Neutrino physics (theory) II

Sergio Pastor (IFIC Valencia)

TAE 2024 Benasque (10-11 Sep 2024)

Introduction: neutrinos and their history

Values of neutrino masses

Neutrinos in the Standard Model

Introduction to neutrino cosmology

Neutrino oscillations

Cosmological bounds on some neutrino properties

Values of neutrino masses

3-neutrino oscillations: the global picture

neutrino mixing

	1	0	0)	1	$\cos\theta_{13}$	0	$\sin \theta_{13} e^{-i\delta}$	1	$\left(\cos \theta_{12} \right)$	$\sin\theta_{12}$	0)	1	$e^{i\alpha}$	0	0
U =	0	$\cos \theta_{23}$	$\sin \theta_{23}$		0	1	0		$-\sin\theta_{12}$	$\cos \theta_{12}$	0		0	$e^{i\beta}$	0
5.2	0	$-\sin\theta_{23}$	$\cos\theta_{23}$	/ \ -	$-\sin\theta_{13}e^{i\delta}$	0	$\cos \theta_{13}$)	0	0	1)	(0	0	1 /

- 3 mixing angles: θ₁₂, θ₂₃, θ₁₃
 3 CP phases: 1 Dirac + 2 Majorana
 3 masses: m₁, m₂, m₃
 - \Rightarrow absolute neutrino mass: m₀ \Rightarrow two mass splittings:

 $\Delta m^2_{21}, \Delta m^2_{31}$

neutrino mass spectrum

Global fit to neutrino oscillation parameters

			relati	ve lo uncert
parameter	best fit $\pm 1\sigma$	3σ range		ie ie anoori
$\Delta m_{21}^2 \ [10^{-5} \text{eV}^2]$	$7.55\substack{+0.22\\-0.20}$	6.98 - 8.19	2.7 %	
$\begin{array}{l} \left \Delta m_{31}^2 \right \left[10^{-3} \text{eV}^2 \right] (\text{NO}) \\ \left \Delta m_{31}^2 \right \left[10^{-3} \text{eV}^2 \right] (\text{IO}) \end{array}$	$2.51_{-0.03}^{+0.02} \\ 2.41_{-0.02}^{+0.03}$	$2.43 – 2.58 \\2.34 - 2.49$	1.0 %	mass ordering?
$\sin^2 \frac{\theta_{12}}{10^{-1}}$	3.04 ± 0.16	2.57 - 3.55	5.4%	
$\frac{\sin^2 \theta_{23} / 10^{-1} \text{ (NO)}}{\sin^2 \theta_{23} / 10^{-1} \text{ (IO)}}$	$5.64_{-0.21}^{+0.15} \\ 5.64_{-0.18}^{+0.15}$	4.23-6.04 4.27-6.03	3-4%	octant?
$\frac{\sin^2 \theta_{13}}{10^{-2}}$ (NO) $\frac{\sin^2 \theta_{13}}{10^{-2}}$ (IO)	$2.20_{-0.06}^{+0.05} \\ 2.20_{-0.04}^{+0.07}$	2.03-2.38 2.04-2.38	2.6%	
$\frac{\delta}{\pi}$ (NO) $\frac{\delta}{\pi}$ (IO)	${\begin{array}{c} 1.12\substack{+0.16\\-0.12}\\ 1.50\substack{+0.13\\-0.14}\end{array}}$	0.76 – 2.00 1.11 – 1.87	10-15 %	maximal CP violation??

Valencia global fit (https://globalfit.astroparticles.es)

Two possible neutrino mass orderings

Neutrino masses

Data on flavour oscillations do not fix the absolute scale of neutrino masses

Neutrino masses

Data on flavour oscillations do not fix the absolute scale of neutrino masses

Probing the absolute neutrino mass scale

Tritium β decay experiments

 β-decay spectrum close to the endpoint is very sensitive to the neutrino mass:

KATRIN (2024): $m_{\beta} < 0.45 \,\mathrm{eV} \,(90\% \,\mathrm{CL})$

Neutrinoless double decay experiments

 $2\nu\beta\beta$: rare process in the SM with $t_{1/2}$ ~ 10²¹ years

0vββ: possible for massive Majorana neutrinos.

