
[One (2h) lecture on selected topics]

Quark Gluon Plasma (and more)
Carlos A. Salgado 

IGFAE - U. Santiago de Compostela 

TAE - Taller de Altas Energías - Workshop on High Energy Physics
Benasque - September 2024



NEUTRONS←

NUCLEIPR¥← At0M(
-

 TAE 2024 - Benasque                                                                                                                                                                                                                              QGP and more…

Quantvmchromo-Dyno.nu#&
QCD is the theory that describes the Strong interaction that binds together 

protons and neutrons in the atomic nuclei



HADRONS = those particles thatfeel the strong interaction
11

PROTONS + NEUTRONS -1 COUSINS
-
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TOONAMI !

“If I could remember the names of all these particles, 
I would have been a botanist” - Enrico Fermi



“Periodic table” of hadrons

Hidden symmetry : internal structure
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QUARKS



e+e− → qq̄
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Initial particles in yellow 
Intermediate particles in blue 

Final particles in red

3TeV  eventse+e−

[details in the web page]
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Too MANY I
-

.

Can we
"

see
"

the quarks ?

https://gsalam.web.cern.ch/gsalam/panscales/videos.html


2 high pT jets 
(1.3 and 1.2 TeV) 

with invariant mass 6.9 TeV

Jets in hadronic colliders
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The  PROTON

Two (valence) up quarks + one (valence) down quark
+ a cloud of quarks, antiquarks and gluons - quantum fluctuations
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QCD defined as our most perfect physical theory [Wilczek 2000]

[Confinement; chiral symmetry breaking and mass generation; new phases of 
matter; a rich hadronic spectrum; a non-trivial vacuum structure; asymptotic 

freedom, etc]

An apparently simple lagrangian hides a plethora of emerging 
phenomena

QCD defined as our most perfect physical theory [Wilczek 2000]

HIC to study some of these collective properties
Distribute large energy density in a “macroscopic” region of phase space

The structure of the dilute regime (vacuum for our purposes)
needs to be under good theoretical/experimental control

Proton-proton collisions at the LHC provide such a benchmark
(also proton-nucleus collisions will be needed)

Nucleus-nucleus collisions provide optimal conditions for these 
QCD studies - extended object in the transverse planeL = �̄(i/D �m)� � 1

4
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QCD

QCD is the theory of strong interactions.

It describes interactions between hadrons (p, π, ...)

Asymptotic states.

Normal conditions of temperature and density.

Nuclear matter (us).

Colorless objects.

Frascati, May 2006 QGP and HIC – p.4

QCD

QCD is the theory of strong interactions.

It describes interactions between hadrons (p, π, ...)

Quarks and gluons in the Lagrangian

Fundamental particles.

charge=+2/3 u (∼5 MeV) c (∼1.5 GeV) t (∼175 GeV)
charge=-1/3 d (∼10 MeV) s (∼100 MeV) b (∼5 GeV)

Colorful objects. color = charge of QCD −→ vector

Similar to QED, but gluons can interact among themselves
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QCD

QCD is the theory of strong interactions.

It describes interactions between hadrons (p, π, ...)

Quarks and gluons in the Lagrangian

Fundamental particles.

charge=+2/3 u (∼5 MeV) c (∼1.5 GeV) t (∼175 GeV)
charge=-1/3 d (∼10 MeV) s (∼100 MeV) b (∼5 GeV)

Colorful objects. color = charge of QCD −→ vector

Similar to QED, but gluons can interact among themselves

Gluons carry color charge −→ This changes everything...

Frascati, May 2006 QGP and HIC – p.4

QCD

QCD is the theory of strong interactions.

It describes interactions between hadrons (p, π, ...)

Quarks and gluons in the Lagrangian

No free quarks and gluons: Confinement.
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QCD

QCD is the theory of strong interactions.

It describes interactions between hadrons (p, π, ...)

Quarks and gluons in the Lagrangian

No free quarks and gluons: Confinement.

Strength smaller at smaller distances: Asymptotic freedom.
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Frascati, May 2006 QGP and HIC – p.4

QCD
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Don’t blame QCD
Blame the Higgs!



Gluons have color charge

Color transformations with the Gell-Mann matrices ta =
1
2

λa

QCD lecture 1 (p. 9)

What is QCD Lagrangian + colour

Quarks — 3 colours:  a =

0

@
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Quark’s color - fundamental 
representation of SU(3) 

[ta, tb] = ifabctc

[THIS IS JUST AN EXAMPLE]
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Gluons change the 
color of the quark 
[the corresponding vertex in QED 
does not change the charge of 
the electron]
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Asymptotic freedom

32 9. Quantum Chromodynamics

9.4.4 Hadronic final states of e+e≠ annihilations:
Re-analyses of jets and event shapes in e+e≠ annihilation (j&s), measured around the Z peak
and at LEP2 center-of-mass energies up to 209 GeV, using NNLO predictions matched to NLL
resummation and Monte Carlo models to correct for hadronization e�ects, resulted in –s(M2

Z
) =

0.1224 ± 0.0039 (ALEPH) [571], and in –s(M2
Z

) = 0.1189 ± 0.0043 (OPAL) [572]. Similarly, an
analysis of JADE data [573] at center-of-mass energies between 14 and 46 GeV gives –s(M2

Z
) =

0.1172 ± 0.0051, with contributions from the hadronization model and from perturbative QCD
uncertainties of 0.0035 and 0.0030, respectively. Precise determinations of –s from 3-jet produc-
tion alone (3j), at NNLO, resulted in –s(M2

Z
) = 0.1175 ± 0.0025 [574] from ALEPH data and in

–s(M2
Z

) = 0.1199 ± 0.0059 [575] from JADE. A recent determination is based on an NNLO+NNLL
accurate calculation that allows to fit the region of lower 3-jet rate (2j) using data collected at LEP
and PETRA at di�erent energies. This fit gives –s(M2

Z
) = 0.1188 ± 0.0013 [576], where the domi-

nant uncertainty is the hadronization uncertainty, which is estimated from Monte Carlo simulations.
A fit of energy-energy-correlation (EEC) also based on an NNLO+NNLL calculation together with

αs(MZ2) = 0.1179 ± 0.0009

August 2021
α s
(Q
2 )

Q [GeV]

τ decay (N3LO)
low Q2 cont. (N3LO)
HERA jets (NNLO)

Heavy Quarkonia (NNLO)
e+e- jets/shapes (NNLO+res)

pp/p-p (jets NLO)
EW precision fit (N3LO)
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Figure 9.3: Summary of measurements of –s as a function of the energy scale Q. The respective
degree of QCD perturbation theory used in the extraction of –s is indicated in brackets (NLO:
next-to-leading order; NNLO: next-to-next-to-leading order; NNLO+res.: NNLO matched to a
resummed calculation; N3LO: next-to-NNLO).

1st December, 2021
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2 9. Quantum Chromodynamics

electroweak origin, it is the only fundamental parameter of QCD. Finally, the field tensor F A
µ‹ is

given by

F A

µ‹ = ˆµA
A

‹ ≠ ˆ‹A
A

µ ≠ gs fABCA
B

µ A
C

‹ ,

[tA, tB] = ifABCtC , (9.2)

where the fABC are the structure constants of the SU(3) group.
Neither quarks nor gluons are observed as free particles. Hadrons are color-singlet (i.e. color-

neutral) combinations of quarks, anti-quarks, and gluons.
Ab-initio predictive methods for QCD include lattice gauge theory and perturbative expansions

in the coupling. The Feynman rules of QCD involve a quark-antiquark-gluon (qq̄g) vertex, a 3-gluon
vertex (both proportional to gs), and a 4-gluon vertex (proportional to g2

s). A full set of Feynman
rules is to be found for example in Refs. [1, 2].

Adopting a standard notation where repeated indices are summed over, useful color-algebra
relations include: tA

ab
tA

bc
= CF ”ac, where CF © (N2

c ≠1)/(2Nc) = 4/3 is the color-factor (“Casimir”)
associated with gluon emission from a quark; fACDfBCD = CA”AB, where CA © Nc = 3 is the
color-factor associated with gluon emission from a gluon; tA

ab
tB

ab
= TR”AB, where TR = 1/2 is the

color-factor for a gluon to split to a qq̄ pair.
There is freedom for an additional CP -violating term to be present in the QCD Lagrangian,

◊ –s
8fi

F A
µ‹F̃ A µ‹ , where ◊ is an additional free parameter, and F̃ A µ‹ is the dual of the gluon field

tensor, 1
2‘µ‹‡flF A ‡fl, with ‘µ‹‡fl being the fully antisymmetric Levi-Civita symbol. Experimental

limits on ultracold neutrons [3, 4] and atomic mercury [5] constrain the QCD vacuum angle to
satisfy |◊| . 10≠10. Further discussion is to be found in Ref. [6] and in the Axions section in the
Listings of this Review.

This section will concentrate mainly on perturbative aspects of QCD as they relate to collider
physics. Related textbooks and lecture notes include Refs. [1, 2, 7–9]. Aspects specific to Monte
Carlo event generators are reviewed in the dedicated section 43. Lattice QCD is also reviewed in
a section of its own, Sec. 17, with further discussion of perturbative and non-perturbative aspects
to be found in the sections on “Quark Masses”, “The CKM quark-mixing matrix”, “Structure
Functions”, “Fragmentation Functions”, “Passage of Particles Through Matter” and “Heavy-Quark
and Soft-Collinear E�ective Theory” in this Review.
9.1.1 Running coupling

In the framework of perturbative QCD (pQCD), predictions for observables are expressed in
terms of the renormalized coupling –s(µ2

R
), a function of an (unphysical) renormalization scale

µR. When one takes µR close to the scale of the momentum transfer Q in a given process, then
–s(µ2

R
ƒ Q2) is indicative of the e�ective strength of the strong interaction in that process.

The coupling satisfies the following renormalization group equation (RGE):

µ2
R

d–s

dµ2
R

= —(–s) = ≠(b0–2
s + b1–3

s + b2–4
s + · · · ) , (9.3)

where b0 = (11CA ≠ 4nf TR)/(12fi) = (33 ≠ 2nf )/(12fi) is referred to as the 1-loop —-function
coe�cient, the 2-loop coe�cient is b1 = (17C2

A
≠nf TR(10CA+6CF ))/(24fi2) = (153≠19nf )/(24fi2),

and the 3-loop coe�cient is b2 = (2857 ≠
5033

9 nf + 325
27 n2

f
)/(128fi3) for the SU(3) values of CA

and CF . Here nf is the number of quark flavours. The 4-loop coe�cient, b3, is to be found in
Refs. [10, 11], while the 5-loop coe�cient, b4, is in Refs. [12–16]. The coe�cients b2 and b3 (and
beyond) are renormalization-scheme-dependent and given here in the modified minimal subtraction
scheme (MS) [17], by far the most widely used scheme in QCD and the one adopted in the following.
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31 9. Quantum Chromodynamics

scheme [569,570].
Summarizing the results from world data on structure functions, taking the unweighted average

of the central values and errors of all selected results, leads to a pre-average value of –s(M2
Z

) =
0.1162 ± 0.0020, see Fig. 9.2.
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Figure 9.2: Summary of determinations of –s(M2
Z

) from the seven sub-fields discussed in the
text. The yellow (light shaded) bands and dotted lines indicate the pre-average values of each
sub-field. The dashed line and blue (dark shaded) band represent the final world average value of
–s(M2

Z
). The “*” symbol within the “hadron colliders” sub-field indicates a determination including

a simultaneous fit of PDFs.
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Picture

In quantum field theory, vacuum is a
medium which can screen charge.

(quarks or gluons disturb vacuum).

Islamabad, March 2004 HIC and the search for the QGP - 1. QCD matter. – p.5
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Picture

In quantum field theory, vacuum is a
medium which can screen charge.

(quarks or gluons disturb vacuum).

confinement =⇒ isolated quarks
(gluons) = infinite energy

colorless packages (hadrons)
=⇒ vacuum excitations.

masses:
mass (GeV)

∑

qm (GeV)

p ∼1 2mu + md ∼0.03
π ∼0.13 mu + md ∼ 0.02

Islamabad, March 2004 HIC and the search for the QGP - 1. QCD matter. – p.5

Picture of confinement

12 TAE 2024 - Benasque                                                                                                                                                                                                                              QGP and more…



String Picture

A way of visualizing a meson −→ a qq̄ pair join together by a string

Colorless object

Islamabad, March 2004 HIC and the search for the QGP - 1. QCD matter. – p.6

String Picture

A way of visualizing a meson −→ a qq̄ pair join together by a string

Colorless object

The potential between a qq̄ pair at separation r is

V (r) = −A(r)

r
+ Kr
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String Picture

A way of visualizing a meson −→ a qq̄ pair join together by a string

Colorless object

The potential between a qq̄ pair at separation r is

V (r) = −A(r)

r
+ Kr

When the energy is larger than mq + mq̄ a qq̄ pair breaks the string
and forms two different hadrons.

Islamabad, March 2004 HIC and the search for the QGP - 1. QCD matter. – p.6

String Picture

A way of visualizing a meson −→ a qq̄ pair join together by a string

Colorless object

The potential between a qq̄ pair at separation r is

V (r) = −A(r)

r
+ Kr

When the energy is larger than mq + mq̄ a qq̄ pair breaks the string
and forms two different hadrons.

