRD 105 (2022) L011103

~40% increase driven by observed baryon enhancement Data on the upper edge of FONLL and NNLO calculations

Significant baryon enhancement with respect to e⁺e⁻ or e⁻p ~30% c --> baryons in pp and pPb a.marin@gsi.de, TAE2024, Benasque (Spain)

Charm fragmentation functions are not universal

Hadronization of charm quarks from pp

- H_c $f(c \rightarrow H_c)[\%]$
- D^0 39.1 ± 1.7(stat)^{+2.5}_{-3.7}(syst)
- D^+ 17.3 ± 1.8(stat)^{+1.7}_{-2.1}(syst)
- $D_s^+ ~~7.3 \pm 1.0 (stat)^{+1.9}_{-1.1} (syst)$
- $\Lambda_c^+ \quad 20.4 \pm 1.3 (stat)^{+1.6}_{-2.2} (syst)$
- $\Xi_c^0 = 8.0 \pm 1.2(\text{stat})^{+2.5}_{-2.4}(\text{syst})$
- D^{*+} 15.5 ± 1.2(stat)^{+4.1}_{-1.9}(syst)

Charm baryon/meson enhancement: pp→Pb-Pb

arXiv:2112.08156

Additional dynamics in QGP

 $\Lambda_{\rm c}/{\rm D}^{\rm 0}$ enhancement at intermediate $p_{\rm T}$ relative to pp

- similar to light flavor hadrons
- parton recombination at play also for c quarks
- mass-dependent p_{T} shift from collective flow

CERES dilepton spectrum

Phys. Lett. B666 (2008) 425

mass resolution 3.8%

± 0.35 (syst.)

CERES excess spectrum

 contribution of at freeze-out totally negligible, medium dominates by more than order of magnitude in central PbPb
 points at 0.7-1 GeV exclude dropping mass

Sensitive to role of baryons in modification

Production of e+e- pairs in Pb+Au 40AGeV

D. Adamova et al., Phys. Rev. Lett. 91(2003) 42301

NA60: Excess spectrum

Models for contributions from hot medium (mostly $\pi\pi$ from hadronic phase) Vacuum spectral functions Dropping mass scenarios Broadening of spectral function

Data rule out mass drop of ρ meson

Dielectron production in central Pb-Pb at $\sqrt{s_{NN}}$ = 5.02 TeV

Comparison to hadronic cocktail, including:

• N_{coll} -scaled HF measured in pp at \sqrt{s} = 5.02 TeV Phys. Rev. C 102 (2020) 055204

 \rightarrow Vacuum baseline

- Include measured R_{AA} of $c/b \rightarrow e^{\pm}$ Phys. Lett. B 804 (2020) 135377
- \rightarrow Modified-HF cocktail

Intermediate-mass region (IMR) from $1.1 < m_{ee} < 2.7 \text{ GeV}/c^2$ \rightarrow Consistent with HF suppression & therm. radiation from QGP

Indication for an excess at lower mass

 \rightarrow Compatible with thermal radiation from HG

Chiral Symmetry Restoration

- Spontaneous symmetry breaking gives rise to a nonzero 'order parameter'
 - QCD: quark condensate <qq> ≈ -250 MeV³
 - > many models (!): hadron mass and quark condensate are linked
- Numerical QCD calculations
 - at high temperature and/or high baryon density
 - \rightarrow deconfinement and $\langle \overline{q}q \rangle \rightarrow 0$
 - approximate chiral symmetry restoration (CSR)
 - → constituent mass approaches current mass
- Chiral Symmetry Restoration
 - expect modification of hadron spectral properties (mass m, width Г)
- ion (CSR) ent mass RHIC LHC T [MeV] 300 5 ρ₀

↓ <ψψ> ρ,τ

QCD Lagrangian → parity doublets are degenerate in mass