 $(A,Z) \rightarrow (A,Z+2) + e^- + e^-$

test v nature

- \rightarrow not observed yet
- $\rightarrow t_{1/2} > 10^{26} 10^{27}$ years
- \rightarrow violates Lepton Number

phase space Nuclear matrix elements

$$\Gamma_{0\nu\beta\beta} = G^{0\nu} |M^{0\nu}|^2 \langle m_{\beta\beta} \rangle^2$$

Effective Majorana neutrino mass

$$\langle m_{\beta\beta} \rangle = \left| \sum_{i=1}^{3} U_{ei}^2 m_i \right|$$

 $m_{\beta\beta} < 36 - 156 \,\mathrm{meV}$

Tritium β decay, $0\nu 2\beta$ and Cosmology

Introduction to neutrino cosmology

Grand Unified Neutrino Spectrum at Earth

Vitagliano, Tamborra, and Raffelt, Rev Mod Phys **92** (2020) 45006

Neutrino cosmology is interesting because Relic neutrinos are very abundant:

- The CNB contributes to radiation at early times and to matter at late times (info on the number of neutrinos and their masses)
- Cosmological observables can be used to test standard or non-standard neutrino properties

μmuon τtau

v neutrino

🕼 atom

(elvin)

GeV

10-13

J. Asorey Lectures on cosmology

18

Evolution of the background densities: 1 MeV → now

Evolution of the background densities: 1 MeV → now

Production and decoupling of relic neutrinos

Neutrinos in Equilibrium

$$1 \text{ MeV} \lesssim T \lesssim m_{\mu}$$
$$T_{\nu} = T_{e^{\pm}} = T_{\gamma}$$

 $\nu_{\alpha}\nu_{\beta} \leftrightarrow \nu_{\alpha}\nu_{\beta}$ $\nu_{\alpha}\bar{\nu}_{\beta} \leftrightarrow \nu_{\alpha}\bar{\nu}_{\beta}$ $\nu_{\alpha} e^{\pm} \leftrightarrow \nu_{\alpha} e^{\pm}$ $\nu_{\alpha}\bar{\nu}_{\alpha} \leftrightarrow e^+e^-$

Distribution function of particle momenta in equilibrium $f_i^{eq}(p,T) = \left[\exp\left(\frac{E_i - \mu_i}{T}\right) \mp 1\right]^{-1}$

Equilibrium thermodynamics

Particles in equilibrium when T are high and interactions effective

Thermodynamical variables

1		RELA	TIVISTIC	NON REL.			
	VARIADLE	BOSE	FERMI				
	n	$\frac{\zeta(3)}{\pi^2}gT^3$	$\frac{3\zeta(3)}{4\pi^2}gT^3$	$g\left(rac{mT}{2\pi} ight)^{3/2}e^{-m/T}$			
	ρ	$\frac{\pi^2}{30}gT^4$	$\frac{7}{8}\frac{\pi^2}{30}gT^4$	mn			
	P		<u>ρ</u> 3	$nT\ll ho$			
	$\langle E \rangle$	2,701 <i>T</i>	3,151T	$m + \frac{3}{2}T$			
	$n = g_i$	$\int \frac{d^2 \vec{p}}{(2\pi)^3} f_i(p, t)$	$\Gamma) \qquad \rho = g_i \int$	$\frac{d^2\vec{p}}{(2\pi)^3} E_i f_i(p,T)$			
	$p = g_i$	$\frac{d^2\vec{p}}{(2\pi)^3} \frac{p^2}{3E_i} f_i$	(p,T) $\langle E \rangle =$	$= \rho/n$ 24			

Cosmological energy densities: radiation

Energy density of relativistic
particles with
$$f_i(p)$$
 $\rho_i = g \int \frac{d^3 p}{(2\pi)^3} \frac{p}{e^{p/T_i} \pm 1}$
 $\rho_i = 3P_i = \begin{cases} \frac{\pi^2}{30} g T_i^4 \ , & \text{boson} \end{cases} \quad \rho_\gamma = \frac{\pi^2}{15} T_\gamma^4 \\ \frac{7}{8} \frac{\pi^2}{30} g T_i^4 \ , & \text{fermion} \end{cases} \quad \rho_\nu = 3 \times \frac{7}{8} \times \frac{\pi^2}{15} T_\nu^4$