In the limit mq → ∞ the string cannot break (infinite energy)

Islamabad, March 2004 HIC and the search for the QGP - 1. QCD matter. – p.6

String picture
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Chiral symmetry

 9

Chiral symmetry

   TAE Jaca, May 2007                                      Heavy Ion Collisions Theory and Experiment    

In the absence of quark masses the QCD Lagrangian splits into 
two independent quark sectors

LQCD = Lgluons + iq̄L�µDµqL + iq̄R�µDµqR

For two flavors                       is symmetric under 

However, this symmetry is not observed

Solution: the vacuum     is not invariant

Symmetry breaking 

Golstone’s theorem       massless bosons associated: pions

(i = u, d)LQCD SU(2)L � SU(2)R

|0�

⌅0|q̄LqR|0⇧ ⇤= 0 �⇥ chiral condensate

=�
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So, properties of the QCD vacuum
Confinement 
Chiral symmetry breaking 

Is there a regime where these symmetries are restored? 

QCD phase diagram 

Free quarks and gluons?  
Asymptotic freedom: Quarks and gluons interact weakly at 

@ Small distances — increase density 
@ Large momentum — increase temperatures
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Volume 59B, number 1 PHYSICS LETTERS 13 October 1975 

T 

Fig. 1. Schematic phase diagram of hadronic matter. PB is the 
density of baryonic number. Quarks are confined in phase I 
and unconfined in phase II. 

a hadron consists of a bag inside which quarks are con- 

fined. If many hadrons are present, space is divided in- 

to two regions: the "exterior" and the "interior". At 

low temperature the hadron density is low, and the 

"interior" is made up of disconnected islands (the 

hadrons) in a connected sea of "exterior". By increas- 

ing the temperature, the hadron density increases, and 

so does the portion of space belonging to the 

"interior". At high enough temperature we expect a 

transition to a new situation, where the "interior" has 

fused into a connected region, with isolated ponds and 

lakes of exterior. Again, in the high temperature state, 

quarks can move throughout space. We note that this 

picture of  the quark liberation is very close to that of 

the droplet model of  second order phase transitions 

[13]. 

We expect the same transition to be also present at 

low temperature but high pressure, for the same reason, 

i.e. we expect a phase diagram of the kind indicated in 

fig. 1. The true phase diagram may actually be substan- 

tially more complex, due to other kinds of transitions, 

such as, e.g. those considered by Omnes [14]. 

We note finally that, although the two alternatives 

(phase transition or limiting temperature) give rise to 

similar forms for the hadronic spectrum, the equation 

of state for high densities is radically different. In the 

first case we may expect the equation of state to be- 

come asymptotically similar to that of a free Fermi 

gas, while the limiting temperature case leads to an ex- 

tremely "soft" equation of state [15]. This difference 

has important astrophysical implications [ 16]. 

References 

[1] R. Hagedorn, Nuovo Cimento Suppl. 3 (1965) 147 

[2] R. Hagedorn and J. Ranft, Nuovo Cimento Suppl. 6 
(1968) 169. 

[3] K. Johnson, Phys. Rev. D6 (1972) 1101. 

[4] A. Chodos et al., Phys. Rev. D9 (1974) 3471. 

[5] G. Parisi, Quark imprisonment and vacuum repulsion, 

Phys. Rev. D l l  (1975) 956. 

[6] R. Dashen, S. Ma and H.J. Bernstein, Phys. Rev. 187 
(1969) 349. 

[7] Any book on statistical mechanics, e.g., K. Huang, Sta- 

tistical Mechanics (John Wyley Inc. New York 1963). 

[8] S. Fratchi, Phys. Rev. 3 (1971) 2821. 

[9] S. Fubini and G. Veneziano, Nuovo Cimento 64A (1969) 
881. 

[10] K. Huang and S. Weinberg, Phys. Rev. Letters 25 (1970) 
895. 

[ 11 ] P.G. De Gennes, Superconductivity of metals and alloys 

(W.J. Benjamin, New York 1966). 

[ 12] S. Weinberg, Gauge and global symmetries at high tem- 

perature, Phys. Rev. D to be published. 

[13] M.E. Fisher, Physica 3 (1967) 255. 

[14] R. Omnes, Physics Reports 3C (1972) 1. 

[151 R. Hagedorn, Astron. and Astrophys. 5 (1970) 184. 

[16] C.E. Rhoades and R. Ruffini, Astrophys. J. 163 (1971) 
83. 

69 

[Cabibbo and Parisi 1975]

First lattice calculation found a first order phase transitionFirst lattice calculation found a first order phase transition
Including quark masses probably not a first order
First lattice calculation found a first order phase transition
Including quark masses probably not a first order

Present status: several different phases found.

QCD phase diagram

∼ #q − #q̄

First lattice calculations found a phase transition between ordinary

matter and QGP.

Including quark masses maybe not a real phase transition

Frascati, May 2006 QGP and HIC – p.15

We study this region

QCD phase diagram
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QCD phase diagram

17

Experimental tools 
High-energy heavy-ion coll. [high T, low nB]

LHC — pp, pPb, PbPb, XeXe, (other lighter ions under study) 
RHIC — pp, dAu, AuAu, CuCu, UU,… 

Medium energies HIC [moderate T, high nB]
RHIC Beam Energy Scan 
FAIR at GSI 
NICA at Dubna 

Cosmological observations — notably GWs
Neutron star coalescence - low T, high nB  
Future — access to QCD transition in early Universe?

LHC/RHIC

RHIC BES
FAIR
NICA

QCD — rich dynamical content, with emerging dynamics  
that happens at scales easy to reach in collider experiments — e.g. EoS

Cosmo/GW

GW???

 TAE 2024 - Benasque                                                                                                                                                                                                                              QGP and more…



?

6

Neutron stars

18

Conclusion: Sizable no man’s land extending from outer 
core to densities not realized inside physical neutron stars

Options: Use models, deform theory, or interpolate EoS
between known limits and use astrophysical constraints

Conclusion: Sizable no man’s land extending from outer 
core to densities not realized inside physical neutron stars

Options: Use models, deform theory, or interpolate EoS
between known limits and use astrophysical constraints

29

Lattice QCD  
very challenging at finite μB

Region relevant for neutron star 
structure largely unknown

[A
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]

EoS determines neutron star structure
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EoS constraints from GW

19

[Annala, Gorda, Kurkela, Vuorinen 2018; Annala, Gorda, Kurkela, Nattila, Vuorinen 2019;  
also Most et al. 2018; Dexheimer et al. 2019 - More recent studies available, not shown]

Further constraints for the EoS at higher and higher baryon density in future experiments FAIR, NICA

3

(see also Sec. III.A). This illustrates that they are not
subject to a significant bias arising from the choice of
basis functions, and a posteriori strengthens the conclu-
sions made in previous works [16–18, 43, 44, 46]. As the
three interpolations agree, in the following, we choose to
use the speed-of-sound interpolation. We note that the
added benefit of this method is that it allows one to keep
track of the sti↵ness of the EoS in a natural way.

III. CONSTRAINING THE NS-MATTER EOS

The next two sections are devoted to a detailed analy-
sis of our ensemble of NS-matter EoSs, constructed with
the speed-of-sound method. As detailed in Appendix A,
the approximately 570.000 EoSs are built from randomly
generated functions c2s(µB), containing up to 5 linear in-
tervals, whereafter we vary the outlier EoSs to make sure
that the boundaries of the EoS band are stable. Note
that while we do not add discontinuous first-order tran-
sitions to our EoSs by hand, our interpolation functions
allow crossover transitions that may be arbitrarily strong,
thus closely mimicking discontinuous phase transitions
and mixed phase constructions [50].

A. Properties of the EoS band

In Fig. 2, we display our ensemble of NS-matter EoSs
obtained with the speed-of-sound interpolation method.
In deriving the result, we have required that the EoSs
support a 1.97M� NS [6, 7] and that the tidal deformabil-
ity ⇤ for a 1.4M� star satisfy 70 < ⇤(1.4M�) < 580, con-
sistent with the LIGO/Virgo bound from the GW170817
observation [18]. As noted earlier (see, e.g., [16, 44]), the
two-solar-mass constraint forces the EoS to be relatively
sti↵ at low densities, which is reflected in the rapid rise of
the interpolation functions for the pressure as a function
of energy density. At the same time, the constraint on
⇤(1.4M�) sets an upper limit for the sti↵ness, constrain-
ing the EoS band in a complementary direction.
While the astrophysical observations significantly con-

strain the behavior of the EoS in the intermediate-density
region, and the new band is more restrictive than, e.g.,
that of [16], the range of allowed EoSs still remains rel-
atively wide. A partial reason for this is the high versa-
tility of our interpolation method, which allows for very
complex structures and extreme states of matter, some
of which are unlikely to appear in Nature. Instead of im-
posing a theoretical bias and restricting the set of EoSs
by hand, we have chosen to classify the functions based
on their extremeness as quantified by the maximum value
that the speed of sound reaches and the level of fine struc-
ture that each EoS contains.
In Fig. 2, the speed-of-sound classification is performed

following a coloring scheme where EoSs corresponding to
a lower maximal value of c2s are drawn on top of the
higher ones. While we are not aware of a proven theo-

102 103 104

100

101

102

103

104

FIG. 2: The family of all possible NS-matter EoSs, obtained
with the speed-of-sound interpolation method introduced in
this paper. The color coding refers to the maximal value that
c2s reaches at any density, while the black lines denote the
extrapolations of the low- and high-density theoretical bands
to higher/lower densities [33, 56]. The rough location of the
deconfinement transition in hot QGP is indicated as ✏QGP.

rem that would exclude speeds of sound exceeding the
conformal value c2s = 1/3 (see, however, [51] for an at-
tempt in this direction), we note that the bound appears
to be a very nontrivial one to break. In hot QGP, nonper-
turbative lattice simulations have shown that the speed
of sound remains subconformal [52], and in QCD mat-
ter at asymptotically high energy density the quantity is
known to approach the conformal limit from below [31].
In holographic calculations the bound has been violated,
but only in finely tuned constructions that do not di-
rectly correspond to quantum field theories realized in
Nature [53, 54]. As discussed in [55], having c2s > 1/3
furthermore corresponds to matter in which the number
of degrees of freedom decreases as a function of energy
density, which strongly goes against the partonic picture
of hadrons arising from QCD. Based on these consid-
erations, we conclude that there is a strong theoretical
reason to expect that the speed of sound never exceeds
the conformal value by a sizable amount in QCD matter.
As seen from Fig. 2, excluding those EoSs for which the
conformal limit is strongly violated, say c2s > 0.6, would
lead to significantly tighter limits for the allowed EoSs.
Another way in which some of the EoSs generated

by the speed-of-sound interpolation method are extreme
is that the interpolation functions allow for very quick
changes in the material properties of the medium in ar-
bitrarily small density windows. While such versatility is
in principle a desirable feature of the interpolator, these
structures are clearly not very likely to appear in Na-
ture. To quantify the level of local structure in our EoSs,
we classify them according to the smallest (logarithmic)
energy density interval where structures appear. In prac-
tice, this is implemented by demanding that the energy
densities at two successive inflection points ✏i and ✏i+1

where the speed of sound changes its behavior, satisfy

6
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FIG. 6: The size of the QM core in 2M� NSs as a function
of the maximal mass corresponding to each EoS. If Mmax ⇡
2M�, the stars typically support large quark cores.

phase structure: at low densities, it is characterized by
a hadronic polytropic index � ⌘ d(log p)/d(log ✏) & 2.5,
while at high densities we have � ⇡ 1, corresponding
to nearly conformal quark matter. The transition be-
tween the two phases happens at an energy density of
400 � 700 MeV/fm3, comparable to that where quark-
gluon plasma is generated in heavy-ion collisions. We
have observed that these results are moreover indepen-
dent of the choice of basis functions used for interpolating
the EoS through the intermediate-density regime.

We have studied the constrained EoS as a function of
the maximum speed of sound it attains, motivated by
the fact that the conformal bound c2s  1/3 appears to
be nearly universally respected in physical systems. We
have identified a large number of EoSs that are not only
consistent with this bound but also all other observa-
tional and theoretical constraints. We note that while
this conclusion is seemingly ostensibly di↵erent from that
of [55], in their analysis the authors of this work too find
a number subconformal EoSs that lead to 2M� stars.

We also note that the EoSs with non-extreme speeds
of sounds are in addition in good agreement with the
most recent simultaneous NS mass-radius measurements.
This can be seen from Fig. 7, where we compare the MR-
relation stemming from our EoSs to the most recent mea-
surements corresponding to NSs in the low-mass x-ray
binary systems 4U 1702�429, 4U 1724�307, and SAX
J1810.8�2609, obtained with the x-ray-burst cooling-tail
method [12, 13]. We emphasize that this data was not
used to constrain our ensemble of EoSs. In addition,
we note that low speeds of sound are consistent with
bounds from SSS17a and GRB170817a, the EM counter-
parts of GW170817 [63–70], suggesting e⇤ > 300 [58] and
Mmax < 2.16M� [59–62].

An important finding of ours is that the cores of stars
with di↵erent masses have strikingly di↵erent properties.
On the one hand, we find that, e.g., typical binary pulsars
with M ⇡ 1.4M� do not reach central energy densities

FIG. 7: The family of mass-radius curves obtained from the
EoS ensemble shown in Fig. 2, together with three recent
simultaneous MR-measurements [12, 13]. The dark regions on
the left and top correspond to regions excluded by constraints
based on the EM counterpart of GW170817, e⇤ > 300 [58] and
Mmax < 2.16M� [59–62]. The dashed red curve denotes the
masses below which there are no NSs containing QM cores.

high enough for a QM core to form irrespective of the
maximal speed of sound attained; indeed, below the thick
red dashed curve in Fig. 7, no NSs contain QM cores of
any kind. At the same time, maximally massive stable
stars contain (typically large) quark cores unless the EoS
is truly extreme with c2s > 0.7 and a phase transition
strong enough to destabilize the star.
Finally, we find that if the maximal mass of NSs is

smaller than 2.25M�, the two most massive NSs known
to date may contain very large QM cores up to Rcore ⇡

7 km; in particular, if c2s < 0.4, then the 2M� NSs con-
tain at least a 3 km quark core. That the subconfor-
mal EoS predicts a large QM core to be present in the
known J1614�2230 and J0348+0432 NSs may open up a
phenomenological way of answering an open fundamental
problem in QCD concerning whether the speed of sound
exceeds the conformal bound: if there is no quark core
inside these two stars, then we know that the bound has
been violated in QCD matter.
The existence of massive quark cores in at least some

physical NSs—or that the nucleation of QM begins so
close to the maximum mass limit—may have interesting
observable consequences. In NS mergers, currently un-
der intense observational and theoretical scrutiny [71],
the core may lead to shock waves reflecting from the
QM-HM interface inside hypermassive NSs. This may be
particularly amplified, if the conformal limit is strongly
violated in the HM phase, leading to large di↵erences in
the speeds of sound between the two phases. In addition,
the onset of the transition may give rise to increased dis-
sipation in the form of a large e↵ective bulk viscosity that
may lead to an enhanced damping of the ringdown [72].
Importantly, both of these have the potential to lead to
observable e↵ects in NS merger GW signals and the as-
sociated kilonova explosions and gamma-ray bursts.

The existence of quark-matter core found to be a common feature of the allowed EoS 
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QCD thermodynamics I

In the grand canonical ensemble, the thermodynamical properties are

determined by the (grand) partition function

Z(T, V, µi) = Tr exp{− 1

T
(H −

∑

i

µiNi)}

where kB = 1, H is the Hamiltonian and Ni and µi are conserved
number operators and their corresponding chemical potentials.

The different thermodynamical quantities can be obtained from Z

P = T
∂ ln Z

∂V
, S =

∂(T lnZ)

∂T
, Ni = T

∂ lnZ

∂µi

Expectation values can be computed as

⟨O⟩ =
TrO exp{− 1

T (H −
∑

i µiNi)}
Tr exp{− 1

T (H −
∑

i µiNi)}

Frascati, May 2006 QGP and HIC – p.16

QCD thermodynamics I
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QCD thermodynamics II

In order to obtain Z for a field theory with Lagrangian L one normally
makes the change −it = 1/T , with this, the action

iS ≡ i

∫

dtL −→ S = −
∫ 1/T

0

dτLE

and the grand canonical partition function can be written (for QCD) as

Z(T, V, µ) =

∫

Dψ̄DψDAµ exp{−
∫ 1/T

0

dx0

∫

V
d3x(LE − µN )},

where N ≡ ψ̄γ0ψ is the number density operator associated to the
conserved net quark (baryon) number.

Additionally, (anti)periodic boundary conditions in [0, 1/T ] are imposed
for bosons (fermions)

Aµ(0,x) = Aµ(1/T,x) , ψ(0,x) = −ψ(1/T,x)

Frascati, May 2006 QGP and HIC – p.17

QCD thermodynamics II
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QCD thermodynamics III

In order to solve these equations

Perturbative expansion

αS(T ) small for large T −→ bad convergence, but some results

obtained.

Lattice QCD

Discretization in (1/T, V ) space

Contributions to Z are computed by random configurations of fields

in the lattice

Most of the results for µ = 0, results for small µ only recently
available.

Frascati, May 2006 QGP and HIC – p.18

QCD thermodynamics III
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First example: Equation of State (EoS)

Naïve estimation:Let’s fix µ = 0, the pressure of an ideal gas (of
massless particles) is proportional to the number of d.o.f: P ∝ NT 4. So,

Pπ ∝ 3 × T 4 ; PQGP ∝ (2 × 2 × 3
︸ ︷︷ ︸

quarks

+ 2 × 8
︸ ︷︷ ︸

gluons

) × T 4

So, one expects a large difference (factor ∼ 10) between the two

phases.
Lattice results (Karsch et al.)
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Frascati, May 2006 QGP and HIC – p.19

[MILC Collaboration 2006]

First example: EoS
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FIG. 4. Left:The pressure in the low temperature region. The lines correspond to HRG with distorted hadron spectrum (see
text). Right: the pressure in the entire temperature range. The horizontal lines correspond to the free theory result. Also
shown are the results for the pressure obtained with p4 action and Nτ = 6 or 8 [3, 4].
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FIG. 5. The pressure calculated with HISQ action for differ-
ent Nτ and corrected for cutoff effects. The filled squares are
the continuum results for the pressure. For comparison we
also plot the p4 results for the pressure corrected for cutoff
effects at high temperatures.

p(T ) = p(T,Nτ) + corr(T,Nτ ), (9)

where p(T,Nτ) is the pressure at fixed lattice spacing
(Nτ ) and

corr(T,Nτ ) = pq(T )

(

1−
pq(T,Nτ)

pq(T )

)

(10)

is the correction factor due to discretization errors. Here
pq(T ) stands for the quark pressure in the continuum
limit, while pq(T,Nτ ) is the quark pressure at non-zero
lattice spacing, a = (NτT )−1. If we assume that the

cutoff dependence of the quark pressure is the same as of
the second order QNS, χl

2, i.e.

pq(T,Nτ )

pq(T )
≃
χl
2(T,Nτ )

χl
2(T )

(11)

we can use the results of Ref. [19] to obtain the correction
provided we also have an estimate for continuum quark
pressure pq(T ). Lattice calculations show that the QCD
pressure is below the ideal gas limit by about 15% at
high temperatures. Therefore, the ideal quark pressure
provides a fair estimate for pq(T ). Thus, we have an esti-
mate for the correction. We apply this correction to the
pressure calculated for fixed Nτ . The results are shown
in Fig. 5. We see from the figure that the pressure bands
corresponding to different Nτ agree within errors, i.e. ap-
plying the corrections largely reduces the Nτ dependence
of the results. We also see that while the p4 results are
still higher than the HISQ results they agree within the
statistical errors of the latter. The cutoff dependence of
the pressure is understood because to a fairly good ap-
proximation it is given by the cutoff dependence of the
free quark gas. This is not the case for the cutoff depen-
dence trace anomaly, which would require a three-loop
calculation as mentioned in Section I.
Now, that the cutoff dependence of the pressure is un-

derstood we can proceed with the continuum extrapola-
tions. As discussed above at high temperatures the dom-
inant cutoff dependence of the pressure is given by the
cutoff dependence of the ideal quark gas, and therefore,
for improved staggered actions like HISQ it is expected
to scale like 1/N4

τ . This expectation is confirmed by the
study of QNS at high temperatures with HISQ action
[19, 20]. On the other hand at low temperatures the
dominant cutoff effects are due to taste-symmetry break-
ing of staggered fermions and scale like a2 ∼ 1/N2

τ . This
is also confirmed by lattice calculations [21]. We find
that the cutoff dependence of the pressure is incompati-

[notice that proportionality factors are different, Fermi/Bose-Einstein statistics]

[Bazavov, Petreczky, Weber 2018]
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FIG. 8. The pressure (left) and the entropy density (right) in the high temperature region compared with the weak-coupling
calculations. The filled symbols correspond to the continuum results obtained from lattice calculations on Nτ = 6, 8, 10 and
12 lattices. The open symbols correspond to continuum estimate (see text). The errors of the continuum estimate have been
enlarged by factor two to indicate additional systematic errors that might be present. The red line and the band correspond
to the three-loop HTL perturbation theory [22], the blue band corresponds to the resummed calculation in next-to-leading log
approximation (NLA) [23]. The width of the bands correspond to the scale variation from µ = πT to 4πT . Also shown is the
weak-coupling result obtained in EQCD [10].

.

results for the trace anomaly lie below this continuum es-
timate. However, if we re-scale the Nτ = 4 and 6 results
on the trace anomaly by factors 1.2 and 1.4, respectively,
they agree with the above continuum estimate for 800
MeV < T < 1000 MeV within errors. This is demon-
strated in Fig. 6. Therefore, to obtain a continuum es-
timate for the trace anomaly beyond T = 1000 MeV
we re-scale the Nτ = 4 and Nτ = 6 data for T > 1000
MeV with the above factors. Here we tacitly assume that
the cutoff dependence of the trace anomaly is tempera-
ture independent. This assumption, however, is quite
reasonable since the cutoff dependence at high temper-
atures should be described by weak-coupling expansion
and thus is proportional to a2 = 1/(NτT )2 times the
coupling constant to some power. Since the coupling
constant depends on the temperature scale logarithmi-
cally in a limited temperature interval the cutoff effects
should be approximately temperature independent. Our
study of the Nτ dependence of the pressure for T > 400
MeV confirms this expectation. The cutoff dependence
of the quark number susceptibilities [19, 20] and the free
energy of the static quark [15] also support this assump-
tion. Therefore, we perform a spline interpolation of the
combined Nτ = 12, 10, 8, 6 and 4 data in the temper-
ature interval 400 MeV < T < 2000 MeV. Because we
corrected the trace anomaly obtained on Nτ = 4 and
Nτ = 6 lattices we assign an additional systematic er-
ror of 20% and 40% to the corresponding data points
before the interpolation, i.e. the size of the systematic
errors that we assume is the same as the magnitude of
the correction. Using this interpolation we calculate the
integral of the trace anomaly from T = 660 MeV to 2000
MeV, which together with the continuum result for the
pressure at 660 MeV obtained above gives us the contin-

uum pressure estimate that extends to temperatures as
high as 2000 MeV. From the pressure we can also calcu-
late the entropy density. These calculations will be used
in the next section for the comparison with the weak-
coupling results. We also compared this continuum esti-
mate of the pressure with the one discussed before. For
T < 1330 MeV we find excellent agreement between the
two continuum estimates.
We note that our continuum result for T = 500 MeV

is one and a half sigma higher than the continuum result
of Ref. [7], while our continuum estimate for higher tem-
peratures is 5− 7% higher than the continuum estimate
of Ref. [6]. Our continuum result for the pressure for
T < 400 MeV agrees very well with the HotQCD result
[8] but has considerably smaller errors.

V. EQUATION OF STATE AT HIGH
TEMPERATURES AND COMPARISON WITH

WEAK-COUPLING CALCULATIONS

In this section we compare the lattice results on the
EoS with the weak-coupling calculations. We start our
discussion with the trace anomaly. In Fig. 7 we com-
pare our lattice results for the trace anomaly obtained
with Nτ = 8, 10 and 12 as well as the corrected re-
sults for Nτ = 4 and 6 (see previous section) with the
results of three-loop HTL perturbation theory [22]. We
see good agreement between the lattice results and the
results obtained in three-loop HTL perturbation theory,
although the error band of the latter is still quite large.
The lattice results on the trace anomaly agree very well
with the weak-coupling calculations based on dimension-
ally reduced effective field theory, the electrostatic QCD

[Plot from Bazavov, Petreczky, Weber 2018][Kajantie, Laine, Rummukainen, Schroder 2003]
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In order to know whether the change from a hadron gas to a QGP is a 
phase transition or a rapid cross-over order parameters are needed 

First order: discontinuity in the order parameter Second order: discontinuity in the derivativeCross-over: continuous function

Order parameters
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[Aoki et al 2006]

Order parameters in QCD I

[Let us fix µ = 0].

Chiral symmetry restoration. For mq = 0 the order parameter is the
chiral condensate

⟨0|q̄LqR|0⟩ ≠ 0 −−−−→
T→∞

⟨0|q̄LqR|0⟩ = 0

Frascati, May 2006 QGP and HIC – p.23

Chiral symmetry restoration: for 
chiral condensate is the order parameter

mq = 0
�m =

⇥

⇥mq
�q̄q⇥Susceptibility:

QCD order parameters I
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QCD order parameters II
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 even below Tc

Light     pair creation breaks the string q̄q

[Karsch, Laermann, Peikert 2001]

However…
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Two order parameters

Influence of the quark masses (µ = 0)

Two order parameters:

mq = 0 −→ Chiral condensate

mq = ∞ −→ Potential

For physical masses, most likely crossover.

Frascati, May 2006 QGP and HIC – p.26
For physical masses, all results indicate a cross over

Physical quark masses
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Quarkonia spectral functions
32
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FIG. 22. Finite temperature spectral functions for charmonium obtained from the standard BR method (colored solid) the
MEM (gray dashed) and the smooth BR method (dark gray solid) The top two rows contain the results for the 3S1 channel,
each panel showcasing a different temperature. The lower two rows on the other hand contain the 3P1 spectra.

In the charmonium P-wave channel the MEM at low
temperatures T < 185MeV shows a very similar behav-
ior to the smooth BR method, while starting to produce
more wiggly artifacts in the UV at higher temperatures.
We thus find a similar result among the two methods for
the disappearance of a well defined ground state struc-
ture at or above T = 185MeV.