Neutrino decoupling

As the Universe expands, particle densities are diluted and temperatures fall. Weak interactions become ineffective to keep neutrinos in good thermal contact with the e.m. plasma

Rough, but quite accurate estimate of the decoupling temperature

Rate of weak processes ~ Hubble expansion rate $\Gamma_W \approx \sigma_W |v|n, \ H^2 = \frac{8\pi\rho_{\rm rad}}{3M_P^2} \ \rightarrow \ G_F^2 T^5 \approx \sqrt{\frac{8\pi\rho_{\rm rad}}{3M_P^2}} \ \rightarrow \ T_{\rm dec}(\nu) \approx 1 \ {\rm MeV}$

> Since $\nu_{\rm e}$ have both CC and NC interactions with e[±] $T_{
> m dec}(\nu_e) \simeq 2~{
> m MeV}$ $T_{
> m dec}(\nu_{\mu,\tau}) \simeq 3~{
> m MeV}$

Neutrino decoupling

History of the Universe

Neutrino and photon (CMB) temperatures

Neutrino decoupling and e^{\pm} annihilations

The Cosmic Neutrino Background

Neutrinos decoupled at T~MeV, keeping a $f_
u(p,T) = rac{1}{\exp(p/T_
u)+1}$

Number density

$$n_{\nu} = \int \frac{d^3 p}{(2\pi)^3} f_{\nu}(p, T_{\nu}) = \frac{3}{11} n_{\gamma} = \frac{6\zeta(3)}{11\pi^2} T_{\rm CMB}^3$$

• Energy density

$$\rho_{\nu_{i}} = \int \sqrt{p^{2} + m_{\nu_{i}}^{2}} \frac{d^{3}p}{(2\pi)^{3}} f_{\nu}(p, T_{\nu}) \rightarrow \begin{cases} \frac{7\pi^{2}}{120} \left(\frac{4}{11}\right)^{4/3} T_{\text{CMB}}^{4} \\ & \text{Massless} \\ m_{\nu_{i}}n_{\nu} & \text{Massive } m_{\nu} >> T \end{cases}$$

The Cosmic Neutrino Background

Neutrinos decoupled at T~MeV, keeping a spectrum as that of a relativistic species

$$f_{\nu}(p,T) = \frac{1}{\exp(p/T_{\nu}) + 1}$$

Number density

At present 112
$$(
u+ar
u)$$
 cm⁻³ per flavour

• Energy density

Evolution of the background densities: 1 MeV → now

The radiation content of the Universe (N_{eff})

Relativistic particles in the universe

At T<m_e, the radiation content of the Universe is

$$\rho_{\rm rad} = \rho_{\gamma} + \rho_{\nu} = \rho_{\gamma} \left[1 + \frac{7}{8} \left(\frac{4}{11} \right)^{4/3} \times 3 \right]$$

Valid for standard neutrinos in the **instantaneous decoupling** approximation

Relativistic particles in the universe

At T<m_e, the radiation content of the Universe is

$$\rho_{\rm rad} = \rho_{\gamma} + \rho_{\nu} + \rho_{x} = \rho_{\gamma} \left[1 + \frac{7}{8} \left(\frac{4}{11} \right)^{4/3} N_{\rm eff} \right]$$

effective number of relativistic neutrino species (effective number of neutrinos)

 N_{eff} is a way to measure the ratio $\frac{\rho_{\nu} + \rho_{x}}{\rho_{\gamma}}$

1960s-1970s : $N_{eff} = N_v$, extra neutrinos would enhance the cosmological expansion >1980s: N_{eff} = additional relativistic particles

Number of light neutrino types (LEP data) $N_{
u}=2.984\pm0.008$

Relativistic particles in the universe

At T<m_e, the radiation content of the Universe is

$$\rho_{\rm rad} = \rho_{\gamma} + \rho_{\nu} + \rho_{x} = \rho_{\gamma} \left[1 + \frac{7}{8} \left(\frac{4}{11} \right)^{4/3} N_{\rm eff} \right]$$

effective number of neutrinos

additional relativistic particles (scalars, pseudoscalars, decay products of heavy particles,...)

non-standard neutrino physics (primordial neutrino asymmetries, totally or partially thermalized light sterile neutrinos, non-standard interactions with electrons,...)