The values for the melting temperatures found in this
study lie close to the values predicted by a tree level

pNRQCD computation based on a recently determined
complex heavy quark potential from the lattice [46, 48].
While this is encouraging from the point of view of
consistency between non-relativistic approaches, several
caveats are present. First of all, as mentioned, the def-
inition of the melting temperature in the two computa-
tions is different. Secondly, the discrepancy for the bot-
tomonium P-wave states indicates that the agreement
for charmonium P-wave may be simply accidental. And

Naively, all bound states are destroyed in deconfinement. Quarkonia should then 
disappear at high T [Matsui, Satz 1986]. The situation is, however, more complicated 

Different quarkonia states melt at different 
temperatures  
[some bound states survive transition]

Sequential suppression
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A possible picture of hot QCD

[Taken from Hatsuda, J/Ψ workshop BNL, May 2006]

Frascati, May 2006 QGP and HIC – p.47

A possible picture of hot QCD
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QCD and collectivity
Standard Model built/discovered looking for the highest possible degree of simplicity

All particle content and interactions of the Standard Model discovered using this principle  
— greatest success of the reductionistic approach in Physics 

Also very successful — Complex systems with emerging behavior 
[Strongly-coupling many body systems; quantum entanglement with many d.o.f…] 

Region of transition — largely unknown 
QCD — rich dynamical content, with emerging dynamics  

that happens at scales easy to reach in collider experiments

Best available tool to study the first levels of complexity

Equilibrium AND non-equilibrium dynamics
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High energy heavy ion collisions:

How do we extract QGP properties from data?

- QCD is an interesting theory, in part because an apparently simple Lagrangian hides a wealth of emerging phenomena as...
- phases of matter relevant for evolution the early Universe, some microseconds after de Big Bang or for neutron stars
- Some of these phenomena are related with symmetries which are broken in normal conditions but which can be restored at high temperatures and densities. In order to fulfill these conditions large energy 
densities need to be distributed in a macroscopic (in QCD scales) region. The LHC provide excellent conditions for the study of some of these phenomena with unprecedented precision by colliding heavy nuclei at 
the highest energies ever, reaching the TeV scales for the first time
The study of QGP motivated the experiments of high energy HICs. Today the scope is wider but the characterization of the medium properties is still one of the main goals

Exploring fundamental questions
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But also…
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 TAE 2024 - Benasque                                                                                                                                                                                                                              QGP and more… 36

In contrast to usual HEP, time and distance are relevant variables in heavy-ion collisions 
Building collectivity in extended (macroscopic) systems

Velocity fields 
fully developed
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PHOTONS AS PROBES OF THE QGP

2

Electromagnetic probes emerge from entire space time volume

Hadrons emerge from the freeze-out surface
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[Jean-François Paquet - talk at Initial Stages 2021] 

AuAu @ RHIC

IPGlasma KøMPøST Hydrodynamics
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(A possible)Time evolution of a HIC



Initial state is very DENSE
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Experimental data from ALICE in “centrality” and energy

Huge multiplicities for central PbPb collisions

Multiplicity of charged particles in Pb-Pb

9

• Multiplicity measured using charged tracks at mid-rapidity

• Energy dependence in line with expectation from lower energies

• Results in agreement with other experiments

Run 3

Abhi Modak 18/07/24, 09:55
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Initial conditions - Gluons saturate
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Color Glass Condensate 
Large occupation numbers - classical fields

Quantum Corrections - evolution eqs. 

`Bottom-up´ thermalization for over-occupied gluons

J. Berges

S
ören S

chlichting

Baier, Muller, Schiff, Son, PLB (2001) Evolution stages of initially over-occupied gluons:

Berges, Boguslavski, Schlichting, Venugopalan, PRD (2014); Kurkela, Zhu, PRL (2015); Keegan, Kurkela, 
Mazeliauskas, Teaney, JHEP (2016); Kurkela, Mazeliauskas, Paquet, Schlichting, Teaney, PRL (2019)

o talk by Aleksas Mazeliauskas

Color Glass Condensate provides a general 
framework to compute initial stages

This equation can be explicitly inverted in the light cone gauge

A− = −A+ = 0 (15)

We find

ψ− =
1√
2P+

γ0(̸Pt + M)ψ+ (16)

The fermion contribution to the action is therefore

SF = −ψ†
+P−ψ+ +

1

2
ψ†

+(M− ̸Pt)
1

P+
(M+ ̸Pt)ψ+ (17)

where we have rescaled ψ → 1
21/4ψ. In terms of these variables, we see that ψ†

+ is

the light cone momentum canonically conjugate to ψ+.

To analyze the vector contribution to the action, we first write explicitly

F 2 = F 2
t − 4Fk+Fk− + 2F+−F+− (18)

In light cone gauge, we have

F+− = ∂+A− − ∂−A+ − ig[A−, A+] = −∂−A+, (19)

Fk+ = ∂kA+ − ∂+Ak − ig[Ak , A+], (20)

and

Fk− = Ek = −∂−Ak (21)

The equations of motion for the vector field are

DµFµν = Jν (22)

In particular, the equation for the + component of the current is a constraint

equation for A− on a fixed x+ surface,

− ∂2
−A− = J+

F + DkE
k (23)

6
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A picture for equilibration`Bottom-up´ thermalization for over-occupied gluons

J. Berges

S
ören S

chlichting

Baier, Muller, Schiff, Son, PLB (2001) Evolution stages of initially over-occupied gluons:

Berges, Boguslavski, Schlichting, Venugopalan, PRD (2014); Kurkela, Zhu, PRL (2015); Keegan, Kurkela, 
Mazeliauskas, Teaney, JHEP (2016); Kurkela, Mazeliauskas, Paquet, Schlichting, Teaney, PRL (2019)

o talk by Aleksas Mazeliauskas
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`Bottom-up´ thermalization for over-occupied gluons

J. Berges

+

(I) (II) (III)

(I)

(II)

(III) AMY gluon kinetic theory:
Kurkela, Zhu, PRL (2015)

Kurkela, Mazeliauskas, 
Paquet, Schlichting, 
Teaney, PRC (2019)

Non-equilibrium towards hydrodynamics

Evolution of homogenous boost invariant system in QCD kinetic theory

pµ@µf(x, p) = C2$2[f ] + C1$2[f ]

Kurkela, Zhu PRL 115 (2015) 182301; Keegan,Kurkela,Mazeliauskas,Teaney JHEP 1608 (2016) 171; 
Kurkela, Mazeliauskas, Paquet, SS, Teaney  PRL 122 (2019) no.12, 122302; PRC 99 (2019) no.3, 034910 
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Classical fields Kinetic theory

Qs

psoft

Soft  
stabilization

Mini-jet 
parton shower

Initial production & 
 longitudinal squeeze

Soft 
radiation

⌧/⌧Hydro ⇠ 0.1 ⌧/⌧Hydro ⇠ 0.3 ⌧/⌧Hydro ⇠ 1

Kinetic equilibration ``bottom-up” via radiative break-up 8

[Arnold, Moore, Yaffe 2001; Kurkela, Zhu 2015; Keegan, Kurkela, 
Mazeliauskas, Teaney 2016; Kurkela Mazeliauskas, Paquet, 

Schlichting, Teaney 2019; Barrera, Salgado, Wu 2022…] 

Evolution of boost-invariant system with kinetic eqs.

[Bottom-up thermalization — Baier, Mueller, Schiff, Son 2001]

[Classical statistical/lattice gauge theory…] 



Most of the theoretical progress in the last years:
 Viscosity corrections and consistency 
 Fluctuations in initial conditions 
 Emergence of hydro from kinetic eqs, holography, etc…

Far from equilibrium initial state needs to equilibrate fast (~1 fm/c or less)
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+ initial time  
+ freeze-out 
temperature



EoS — high temperature
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A robust tool: Lattice QCD
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Figure S4: The QCD trace anomaly and pressure in the 2+1+1 and 2+1 flavor theories. We also give
the four flavor NNLO HTL result at high temperatures [S1].

S3.2 Charm mass threshold in the QCD equation of state

Thanks to the lattice data that we have generated, we can present non-perturbative results for the charm
quark contribution. It is instructive to study the inclusion of the charm quark in detail. This way we can
design an analytical technique for the inclusion of the bottom quark, for which the standard formulation
of lattice QCD is computationally not feasible.

The quark mass threshold for the charm quark entering the EoS has already been estimated in
Ref. [S61]. There, the e↵ect of a heavy quark was calculated to a low order of perturbation theory.
This e↵ect was expressed as a pressure ratio between QCD with three light and one heavy flavor and QCD
with only three light flavors. When that paper was completed the lattice result for the QCD equation of
state was not yet available, but the perturbative methods were already in an advanced state.

Despite the known di�culties of perturbation theory the estimate of Ref. [S61] is very close to our
lattice result if we plot the ratio of the pressure with and without the charm quark included. We show
our lattice data together with the perturbative estimate in Fig. S6.

Though the individual values for the 2+1+1 and 2+1 flavor pressures of [S61] are not very accurate,
their ratio describes well the lattice result. This is true both for the leading and for the next-to-leading
order results (See Fig. S6).

The tree-level charm correction is given by

p(2+1+1)(T )

p(2+1)(T )
=

SB(3) + FQ(mc/T )

SB(3)
(S8)

where SB(nf ) is the Stefan Boltzmann limit of the nf flavor theory, and FQ(m/T )T 4 is the free energy
density of a free quark field with mass m. In this paper we used the MS mass mc(mc) = 1.29 GeV [S68].

Order g2 in the ratio of Fig. S6 starts to be important correction below a temperature of about
2� 3TQCD

c temperature. Near 2Tc the di↵erence between the two approximations is 3%. The di↵erence
reduces to 0.2% at 1 GeV up to which point we have lattice data.

S3.3 Bottom mass threshold in the QCD equation of state

In the previous discussion we saw that even the tree-level quark mass threshold gives a correct estimate
for the equation of state. This allows us to introduce the bottom threshold along the same lines.

First, we remark that one can write the charm threshold relative to the 2 + 1 + 1 flavor theory:

p(2+1+1)(T )

p(2+1+1)(T )|mc=0

=
SB(3) + FQ(mc/T )

SB(4)
. (S9)
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Figure S4: The QCD trace anomaly and pressure in the 2+1+1 and 2+1 flavor theories. We also give
the four flavor NNLO HTL result at high temperatures [S1].

S3.2 Charm mass threshold in the QCD equation of state

Thanks to the lattice data that we have generated, we can present non-perturbative results for the charm
quark contribution. It is instructive to study the inclusion of the charm quark in detail. This way we can
design an analytical technique for the inclusion of the bottom quark, for which the standard formulation
of lattice QCD is computationally not feasible.

The quark mass threshold for the charm quark entering the EoS has already been estimated in
Ref. [S61]. There, the e↵ect of a heavy quark was calculated to a low order of perturbation theory.
This e↵ect was expressed as a pressure ratio between QCD with three light and one heavy flavor and QCD
with only three light flavors. When that paper was completed the lattice result for the QCD equation of
state was not yet available, but the perturbative methods were already in an advanced state.

Despite the known di�culties of perturbation theory the estimate of Ref. [S61] is very close to our
lattice result if we plot the ratio of the pressure with and without the charm quark included. We show
our lattice data together with the perturbative estimate in Fig. S6.

Though the individual values for the 2+1+1 and 2+1 flavor pressures of [S61] are not very accurate,
their ratio describes well the lattice result. This is true both for the leading and for the next-to-leading
order results (See Fig. S6).

The tree-level charm correction is given by

p(2+1+1)(T )

p(2+1)(T )
=

SB(3) + FQ(mc/T )

SB(3)
(S8)

where SB(nf ) is the Stefan Boltzmann limit of the nf flavor theory, and FQ(m/T )T 4 is the free energy
density of a free quark field with mass m. In this paper we used the MS mass mc(mc) = 1.29 GeV [S68].

Order g2 in the ratio of Fig. S6 starts to be important correction below a temperature of about
2� 3TQCD

c temperature. Near 2Tc the di↵erence between the two approximations is 3%. The di↵erence
reduces to 0.2% at 1 GeV up to which point we have lattice data.

S3.3 Bottom mass threshold in the QCD equation of state

In the previous discussion we saw that even the tree-level quark mass threshold gives a correct estimate
for the equation of state. This allows us to introduce the bottom threshold along the same lines.

First, we remark that one can write the charm threshold relative to the 2 + 1 + 1 flavor theory:

p(2+1+1)(T )

p(2+1+1)(T )|mc=0

=
SB(3) + FQ(mc/T )
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. (S9)

7

Equation of state at      =0 is rather well known by 
lattice at moderate temperature — reasonably good 

matching with perturbative at 

μB

T ≲ 1GeV
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[Included in hydro simulations]
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Harmonics: the golden measurement 
[simplified discussion]
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Page 2

Remember the Euler eqs. — and use conformal EoS                
Transverse plane 
of the collision

Initial state 
spatial 

anisotropies

Final state 
momentum 

anisotropies

@�

dt
= � c2

✏+ P
rP / �r✏

✏ = 3P

These final state momentum anisotropies are measurable, e.g.

43
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FIG. 6. (Color online) Flow coefficients in 200 GeV Au+Au (a), 2.76 TeV Pb+Pb (b), 5.023 TeV Pb+Pb (c), and 5.44 TeV
Xe+Xe (d) collisions. The experimental data are from the STAR [86, 87] and ALICE collaborations [88, 89].

v2{2} in 2.76 TeV Pb+Pb collisions while also repro-
ducing v2{2} in central to mid-central 200 GeV Au+Au
collisions. The most essential feature of the dynamical
freeze-out is that the smaller collision systems freeze out
earlier in the hadronic phase. This means that there
is less time for the initial state eccentricities to convert
to the momentum space anisotropies in peripheral colli-
sions. Indeed, as seen in Fig. 6, all pT -integrated flow
coefficients for the ⌘/s = dyn parametrization are sig-
nificantly smaller in peripheral collisions than the re-
sults of the ⌘/s parametrizations from the earlier works
that used a constant-temperature decoupling surface. As
can be seen from the comparison to measurements, the
⌘/s = dyn parametrization reproduces well the central-
ity dependence of all flow coefficients in all LHC collision
systems and clearly improves the results from the earlier
ones in peripheral collisions. The biggest discrepancy
with the data and the model calculation is the 40 � 80%
-centrality range in 200 GeV Au+Au collisions. In this

region especially the predictions for the flow coefficients
v3{2} and v4{2} are well outside of the error bars of the
measurements. There are multiple possible reasons for
this. First of all, due to the lower multiplicity in the
200 GeV Au+Au collisions it is reasonable to expect sig-
nificantly larger non-flow effects compared to the LHC
systems. Additionally, the �f -corrections to the parti-
cle spectra are much larger at RHIC than at LHC which
adds additional uncertainty to the RHIC results. Lastly,
we do not include any nucleon substructure [90], initial
flow or non-zero ⇡µ⌫ to our initial state model and ef-
fects of these modifications are still under investigation.
We note that other groups report very similar flow coeffi-
cients in peripheral RHIC collisions, see e.g. Refs. [19, 91]

The change in the magnitude of the flow coefficients is
quite modest from 2.76 TeV to 5.023 TeV Pb+Pb colli-
sions, and a better way to quantify the change is to plot
the ratio of the coefficients between the two collision ener-
gies. The ratio is also a more robust prediction from fluid

[Hirvonen, Eskola, Niemi 2022]
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C. Viscosity estimation and model accuracy for combined
RHIC & LHC data

Reviewing Figs. 4 and 5 we find that the observables at the
LHC give stronger constraints on the slope of the specific shear
viscosity at large temperature. It is the general expectation that
higher psNN collisions at the LHC are more sensitive to the
transport coe�cient at high temperature. This conclusion was
verified quantitatively in previous Bayesian parameter estima-
tion [24, 146]. For the present analysis, we do caution that we
currently use a di�erent number of observables at RHIC and
the LHC; consequently, we are not in a position to compare
systematically the constraining power of the two collision en-
ergies at the moment. We do expect RHIC and LHC data to
be complementary, and we proceed to a combined Bayesian
parameter estimation for Pb-Pb at psNN = 2.76TeV and Au-
Au at psNN = 200GeV collisions. For this combined anal-
ysis, the viscosity posterior for the Grad viscous correction is
shown in Fig. 6.

FIG. 6. The posterior for specific bulk (left) and shear (right) vis-
cosities resulting from a model parameter estimation using combined
data for Au-Au collisions at psNN = 200 GeV and Pb-Pb collisions
at psNN = 2.76 TeV.

As discussed in Section V A, all parameters are held the
same for the two systems except for their overall normaliza-
tions of the initial conditions — N [2.76 TeV] and N [0.2 TeV].
Recall that model parameters being kept constant does not im-
ply that the e�ective physical quantities are the same at RHIC
and the LHC. For example, the transport coe�cients are tem-
perature dependent, and the free-streaming time depends on
p
sNN and centrality through the total energy of the event.
The information gained by fitting both systems slightly re-

duces the width of the credible intervals for the specific shear
and bulk viscosities at temperatures above 250 MeV; the 90%
confidence band in the posterior for specific shear and bulk
viscosity is slightly smaller than the credible intervals given by
calibrating against either one of these two systems alone. This
illustrates the added constraining power accessed by combin-
ing the two data sets.

The simultaneous fit to experimental observables is shown
in Fig. 7, where we have plotted the emulator prediction for
the observables at one hundred parameter samples drawn ran-
domly from the posterior. Note that, in spite of some undeni-
able tension in the simultaneous fit of ALICE and STAR data

FIG. 7. The observables predicted by the Grad viscous correction
emulator, drawn from the posterior resulting from the combined fit
of ALICE data (left) for Pb-Pb collisions at psNN = 2.76 TeV and
STAR data (right) for Au-Au collisions at psNN = 200 GeV. The
simultaneous fit yields model observables which agree within ⇠20%
of experimental measurements.

(for example in the mean transverse momenta of kaons), our
hybrid model can describe simultaneously all of the observ-
ables we considered for the two systems to within 20% of the
experimental results. As discussed earlier, this is important:
our confidence in the significance of this section’s parameter
estimates rests on a good description of the experimental data
when sampling model parameters according to their posterior
probability distribution.

As a final emulator validation, we have calculated the Maxi-
mum A Posteriori (MAP) parameters of the Grad viscous cor-
rection model. Using these parameters, we simulated 5,000
fluctuating events and performed centrality averaging. The
comparison between the hybrid model prediction at the MAP
parameters and the experimental data are shown in Fig. 8, and
MAP parameters for the Grad, Chapman-Enskog and Pratt-
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Description of data and viscosity

16ICHEP 2022,  Bo logna,  I ta ly

SUMMARY

Flow measurements in CMS with
• Collision system size scan: PbPb, pPb, pp, γp collisions
• Particle species scan: Charged hadrons, strange/charm/bottom 
hadrons, Jets, Z boson

Charged 
hadron Strange Prompt

J/Ψ bà J/ψ Prompt 
D0 bà D0 Υ(1S/2S) Dijet Z boson

PbPb Yes Yes Yes Yes Yes Yes No Yes No

pPb Yes Yes Yes Yes No No

pp Yes Yes Yes

Do we see flow signals?

Shengquan Tuo ICHEP 2022



Hydro works in all systems from small to large ??
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3

v
2
 in UPC

● Nonzero v
2
 seen in γA collisions!

● Dominated by resolved photon interactions
● No direct control over initial photon energy

● Large range of effective collision energies 

● At higher Q2, can control kinematics and interaction process better
● Does v

2
 persist in DIS region?

See talk by B. Seidlitz yesterday

2

Introduction

pp pPb PbPb

p

p

● Origin of ridge in small systems still uncertain
● Initial state effect (CGC)
● Flowing mini Quark Gluon Plasma
● MPIs
● “Escape” mechanism

● Complications from complexity of hadronic events
● Hadron structure
● Gluon ISR
● Beam remnants

● Can we simplify the system?

Hydrodynamics seem to work (too) well in all colliding systems for large multiplicities
But time scales and occupancies in small systems are small 

For some classes of problems hydro equations have attractors 
[universal solutions, independent on initial conditions]

Hydro models able to describe the harmonics from these data

Hits of a ridge in (reanalysed) 
high multiplicity ALEPH data?

Yen-Jie Lee (MIT)

Hadronic e+e- Events at LEP 2 (Ntrk>=50)

17Two-Particle Correlation in e+e- Collisions at 91-209 GeV with Archived ALEPH Data 

!!!

Janice Chen

• A long-range near-side correlation signal 
shows up at high multiplicity

Yen-Jie Lee ICHEP2022

What does it mean?



Hard processes

:*
.

 Produced very early   — production computed in pQCD
 Many different probes and scales
 Jets are extended objects that evolve in times 

∼ 1/Q

1/Ejet < t ≲ 1fm/c
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Excellent
probes
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Hard processes in QCD
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JET

Parton Distribution Z}zgpF%f JETFunctions
@ goofed we

_

honor too
- we

Ñʰ {§ Hard Process

JET

dσAB→C+X

dpT
= fA

i (x1, μ2) ⊗ fB
j (x2, μ2) ⊗

d ̂σi,j→k

d ̂t
⊗ Dk→C(z, μ2)

When ,  
perturbative expansion of  possible

μ2 ≃ p2
T ≫ Λ2

QCD αs(μ2) ≪ 1
d ̂σ/d ̂t

JET
JET333ftParton Distribution qg§iÑFunctions we
_

honor too
Clee Initial

state
- he Radiationgun {Ey Hard Process confined

state

{ JET Radiation

ceeee Initial State Radiation
ceeee Final State Radiation

Non-perturbative contributions:  
PDFs  
Hadronization  

…but evolution is perturbative (DGLAP…)

fA
i (x, μ2)

Dk→C(z, μ2)

Short- and long-distance 
contributions factorize.



Quarkonia suppression
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 Simple intuitive picture [Matsui & Satz 1986] 

 Potential screened at high-T 
 Quarkonia suppressed 
 Sequential suppression of excited states 
 Quarkonia as a thermometer

Ágnes Mócsy: Potential Models for Quarkonia 5

Fig. 5. The QGP thermometer.

In principle, a state is dissociated when no peak struc-
ture is seen, but the widths shown in spectral functions
from current potential model calculations are not physi-
cal. Broadening of states as the temperature increases is
not included in any of these models. At which T the peak
structure disappears then? In [27] we argue that no need
to reach Ebin = 0 to dissociate, but when Ebin < T a state
is weakly bound and thermal fluctuations can destroy it.
Let us quantify this statement.

Due to the uncertainty in the potential we cannot de-
termine the binding energy exactly, but we can never-
theless set an upper limit for it [27]: We can determine
Ebin with the most confining potential that is still within
the allowed ranges by lattice data on free energies. For
the most confining potential the distance where deviation
from T = 0 potential starts is pushed to large distances
so it coincides with the distance where screening sets in
[12]. From Ebin we can then estimate, following [28], the
quarkonium dissociation rate due to thermal activation,
obtaining this way the thermal width of a state Γ (T ).
At temperatures where the width, that is the inverse of
the decay time, is greater than the binding energy, that is
the inverse of the binding time, the state will likely to be
dissociated. In other words, a state would melt before it
binds. For example, already close to Tc the J/ψ would melt
before it would have time to bind. To quantify the dissoci-
ation condition we have set a more conservative condition
for dissociation: 2Ebin(T ) < Γ (T ). The result for differ-
ent charmonium and bottomonium states is shown in the
thermometer of figure 5. Note, that all these numbers are
to be though of as upper limits.

In summary, potential models utilizing a set of poten-
tials between the lower and upper limit constrained by
lattice free energy lattice data yield agreement with lat-
tice data on correlators in all quarkonium channels. Due
to this indistinguishability of potentials by the data the

precise quarkonium properties cannot be determined this
way, but the upper limit can be estimated. The decrease
in binding energies with increasing temperature, observed
in all the potential models on the market, can yield sig-
nificant broadening, not accounted for in the currently
shown spectral functions from these models. The upper
limit estimated using the confining potential predicts that
all bound states melt by 1.3Tc, except the Upsilon, which
survives until 2Tc. The large threshold enhancement above
free propagation seen in the spectral functions even at high
temperatures, again observed in all the potential models
on the market, compensates for melting of states (yielding
flat correlators), and indicates that correlation between
quark and antiquark persists. Lattice results are thus con-
sistent with quarkonium melting.

And What’s Next?

Implications of the QGP thermometer of figure 5 for heavy
ion collisions should be considered by phenomenological
studies. This can have consequences for the understanding
of the RAAmeasurements, since now the Jψ should melt
at SPS and RHIC energies as well. The thermometer also
suggests that the Υ will be suppressed at the LHC, and
that centrality dependence of this can reveal whether this
happens already at RHIC. So measurements of the Υ can
be an interesting probe of matter at RHIC as well as at
the LHC.

The exact determination of quarkonium properties the
future is in the effective field theories from QCD at finite
T. First works on this already appeared [14] and both real
and imaginary parts of the potential have been derived
in certain limits. In these works there is indication that
most likely charmonium states dissolve in QGP due ther-
mal effects, such as activation to octet states, screening,
Landau-damping.

The correlations of heavy-quark pairs that is embedded
in the threshold enhancement should be taken seriously
and its consequences, such as possible non-statistical re-
combination taken into account in dynamic models that
attempt the interpretation of experimental data [24].

All of the above discussion is for an isotropic medium.
Recently, the effect of anisotropic plasma has been con-
sidered [29]. Accordingly, quarkonium might be stronger
bound in an anisotropic medium, especially if it is aligned
along the anisotropy of the medium (beam direction).
Qualitative consequences of these are considered in an up-
coming publication [30]. Also, all of the above discussion
refers to quarkonium at rest. Finite momentum calcula-
tions are under investigation. It is expected that a moving
quarkonium dissociates faster.
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Quarkonia probe initial temperature  

Suppression ordered  
by binding energy  

12 

PRL107 (2011) 052302, JHEP 05 (2012) 063 
PRL109 (2012) 222301, CMS-PAS-HIN-12-014 
CMS-PAS-HIN-12-007,  CMS-PAS-HIN-12-001 

Dynamical picture: 
 different effects:  

 screening / rescattering / recombination 
 Induced transition between quarkonia states 

Quarkonia as an open quantum system

[Bambrilla, Soto, Escobedo, Vairo, Ghiglieri, Petreczky, Strickland, Blaizot, 
Rothkopf, Kaczmarek, Asakawa, Katz, Gossiaux, Kajimoto, Akamatsu, Borghini …]

We have compared the best fit of the properly derived
Gauss law expression to that obtained with the legacy
formulation of [29]. Within the combined statistical and
systematic errors, both satisfactorily reproduce the lattice
data. That is, the uncertainty in the available values of ReV
does not yet allow us to favor one over the other. We note
that the two best fit solutions start to deviate from each other
for r≳ 0.6 fm (the QGP phase), leading to differences in
their asymptotic values. This in turn translates into quanti-
tative differences in the precise temperature dependence of
the open-heavy flavor threshold and thus the binding energy
of the in-medium quarkonium states. It will require future
high precision lattice determinations of ReV to distances up
to r ∼ 1 fm) to resolve this phenomenologically relevant
ambiguity.