$N_{eff} \neq 3$ in the standard case

N_{eff} > 3 : small neutrino heating

Neutrinos and Primordial Nucleosynthesis

BBN: Creation of light elements

Produced elements: D, ³He, ⁴He, ⁷Li and small abundances of others

Theoretical inputs:

- G_N , the Newton gravitational constant;
- η , the baryon to photon number density ratio;
- $\bullet\,$ the nuclear rates.

• τ_n , the neutron lifetime;

$$\eta_{10} = \frac{n_B / n_\gamma}{10^{-10}} \simeq 274 \,\Omega_B h^2$$

BBN: Creation of light elements

BBN: Creation of light elements

Phase II: 0.1-0.01 MeV Formation of light nuclei starting from D

Photodesintegration prevents earlier formation for temperatures closer to nuclear binding energies

Effect of neutrinos on BBN

1. N_{eff} fixes the expansion rate during BBN

2. Direct effect of **electron** neutrinos and antineutrinos on the **n-p reactions**

 $\nu_e + n \leftrightarrow p + e^- \quad e^+ + n \leftrightarrow p + \bar{\nu}_e$

Bounds on N_{eff}

BBN: allowed ranges for N_{eff}

PArthENoPE BBN code, S Gariazzo et al, Comp Phys Comm 271 (2022) 108205

CMB anisotropies + other data

75

70

65 -

60

2.0

 $H_0 \, [\mathrm{km \, s^{-1} \, Mpc^{-1}}]$

8

Comparison: allowed ranges for N_{eff} and BBN

54

Neutrinos as Dark Matter

The Cosmic Neutrino Background

Neutrinos decoupled at T~MeV, keeping a spectrum as that of a relativistic species

$$f_{\nu}(p,T) = \frac{1}{\exp(p/T_{\nu}) + 1}$$

Number density

At present 112
$$(
u+ar
u)$$
 cm⁻³ per flavour

• Energy density

Neutrinos as Dark Matter

• Neutrinos are natural DM candidates

$$\Omega_{\nu}h^{2} = \frac{\sum_{i} m_{i}}{93.2 \text{ eV}} \qquad \Omega_{\nu} < 1 \rightarrow \sum_{i} m_{i} \lesssim 46 \text{ eV}$$
$$\Omega_{\nu} < \Omega_{m} \simeq 0.3 \rightarrow \sum_{i} m_{i} \lesssim 15 \text{ eV}$$

- They stream freely until non-relativistic (collisionless phase mixing)
 Neutrinos are HOT Dark Matter (large thermal motion)
- First structures to be formed when Universe became matter –dominated are very large
- Ruled out by structure formation CDM

Massive Neutrinos can still be subdominant DM: limits on m_v from Structure Formation (combined with other cosmological data)

Neutrinos as Hot Dark Matter

Massive Neutrinos can still be subdominant DM: limits on m_v from Structure Formation (combined with other cosmological data)

S. Hannestad, Cosmology Group, Univ. Aarhus 5

Cosmological bounds on neutrino mass(es)

A unique cosmological bound on m_{ν} DOES NOT exist !

Different analyses have found upper bounds on neutrino masses, since they depend on

- The combination of cosmological data used
- The assumed cosmological model: number of parameters (problem of parameter degeneracies)
- The properties of relic neutrinos

Bounds on Σm_{ν} from Planck (+other cosmo data)

Cosmological upper limits on the sum of neutrino masses

Bounds on Σm_{ν} from Planck (+other cosmo data)

Cosmological upper limits on the sum of neutrino masses

Tritium β decay, $0\nu 2\beta$ and Cosmology

For more details...

NEUTRINO COSMOLOGY

Julien Lesgourgues Gianpiero Mangano Gennaro Miele Sergio Pastor

Ed. Cambridge Univ. Press, 2013

End of 2nd lecture