E. Extension to a running coupling

In anticipation of upcoming high resolution lattice QCD
computations of the in-medium heavy quark potential, it is
prudent to consider the effects of a running coupling in the
Gauss law parametrization. While in the simulation data
deployed in the previous section the short distance regime
was still well described by a naive Cornell potential, more
recent lattice studies of heavy quark interactions [42] have
shown that at shorter resolved distances the running will
manifest itself. Thus we consider the strong coupling

parameter of our Cornell potential to become a function
of distance α̃s → α̃sðrÞ and write

α̃sðrÞ ¼ $ $ $ þ α̃ð−1Þs

r
þ α̃ð0Þs þ α̃ð1Þs rþ α̃ð2Þs r2 þ $ $ $ : ð34Þ

Note that in the context of the vacuum potential in Eq. (4),
we have already implicitly included the terms α̃ð1Þs and α̃ð2Þs
by absorbing them into the other vacuum parameters.
In a thermal setting, this would necessitate including ra

terms other than a ¼ −1; 1 in the formulation of the in-
medium potential. To do this, we must use the generalized
Gauss law operator Ga given in the left-hand side of Eq. (8),
but with a modified right-hand side that includes the real-
space complex permittivity (following the procedure in
Sec. II A)

−
1

raþ1
∇2VðrÞ þ 1þ a

raþ2
∇VðrÞ ¼ 4πqε−1ðr;mDÞ: ð35Þ

With the real space expressions given in Eqs. (13) and (14),
a computer algebra program will give a general solution for
general a as follows:

ReVaðrÞ ¼ c0 þ ca
ra

a

−
q

ðmDÞa
½Γða;mDrÞ þ Γð1þ a;mDrÞ'; ð36Þ

TABLE II. Results for the in-medium potential parameters.

β 6.8 6.9 7 7.125 7.25 7.3 7.48

T=Tc 0.86 0.95 1.06 1.19 1.34 1.41 1.66
mD=

ffiffiffi
σ

p
0.153(13) 0.403(33) 0.537(42) 0.769(56) 1.062(72) 1.081(72) 1.297(79)

mD=T 0.473 1.143 1.401 1.818 2.273 2.229 2.334

FIG. 2. (Left) The real part of the Gauss law model fitted to lattice QCD results. The three vacuum parameters are determined from
T ¼ 0 lattice data (gray). The finite temperature lattice data (colored points) are reproduced by tuning themD parameter. Solid lines give
the best fit results and the shaded regions the corresponding errors that arise from uncertainty both in the initial lattice data and in our
vacuum parameters. (Right) Prediction of the in-medium imaginary part from the Gauss law model (solid lines) fixed by the values of
mD obtained from ReV. Tentative lattice QCD results for ImV show excellent agreement.

IMPROVED GAUSS LAW MODEL AND IN-MEDIUM HEAVY … PHYS. REV. D 101, 056010 (2020)

056010-9

[Lafferty, Rothkopf 2020]
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Quarkonia suppression
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Recent Experimental Results on Heavy Quarkonia in QGP 14 / 36

Bottomonia in PbPb Collisions at LHC

Contributions from regeneration e↵ects expected to be much weaker for ⌥ states

z LHC measurements of ⌥(1S) RAA much more suppressed than J/ RAA

z Bottomonia shows little dependence on pT compared to ALICE charmonia results
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Recent Experimental Results on Heavy Quarkonia in QGP 13 / 36

J/ in AA Collisions at RHIC (LHC)

STAR J/ mid-rapidity RAA shows stronger suppression than ALICE mid-rapidity results

z Regeneration e↵ects modify charmonia measurements at LHC energies

At RHIC energies, regeneration not as significant ! J/ flow consistent with zero
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Recent Experimental Results on Heavy Quarkonia in QGP 13 / 36

J/ in AA Collisions at RHIC (LHC)

STAR J/ mid-rapidity RAA shows stronger suppression than ALICE mid-rapidity results

z Regeneration e↵ects modify charmonia measurements at LHC energies

At RHIC energies, regeneration not as significant ! J/ flow consistent with zero
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Bottomonia
sequential suppression

Charmonia
Mass is small enough so that many charm 

quarks are produced and almost thermalize. 
Charmonia is “regenerated” 



Jets are extended objects - ideal to study space-time evolution
50 TAE 2024 - Benasque                                                                                                                                                                                                                              QGP and more…



e+e− → qq̄

ht
tp

s:
//g

sa
la

m
.w

eb
.c

er
n.

ch
/g

sa
la

m
/p

an
sc

al
es

/v
id

eo
s.

ht
m

l

Initial particles in yellow 
Intermediate particles in blue 

Final particles in red
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[details in the web page]
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Remember 
the jets

The size of the 
medium is ~10fm

https://gsalam.web.cern.ch/gsalam/panscales/videos.html


4 

How to measure if a probe is affected by the medium? 

RAA = ratio between the production yield in PbPb and the production yield in pp, 
normalized by the number elementary collisions  

RAA = σpp × TAA 

NAA 

TAA= overlap nuclear function 
Estimated with Glauber model 

) [GeV]
T

 (m
T

p
1 10 210
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R

0
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2

2.5
-1bµ L dt = 7-150 ∫ = 2.76 TeV  NNsCMS  *PRELIMINARY  PbPb 

*Z  (0-100%) |y| < 2
| < 2.1µη, |  > 25 GeV/cµ

T
W  (0-100%) p

| < 1.44ηIsolated photon  (0-10%)  |
| < 1ηCharged particles  (0-5%)  |

| < 2.4η  (0-100%)  |ψ J/→*B 
| < 2η*Inclusive jet  (0-5%)  |

| < 2η*b-jet  (0-10%)  |
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Particles traversing the QGP

52

[A. Florent - Hard Probes 2013] 

Page 6

Page 6

RAA =
dNAA/dpt

hNcollidNpp/dpt

Medium-modification factor

 — no effectRAA → 1

Color-less particles 
RAA ∼ 1

Colored particles 
RAA < 1

Energy-loss (mainly radiation)



Fig. 3. (Colour online) Structures of jet-induced medium response in (a) Coupled Jet-Fluid model, (b) Coupled LBT-Hydro, (c) LBT
model, and (d) BAMPS. Adapted from Refs. [26, 27, 35, 9].

Fig. 4. (Colour online) Nuclear modification factor for jet shape function in central Pb+Pb collisions at 2.76 A TeV from (a) Coupled
Jet-Fluid model, (b) LBT model, (c) MARTINI, and (d) JEWEL. (a), (c), and (d) are the results for inclusive jet, and (b) is the result
for γ-jet. Adapted from Refs. [26, 35, 22, 36].

with hydrodynamic medium response and from LBT with recoils are shown in Fig. 5. The contribution of
the hydrodynamic medium response in Fig 5 (a) becomes larger by increasing the value of r and finally
dominates the jet shape in the large-r region (r > 0.5). The result with the hydrodynamic medium response
provides a good description of the experimental data from CMS [37]. The recoil contribution in Fig 5 (b)
shows the similar behavior and significantly broadens the jet shape in a wide range of r.

The jet broadening due to the medium response effect can be seen also in the cone-size dependence of
jet energy loss. Shown in Figure 6 (a-1) is the average pjet

T loss from Coupled Jet-Fluid model. The amount
of the pjet

T loss with the hydrodynamic medium response is smaller than that without the hydrodynamic
medium response. The similar recovery of jet energy is shown in the results from LBT model with the
recoil effect [Fig. 6 (a-2)]. We can also see the increase of the cone size dependence due to the contribution
of the hydrodynamic medium response in Fig. 6 (a-1): large jet cones catch more energy and momentum
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Fig. 5. (Colour online) Jet shape function in central Pb+Pb collisions at 2.76 A TeV for (a) subleading jet in dijet events from Coupled
Jet-Fluid model, and for (b) γ-jet from LBT model. Adapted from Refs. [26, 20].

Y. Tachibana / Nuclear Physics A 982 (2019) 156–162 159
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In-medium parton propagation
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Scattering amplitudes

54
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Intra-jet color coherence
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QCD antenna - classical calculation including color coherence [angular ordering]
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Vacuum-like emissions
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Hard splittings with small formation time  cannot be resolved by the medium
First hard splitting + DLA — most of the cascade is vacuum-like (with energy loss on top)

tf ≪ td
3
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FIG. 1. Schematic representation of the phase-space available
for VLEs, including an example of a cascade with “1” the last
emission inside the medium and “2” the first emission outside.

(ii) First emission outside the medium The gluons
produced inside the medium are not yet on-shell: their
virtualities are as large as their transverse momenta,
themselves bound by the multiple scattering inside the
medium: k2? �

p
!q̂ � ⇤2, with ⇤ the QCD confine-

ment scale. These partons will thus continue radiating,
but their next VLE must occur outside the medium, with
a large formation time 2/(!✓2) � L, i.e. with an energy
! ⌧ !L(✓) ⌘ 2/(L✓2). This implies the existence of a
gap in the energy of the VLEs, between the lower limit
!0(✓) on the last gluon emitted inside the medium, and
the upper limit !L(✓) on the first gluon emitted outside
the medium. Since !0(✓) = !L(✓) = !c for ✓ = ✓c the
gap exists only for ! < !c, as shown in Fig. 1.

No angular ordering. Besides the gap in the phase-
space, the medium has another important e↵ect: the first
emission outside the medium can violate angular order-
ing. (A similar idea appears in [18].) Indeed, all the in-
medium sources with ✓ � ✓c satisfy tcoh(✓) ⌧ L and thus
lose color coherence after propagating over a distance L
in the medium. These sources can then radiate at any
angle.2 On the contrary, the sources with angles smaller
than ✓c (hence ! & !c; see Fig. 1), are not a↵ected by
the medium. They behave as if they were created outside
the medium and can radiate only at even smaller angles.

Energy loss after formation. After being created in-
side the medium via VLEs, the partons cross the plasma
over a distance of order L and hence lose energy via
medium-induced radiation — essentially, as independent
colour sources. Whereas this is the main mechanism for
the energy loss by the jet as a whole, it is less impor-
tant for the jet fragmentation. Indeed, the typical gluons

2 Notice the di↵erence in this respect between in-medium sources
emitting inside or outside the medium.

produced via medium-induced radiation are soft, with
! . ↵̄2

s!c. Via successive democratic branchings [4, 5],
they transfer their energy to many very soft quanta prop-
agating at large angles ✓ > ✓qq̄ [19–21]. Hence, such emis-
sions do not matter for the particle distribution inside
the jet.3 Furthermore, they do not significantly a↵ect
the sources for VLEs: the energy loss is important only
for the sources in a small corner of the phase-space, at
low energies ! . ↵̄2

s!c and large angles, ✓2 & (1/↵̄3
s)✓

2
c ,

cf. Eq. (1). We have checked that the e↵ect of introduc-
ing a lower limit ↵̄2

s!c on the energies of the VLEs is
numerically small. A complete phenomenological picture
of jet evolution in the medium would include medium-
induced emissions but, since they go beyond our current
level of approximation, we leave this for future work.
(iii) Emissions from sources created outside the

medium. After a first emission outside the medium, the
subsequent emissions follow, of course, the usual pattern
of vacuum-like cascades, with angular ordering (and en-
ergy ordering in our DLA approximation). The evolution
stops when the transverse momentum k? ' !✓ becomes
comparable to the hadronisation scale ⇤. This implies a
lower boundary, ! & !⇤(✓) ⌘ ⇤/✓, on the energy of the
produced gluons, shown in Fig. 1 together with the other
boundaries introduced by the medium. The most inter-
esting region for gluon production — the most sensitive
to medium e↵ects highlighted above — is the “outside
medium” region at energies ! < !c.
Gluon distribution. Within the present approxima-

tion, it is straightforward to compute the gluon distri-
bution generated by VLEs. To that aim we compute the
double di↵erential distribution,

T (!, ✓) ⌘ !✓2
d2N

d!d✓2
, (4)

which describes the gluon distribution in both energies
and emission angles. Consider a point with coordinates
(!, ✓) outside the medium. A generic contribution to
T (!, ✓) can be expressed as the product of a vacuum-like
cascade inside the medium, up to an intermediate point
(!1, ✓1), followed by a first emission outside the medium,
from (!1, ✓1) to (!2, ✓2) and, finally, by a genuine vac-
uum cascade, from (!2, ✓2) to the measured point (!, ✓).
This particular contribution yields (at large Nc)

T (!, ✓) = ↵̄s

Z ✓2
qq̄

✓2
c

d✓21
✓21

Z E

!0(✓1)

d!1

!1
Tvac(!1, ✓1|E, ✓qq̄)

Z min( 2
!L ,✓2

qq̄)

✓2

d✓22
✓22

Z min(!1,!L(✓2))

!

d!2

!2
Tvac(!, ✓|!2, ✓2) ,

(5)

3 One can show more rigorously that medium-induced emissions do
not matter at DLA. However, we believe our physical argument,
based on angular separation, to be more insightful.
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Color coherent sub-jets provide organizational principle for in-medium cascade
[Casalderrey-Solana, Mehtar-Tani, Salgado, Tywoniuk 2012]
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Medium-induced radiation
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[Zakharov, Baier, Dokshitzer, Mueller, Peigne, Schiff, Wiedemann, Gyulassy, Levai, Vitev, and many others… starting in the mid-90’s] 

For fluctuation with  the gluon is 
resolved: medium-induced radiation  

tf ∼ td
[Balizot, Dominguez, Iancu, Mehtar-Tani 2013; Jeon, Moore 2005]

: democratic branchingtf ∼ td ≪ L

Jet RAA for  different medium profiles

Does the media behave differently for rapidity ? S. P. Adhya, C. Salgado, M. 
Spousta, K. Tywoniuk, 
EPJC 82 (2022) 1.

Multi- partonic cascades

Rapidity ratio with respect to |y| for different 

medium profiles 

No

�

�

�
�

�
��

�

�
�

�
��

�

�
�

�
��

�

�
�

�
��

�

�
�

�
�

� ������ (����)	 
�� = ��
� ����

� ������	 
�� = ���� ����

� ����	 
�� = ���� ����

� ��	 �� = ��
 ��	 
�� = 
�� ����

� ��	 �� = 
�� ��	 
�� = 
�� ����

������ � �� = ��	
 ���� 	-
	%�
�
� ��� < �� < ��
 ���

��� ��� ��� ��� ���
���

���

���

���

��	

���

���

���

|y|

R A
A
y
/R
A
A
y
<
0.
3

������ (����)	 
��
+���	 ��� = ���� ����

������	 
��
+���	 ��� = ��� ����

����	 
��
+���	 ��� = ���� ����

��	 
��
+���	 ��� = ��� ����

�����  ��

��� ��� ��� ��� ����
���

���

���

���

���

���

pT [GeV]

R A
A

(on VLE) : YM-T, KK, PRD 98, 051501(R).

 /1910

Probabilistic treatment: 
In-medium parton shower

tan (§qy-113
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K(t0, z; t,y) =
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For fluctuation with   
LPM suppression  
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A picture of in-medium jets
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[Casalderrey-Solana, Mehtar-Tani, Salgado, Tywoniuk 2012]

scr,t=e¥Hᵗ&rYt¥÷ᵈʰEi: rlt)=0t⇒ 0-5 ¥+3
Keke Resolution power

A-~¥t=¥s0-70-0

Color coherence provides a clean picture of parton shower in medium 
Medium induced radiation by subjets defined by resolution scale of the medium

Inner core of the jet 
(subjet) is mildly modified  

Medium-induced radiation 
at large angles

Subjets are effective emitters
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First ~3ys…
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Figure 3: (Color online) (a) RAA(pT ), (b) vSP2 (pT ), (c) vSP3 (pT ) for the 20–30% centrality class of
p
sNN = 2.76 TeV

Pb-Pb collisions at the LHC compared to their respective experimental data [34, 57–59]. The blue solid, ⌧q = 0 fm,
dotted green, ⌧q = 0.197 fm, and dashed-dotted purple, ⌧q = 0.572 fm, lines correspond, respectively, to Cases i), ii) and
iii) of the early times treatment. DSS07 [48] FFs and Tq = Tchem = 175 MeV are used.

out strongly suppressing the energy loss for the
first ⇠ 0.6 fm after the collision. This work clearly
shows that exploiting the versatility of jet quench-
ing to access di↵erent time-scales o↵ers unique
possibilities to improve our understanding of the
initial stages in heavy-ion collisions, and is ex-
tendable from large to small systems.
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Appendix A. Additional checks

Di↵erent centralities:. We have investigated the
e↵ect of the cut in time for di↵erent centrality
classes. The results for RAA(pT ) and vSP

2 (pT )
for the 0–10% and 40–50% centrality classes of

p
sNN = 2.76 TeV Pb-Pb collisions at the LHC

are shown, respectively, in Fig. A.1 and Fig. A.2.
For both centrality classes, we consider again the
three early times extrapolations: ⌧q = 0 fm,
⌧q = 0.197 fm and ⌧q = 0.572 fm, taking DSS07
[48] FFs and Tq = Tchem = 175 MeV. The cor-
responding central values of the K-factor are, re-
spectively, 2.12, 2.79 and 4.12 for the 0–10% cen-
trality class and 2.14, 3.10 and 5.27 for the 40–
50% centrality class, in line with the findings in
[38]. The improvement in the description of v2
with increasing ⌧q is manifest.

Energy loss modeling:. We have examined the ef-
fect of using a di↵erent energy loss model. Within
the same formalism of the QWs, we have changed
the approximation used to compute the radiation
spectrum from multiple soft scatterings to a sin-
gle hard scattering, that is, the N = 1 opacity
limit (taking R̄ = R/3 and !̄c = !c/3, see [35]
and also [24]). Note that the perturbative tails
largely di↵er between these two approximations.
We show in Fig. A.3 the results for RAA(pT ) and
vSP
2 (pT ) for the 20–30% centrality class of

p
sNN =

2.76 TeV Pb-Pb collisions at the LHC in the sin-
gle opacity approximation, together with the ones
in the multiple soft scattering approximation for
⌧q = 0 fm, ⌧q = 0.197 fm and ⌧q = 0.572 fm (us-
ing DSS07 [48] FFs and Tq = Tchem = 175 MeV).
The corresponding central values of the K-factor
for the the N = 1 opacity curves are 2.80, 3.80
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Main question - can we access the initial stages with jet quenching?
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The gaussian approximation, correct in the asymptotically large number of scatterings, neglects the 
perturbative, power-law, tails of the individual elastic cross section. Including them has been technically 
difficult as no analytic solution of the path integrals exists. The main advantage of the opacity expansion is 
that these perturbative tails are easily included, but only reduced number of terms, often only one, is included 
in the series. Interestingly, the gaussian approximation is valid in strongly couple systems with no 
quasiparticles, computed using the AdS/CFT correspondence [‑ ], while the presence of perturbative tails 24
would indicate quasiparticles in the QGP. Proposals to identify (large angle) Molière scattering to look for 
the scale in which a quasiparticle description of the QGP is valid have been put forward [‑ ], although no 25
experimental data have been able to find this behaviour yet.  
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performed such an analysis of experimental data from RHIC and LHC at different centralities [‑ ] with an 27
unexpected result: by fitting the K-factor for each energy and centrality we obtain different results for 
different energies but these results are nearly independence of centrality. This result is very puzzling, as 
naively there is an overlap of medium thermal properties (temperature or energy density) in central RHIC 
AuAu collisions and semi-peripheral LHC PbPb collisions — see Fig. 1. Taken at face value, this result 
would indicate that the jet quenching parameter does not simply depend on the local properties of the 
medium. Similar results has been obtained in basically all studies of data that assume a local and 
monotonous dependence of  the medium parameter with the medium properties [‑ ]. Another long-standing 28
puzzle of jet quenching data is the small value of !  when comparing jet quenching calculations to data. 
Different solutions have been proposed but all of them require either a delay time for the interaction of the jet 
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There is, at present, no consensus on the interpretation of these findings, but they seem to be very generic of 
any implementation of energy loss. Both interpretations, a delay effect in the energy loss of the jet in the 
medium or a non trivial temperature dependence demonstrate the power of jet quenching measurements to 
study the time-evolution of the medium. In technical terms, both imply that the simple procedure described 
above to perform the medium averages needs a profound reformulation. 
In a recent paper [‑ ] in collaboration with Liliana Apolinário, Guilherme Milhano and Gavin Salam, we 31
presented a proof-of-concept to show how jet quenching measurements can be used as a chronometer of the 
medium evolution. For that we studied the hadronically-decaying W bosons, in particular in events with a 
top-antitop quark pair. The corresponding chain of decays ( ! ) provide the unique feature of a 
time delay between the moment of the collision and that when the W-boson decay products start interacting 

tform ≪ L
P(ΔE )

̂q
̂q = K ̂qideal

̂qideal ≃ 2 ϵ3/4

ϵ
K

v2(pt)

̂q
Tc

t → W → qq̄

Page !  of !4 19

Fig.2 (Left) Energy density distribution in a typical event in hydrodynamical approaches for two different times, ~0.2 
fm and ~1 fm. (Right) effect on v2 for single inclusive hadrons of a delay in the time in which the jet starts to interact 
with the medium. 
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Initial stages (thermalisation period) affect jet quenching -  
Opens completely new possibilities - study early times with jet observables
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A yoctosecond chronometer 
[late times]

60

Can we more directly measure the space-time development with jet observables? 

Boosted tops
Difficult with LHC PbPb luminosity - lighter ions?  

Charm/Bottom quarks? [Attems, et al 2022]
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when using zcut = 0.1. The distribution is shown as a func-
tion of log10(τform), and the inset shows the distribution on
linear-log scale.

unclustering step with τform > 3 fm/c. We make this
selection in JEWEL (PbPb) and JEWEL (pp) events to
obtain the leading jet transverse momentum spectrum
in both cases. The corresponding medium-over-vacuum
ratio (nuclear modification factor,RAA, for leading jets)
is shown in Fig. 13. For reference, we also include the
inclusive leading jet ratio, in solid back. The purple lines
refer to reclustering with τ algorithm for late (solid line)
and early (dashed line) jets, while the orange refers to
the C/A algorithm. For reference, we also include the
results directly read from the parton shower, in green.
There is a clear difference in the leading jet suppression
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Fig. 13 JEWEL nuclear modification factor of leading jets.
The jets reclustered with τ (C/A) algorithm are shown in
purple (orange) when selecting the first groomed uncluster-
ing step with τform > 3 fm/c (τform < 1 fm/c) in solid
(dashed) lines. For reference, we add the results when read-
ing the τform from the Monte Carlo parton shower in green,
and the inclusive spectrum in solid black.

when, instead of using the full sample, we select jets
whose fragmentation starts shortly after its production.

These jets are, as expected, strongly suppressed, and
both C/A , and τ algorithms provide similar results.
Taking the results from section 3, we do not expect
to see much deviations between the two. However, as
we move towards late times, the two algorithms show
some differences. In particular, if we use τ to reclus-
ter the jet particles, the obtained RAA is compatible
with 1. As discussed earlier, these jets have a hard frag-
mentation pattern and are therefore not so susceptible
to modifications due to medium interactions as those
with a soft fragmentation, and thus early first split-
ting. In particular, the late jets consist of only one ef-
fective colour charge with high momentum (in this case
∼ 300GeV) for the first 3 fm of the evolution. This ob-
ject loses little energy through elastic scattering, and,
when it finally splits, the medium density is already di-
luted (ϵ < 5 GeV/fm3 for the medium settings used
here and the simple medium model). At relatively low
pT , both algorithms yield a similar difference with re-
spect to the Monte Carlo truth (one suppressed, the
other enhanced), but at high pT , the results using the
τ algorithm approaches the Monte Carlo. This is in line
with the observations of the previous section.

When medium recoils are considered, we see the
same behaviour, see Fig. 14 (same colors and line set-
tings as in Fig. 13). The early (and inclusive) leading
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Fig. 14 JEWEL nuclear modification factor of leading jets
when recoils are considered. The jets reclustered with τ
(C/A) algorithm are shown in purple (orange) when select-
ing the first groomed unclustering step with τform > 3 fm/c
(τform < 1 fm/c) in solid (dashed) line. For reference, we
added the the results when reading the τform from the Monte
Carlo parton shower in green, and the inclusive spectrum in
solid black.

jet RAA are now slightly larger, as part of the energy
is recovered by the presence of recoils. Both recluster-
ing algorithms continue to yield the same results. How-
ever, for late jets, there are sizable differences between
the two reclustering algorithms. The difference between

New time reclustering algorith
Very promising

[Apolinario, Cordeiro, Zapp 2021]



We have made an analysis of existing data on jet quenching, including CuCu
and AuAu data at 200 GeV [58, 59], PbPb at 2.76 TeV [60, 61, 62], PbPb at 5.02
TeV [63, 64], and XeXe data at 5.44 TeV [65]. For each centrality and energy con-
sidered a fit is made to the nuclear modification factor Rh

AA using fl0 as the single
unknown parameter. To determine the initial temperature of each analyzed col-
lision system, energy and centrality we used ‘·0 Ã T 3

0 measurements, when
available, and extrapolated the relation ‘·0 ƒ (8.85 ± 0.44) ◊ (Ôsnn)0.33±0.02

GeV2/fm for the most central collisions between Ô
snn = 27 GeV-2.76 TeV,

when measurements have not yet been made available [66, 67]. We then fix as a
reference the most central PbPb collisions at Ô

snn = 2.76 TeV to a temperature
of T0 ƒ 470 MeV [68] and ·0=0.6 fm. This temperature then fixes with a single
setup all the parameters in the analysis, whose temperature dependence was ex-
plained in the last paragraphs, except fl0, which is taken as the free parameter
for each centrality, energy and collision system.

As a first example, fitting the most central PbPb collisions at Ô
snn = 2.76

TeV yields fl(·0) ƒ 56 fm≠3. The fit for this example case is shown in Fig.2,
where we plot Rh

AA as a function of pt for three centrality classes and include
in the caption the numerical values of the QGP parameters obtained for the
most central data. The initial density is found to scale roughly proportional to
N1/2

part Ã T 3
0 at fixed collision energy. At the largest RHIC energies Ô

snn = 200
GeV in the most central AuAu collisions the initial temperature extracted from
the energy density measurements yields T0 ƒ 362 MeV and the density obtained
in the fit fl(·0) ƒ 21 fm≠3.
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Figure 3: QGP transport parameter q̂ for a gluon of Ê=10 GeV, using the density extracted

from an all order (green squares) or a fist order (yellow squares) jet quenching analysis of same

data as Fig. 3. Also shown is the q̂ assuming fl = p/T 4
from lattice predictions of the QCD

Equation of State [69] (green band), and the CUJET (blue) and MARTINI (purple) puzzles

found in [13].

Our results on the fitting parameter fl scale roughly constant with T 3, in
agreement with expectations. The same analysis using the single hard approx-
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Figure 4: QGP density extracted from All N (purple symbols ) and N = 1 (green symbols)

analyses of the Rh
AA collected data on collisions of CuCu (pentagons) and AuAu (down trian-

gles) at
Ô

snn =200 GeV, PbPb at
Ô

snn=2.76 TeV (squares and circles), PbPb at
Ô

snn=5.02

TeV (up triangles) and XeXe at
Ô

snn=5.44 TeV (diamonds) from PHENIX, ALICE and

CMS Collaborations, compared to lattice results of the Equation of State by the Wuppertal

collaboration [69].
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Information about the medium properties usually encoded in the jet quenching parameter ̂q
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Agreement with cross sections from thermal-QCD — resummation of multiple scatterings needed



medium-induced asymmetries in realigned jet samples, similar to the analysis
of elliptic flow in realigned event samples [47, 48]. In addition, however, the
kT -ordering of the DGLAP parton shower implies that the first parton split-
ting in the shower contains significantly more transverse momentum than the
second, thus leading to a dynamical asymmetry in the η×φ-plane. Both effects
lead to a symmetry breaking in a random direction in the η × φ-plane - thus
rotational symmetry is restored in sufficiently large jet samples. To search for
symmetry breaking effects caused by collective motion in η×φ-distributions of
jet energy and jet multiplicity, it is thus important to control experimentally
the direction of this collective motion. Based on these arguments, we foresee
two classes of applications for our calculations:

Jet

flow field

time

long

A A

(a)

A

(b)

A

Fig. 2. Schematic view of two scenarios in which jets interact with collective
flow fields: a) If the hard parton is not produced in the Lorentz frame longitudinally
comoving with the medium, or if the longitudinal collective flow does not show
Bjorken scaling, then the parton interacts with a flow component parallel to the
beam. b) On its propagation in the transverse direction, hard partons generically
test transverse flow components, except for the special trajectories which are parallel
to the flow field.

First, in general, a hard parton needs not be produced in the Lorentz frame
which is longitudinally comoving with the medium; and even if it is produced
in the longitudinally comoving frame, it will in general not stay in this frame
during the entire time evolution of the medium. This is so since the hard
parton moves – like any effectively massless particle – on a straight light-like
line in the (z, t)-diagram, whereas the collective flow field is expected to show
significant deviations [49, 50] from Bjorken expansion and will thus intersect
this straight line. In such cases, the collective component of the momentum
transfer to the hard parton is directed along the beam axis. Hence, averaged
samples of medium-modified jet shapes and jet multiplicities can be expected
to show an asymmetry which is preferentially oriented along the beam direc-
tion in the η × φ-plane. [At mid-rapidity, the jet sample must be symmetric
with respect to the η → −η mirror symmetry, but – in general – it will not

4

Coupling jet-hydro
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2

In the absence of a medium, the parton fragments ac-
cording to the vacuum distribution Itot = Ivac. The
radiation spectrum (4) characterizes the medium modi-

fication of this distribution ω dItot

dω dk = ω dIvac

dω dk + ω dImed

dω dk .
From this, we calculate distortions of jet energy and jet
multiplicity distributions [23]. Information about Ivac is
obtained from the energy fraction of the jet contained in
a subcone of radius R =

√

η2 + φ2,

ρvac(R) ≡
1

Njets

∑

jets

ET (R)

ET (R = 1)

= 1−
1

ET

∫

dω

∫ ω

dkΘ

(

k

ω
−R

)

ω
dIvac

dω dk
. (5)

For this jet shape, we use the parametrization [24] of
the Fermilab D0 Collaboration for jet energies in the
range ≈ 50 < Et < 150 GeV and opening cones 0.1 <
R < 1.0. We remove the unphysical singularity of this
parametrization for R → 0 by smoothly interpolating
with a polynomial ansatz for R < 0.04 to ρ(R = 0) = 0.
We then calculate from eq. (4) the modification [23] of
ρvac(R) caused by the energy density and collective flow
of the medium. To do so, we transform the gluon emis-
sion angle arcsin (k/ω) in (4) to jet coordinates η, φ,

k dk dα = ω2 cosφ

cosh3 η
dη dφ , (6)

where α denotes the angle between the transverse gluon
momentum k and the collective flow component q0. In
what follows, we mainly focus on changes of the jet shape
due to longitudinal collective flow effects where the di-
rected momentum transfer q0 points along the beam di-
rection. The sensitivity of jets and leading hadron spec-
tra to other collective flow components will be discussed
elsewhere [25].
To specify input values for the momentum transfer

from the medium, we make the following considera-
tions. First, for a given density n0 of scattering cen-
tres, the transport coefficient is given as q̂ ≃ n0 µ2,
see Ref. [22]. Thus, according to (2), the hard parton
suffers a momentum transfer that is monotonously in-
creasing with the pressure in the medium, n0 µ2 ∝ p3/4

and which tests the components T⊥⊥ and T zz (z par-
allel to the beam) of the energy momentum tensor (1).
In the presence of a longitudinal Bjorken-type flow field

uµ =
(

1, β⃗
)

/
√

1− β2, the longitudinal flow compo-

nent increases from T zz = p to T zz = p + ∆p, where
∆p = (ϵ + p)uz uz = 4 p β2/(1 − β2) for the equation of
state of an ideal gas, ϵ = 3 p. For a rapidity difference
η = 0.5, 1.0, 1.5 between the rest frame, which is longitu-
dinally comoving with the jet, and the rest frame of the
medium, this corresponds to an increase of the compo-
nent T zz by a factor 1, 5, 18, respectively. We expect that
the collective flow component q0 rises monotonously with

the flow-induced∆p, as µ does with p. This suggests that
q0 lies in the parameter range q0 >∼µ.
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FIG. 1: Upper part: sketch of the distortion of the jet energy
distribution in the presence of a medium with or without col-
lective flow. Lower part: calculated distortion of the jet en-
ergy distribution (5) in the η × φ-plane for a 100 GeV jet.
The right hand-side is for an average medium-induced radi-
ated energy of 23 GeV and equal contributions from density
and flow effects, µ = q0. Scales of the contour plot are visible
from Fig. 2.

In Fig. 1, we show the medium-modified jet shape for a
jet of total energy ET = 100 GeV. To test the sensitivity
of this energy distribution to collective flow, we have cho-
sen a rather small directed flow component, q0 = µ. The
effective coupling constant in (3), n0 Lαs CR = 1, the
momentum transfer per scattering centre µ = 1 GeV,
and the length of the medium L = 6 fm were adjusted

such that an average energy ∆ET =
∫

dω dImed

dω = 23
GeV is redistributed by medium-induced gluon radia-
tion. Previous studies indicate that this value of ∆ET

is a conservative estimate for the modification of jets
produced in Pb+Pb collisions at the Large Hadron Col-
lider LHC [23]. Despite these conservative estimates,
the contour plot of the jet energy distribution in Fig. 1
displays marked medium-induced deviations. First, the
jet structure broadens because of the medium-induced
Brownian motion of the partonic jet fragments in a dense
medium [22]. Second, the jet shape shows a marked ro-
tational asymmetry in the η × φ-plane, which is charac-
teristic of the presence of a collective flow field.
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What is the effect of the velocity fields and 
the (density/temperature) gradients in jet 

quenching observables?



 TAE 2024 - Benasque                                                                                                                                                                                                                              QGP and more…

Anisotropic radiation

63

Medium modelling modified - propagators now have coupling to anisotropies

resulting in g ' 2.8rT
T , and, for simplicity, we will use g = 3rT

T for all our estimates.

The medium induced soft gluon spectrum has an angular dependence controlled by g ·k,

and we will focus on the two limiting cases, when the angle between the two vectors, ✓, is

either 0 or ⇡. We will measure the gluon frequencies with respect to the critical medium

frequency !c ⌘ q̂L2
' 125 GeV, which in the case of no gradients can be identified with

the typical frequency for gluons with formation length of the order of L. We will also

introduce a dimensionless gradient parameter �T = |rT/T 2
|, which controls the strength of

the hydrodynamic gradients and distribution anisotropy.

FIG. 2: The medium induced soft gluon spectrum is given for three gluon energies, ! = 0.04!c,

! = 0.06!c, and ! = 0.08!c. The solid lines denote the spectrum in the homogeneous limit. The

dashed and dash-dotted lines correspond to the full spectrum with gradients along (✓ = 0) and

opposite to (✓ = ⇡) the direction of k respectively. The gradients are quantified with �T = 0.05

(left) and �T = 0.01 (right).

In Fig. 2, we show the full spectrum up to first order in gradient corrections for ! =

0.04!c, ! = 0.06!c, and ! = 0.08!c, further differentiating for �T = 0.05 (left) and

�T = 0.01 (right). For ✓ = 0, the gradient effects suppress the gluon radiation at small

values of k, while when ✓ = ⇡, it is enhanced. One can notice that the gradient effects

in Fig. 2 become stronger for softer gluons, and may be substantial even for sufficiently

small �T . This behavior is in line with the properties of the gradient effects in broadening

[38], where the anisotropic contributions are suppressed by the energy of the leading parton.

Since the energy of soft emitted gluons is smaller than the energy of the leading parton, the

gradient effects become more important. However, one should notice, that very soft gluons

19
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γT = |∇T/T2 |Where the gradient parameter

Softer radiation more sensitive to gradient fields [effect subleading in ]ω
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Anisotropic jet angular distributions
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Jet observables in inhomogeneous matter

2004, Armesto, Salgado, Wiedemann

We have now the tools to compute jet observables (at least at leading order in strong coupling)

Observable 1: jet shape

Jet shapes Intra-jet v2 (and w2)

[Barata, Milhano, Sadofyev 2023]

[Barata, Salgado, Silva 2024]
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Figure 4: Left: Evolution of v2 in Eq. (3.5) as a function of ⇣ (top line) or of z (bottom
line) and for different values of z or of ⇣, respectively, with fixed r = 5. Right: equivalent
plots for w(+1)

2 in Eq. (3.5). The vacuum piece is subtracted.

3.3 Transverse polarization for a massive antenna

So far we have defined the quark and anti-quark spin states as the projection along the z

axis. However, because we are trying to tap the interplay between spin and the anisotropy
the qq̄ antenna experiences in the transverse plane, it might be more interesting to consider
spin projected along some axis on that plane. One can do so by changing the expression
for the vertex following the steps detailed in Appendix A and inserting it in Eq. (2.17).
Carrying out the remaining of the calculation exactly as before, the particle distribution

– 16 –

v2 large due to 
jet anisotropy

w2 correction due to 
spin in a  antenna qq̄



Conclusions

QCD has a rich dynamical content 
Confinement and chiral symmetry breaking in vacuum  
New phases of matter at high energies/densities 
Quark gluon plasma universal form of matter at high enough 
energies 

Heavy ion collisions are the experimental tools
However, QGP is only one of the manifestations of a wider and 
richer accessible physics
QCD is the only sector in the Standard Model where studies of 
collectivity at the fundamental level are experimentally possible
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Youtube video - QGP (in Spanish)

https://youtube.com/watch?v=JdahywF2_D4
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Jet substructure and time evolution
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Gavin Salam (Oxford) Jet Reconstruction Theory, PREFIT20 school, DESY

Soft Drop (β=0 variant)

1.Recluster jet with Cambridge/Aachen algorithm 

2.Undo last step of clustering to give two subjets  
(with ) 

3.If  stop 

4.otherwise discard , go back to step 2 to decluster 

i, j
pti < ptj

pti > zcut(pti + ptj)
i j

27

Dasgupta, Fregoso, Marzani & GPS [arXiv:1307.0007],  
descended from mass-drop tagger, Butterworth, Davison, Rubin & GPS [arXiv:0802.2470]Gavin Salam (CERN) Towards an understanding of jet substructure Boost 2013, Flagstaff, August 2013 8

Mass-drop tagger (MDT, aka BDRS)

Trimming

Pruning

Cannot possibly study all tools
These 3 are widely used

Recluster

on scale Rsub

discard subjets

with < zcut pt

decluster &

discard soft junk

repeat until 

find hard struct

jet mass/pt
sets Rprune discard large-angle

soft clusteringsRecluster

no manually 
specified Rcut

uses internal 
structure of jet to 
auto-zoom into 

right angular scale 

widely used  
in CMS

Gavin Salam (Oxford) Jet Reconstruction Theory, PREFIT20 school, DESY

Trimming

• Take all particles in a jet of radius  

• Recluster them into subjets with a jet definition using  

• Keep only subjets with  

• Recombine them into a single jet

R
Rsub < R

psubjet
t > zcut pjet

t

25

 Krohn, Thaler & Wang arXiv:0912.1342

Gavin Salam (CERN) Towards an understanding of jet substructure Boost 2013, Flagstaff, August 2013 8

Mass-drop tagger (MDT, aka BDRS)

Trimming

Pruning

Cannot possibly study all tools
These 3 are widely used

Recluster

on scale Rsub

discard subjets

with < zcut pt

decluster &

discard soft junk

repeat until 

find hard struct

jet mass/pt
sets Rprune discard large-angle

soft clusteringsRecluster

widely used in ATLAS

Find different substructures in identified jets  
[very active area, lots of results in the last years]

Also to identify two-pronged jet structures - boosted H/W/Z

Softdrop 
[Dasgupta, Fregoso, Marzani, Salam 2013]

Trimming 
[Krohn, Thaler, Wang 2009]
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