Jorge Martin Camalich

A lightning course on Flavor Physics

Outline of these lectures and bibliography

• Flavor physics in the SM

- The flavor structure of the SM
- The Cabibbo-Kobayashi-Maskawa matrix
- Flavor-changing neutral currents in the SM

• Elements of flavor physics phenomenology

 Donoghue, Golowich & Holstein ["Dynamics of SM"](https://www.cambridge.org/core/books/dynamics-of-the-standard-model/639475F2E0F99E2334D01BD648D2F993) - Phenomenology Buras ["Gauge Theory of Weak Decays ..."](https://www.cambridge.org/core/books/gauge-theory-of-weak-decays/BEDC617B1F3651D3B04F6992D80E7179) -Detailed calcs in SM and BSM

- Effective field theories EFT lectures Hadronic matrix elements - LQCD lectures
- **• Examples of flavor-violating processes**
	- o Pion and kaon 2- and 3-body (semi)leptonic decays
	- *B* meson 4-body decays
	- Neutral-meson mixing

• Bibliography

- **Lecture notes:** Grossman&Tanedo [arXiv: 1711.03624](https://arxiv.org/abs/1711.03624) Grinstein - [arXiv: 1501.05283](https://arxiv.org/abs/1501.05283)
- **Books:** Branco, Lavoura & Silva - ["CP violation"](https://global.oup.com/academic/product/cp-violation-9780198716754?cc=es&lang=en&) Core reference

Flavor physics in the SM

Flavor universality: gauge interactions

• The SM matter content appears in 3 generations

The gauge interactions in the SM are flavor universal $\mathscr{L}_{\text{gauge}}$ has a **global accidental** $U(3)^5$ flavor symmetry

$$
\partial_{\mu} + g X_{\mu}^A t_k^A \partial^{\mu} \psi^k \qquad k = 1,2 \text{ or } 3
$$

$$
\mathcal{L}_{\text{yukawa}} = y_u^{kl} \bar{Q}_L^k \tilde{H} u_R^l +
$$

• Mass generation in the

e SM:
$$
SU(2)_L \times U(1)_Y \xrightarrow{SSB} U(1)_{EM}
$$

\n
$$
m_f^{kl} = v_{ew} y_f^{kl}
$$
\n
$$
\mathcal{L}_{masses} = m_u^{kl} \bar{u}_L^k u_R^l + m_d^{kl} \bar{d}_L^k d_R^l + m_e^{kl} \bar{e}_L^k e_R^l + \text{h.c.}
$$

• Diagonalization: Linear & unitary field redefinitions commuting with $U(1)_{\text{EM}}$

Flavor breaking: Yukawa interactions

 $\frac{d}{dt} + y_d^{\text{kl}} \overline{Q}_L^{\text{k}} H d_R^{\text{l}} + y_e^{\text{kl}} \overline{L}_L^{\text{k}} H e_R^{\text{l}} + \text{h.c.}$

Matrices with N^2 complex parameters

$f_L \rightarrow L_f f_L$	$m_u \rightarrow L_u^{\dagger} m_u R_u = \text{diag}(m_u, m_c, m_t)$	
$m_d \rightarrow L_d^{\dagger} m_d R_d = \text{diag}(m_d, m_s, m_b)$	$9 \text{ real parameters}$	
$f_R \rightarrow R_f f_R$	$m_e \rightarrow L_e^{\dagger} m_e R_e = \text{diag}(m_e, m_\mu, m_\tau)$	$9 \text{ real parameters}$

Flavor violation in the charged currents (CC)

$$
\mathcal{L}_{gauge} \supset g\bar{\psi}_L^k \left(T^+ W^+_\mu + T^- W^-_\mu \right) \gamma^\mu \psi_L^k = g \left(\bar{u}_L^k \gamma^\mu d_L^k + \bar{\nu}_L^k \gamma^\mu e_L^k \right) W^+_\mu + \text{h.c.}
$$
\n
$$
Q_L^k = (u_L^k, d_L^k)^T \qquad \qquad L_L^k = (\nu_L^k, e_L^k)^T \qquad \qquad \text{Lepton section}
$$
\n
$$
\mathcal{L}_{CC} = g \left(V_{CKM} \right)_{kl} \bar{u}_L^k \gamma^\mu d_L^l W^+_\mu + g \bar{\nu}_L^k \gamma^\mu e_L^k W^+_\mu + \text{h.c.}
$$

• Missalignment

• The Cabibbo-Kobayashi-Maskawa mixing matrix

$$
g\bar{\psi}_L^k \left(T^+ W^+_\mu + T^- W^-_\mu \right) \gamma^\mu \psi_L^k = g \left(\bar{u}_L^k \gamma^\mu d_L^k + \bar{\nu}_L^k \gamma^\mu e_L^k \right) W^+_\mu + \text{h.c.}
$$

\n
$$
Q_L^k = (u_L^k, d_L^k)^T \qquad L_L^k = (\nu_L^k, e_L^k)^T \qquad \text{Lepton set}
$$

\ngauge and *up* and *down* quark mass matrices
\n
$$
\mathcal{L}_{\text{CC}} = g \left(V_{\text{CKM}} \right)_{kl} \bar{u}_L^k \gamma^\mu d_L^l W^+_\mu + g \bar{\nu}_L^k \gamma^\mu e_L^k W^+_\mu + \text{h.c.}
$$

$$
V_{CKM} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix}
$$

o Neutrinos in the SM are massless and flavor mixing can be rotated away

Flavor violation occurs because we cannot diagonalize simultaneously the gauge and yukawa interactions

- **1.** V_{CKM} is a unitary matrix (it is the product of 2 unitary matrices)
	- - $#_{\text{angles}} = N(N-1)/2$ $#_{\text{phases}} = N(N+1)/2$
- **2.** Physics invariant w.r.t. (2*N* − 1) rephasings of the quark fields $u_L^k \rightarrow e^{i\alpha_k} u_L^k$
	- $#'_{angles} = N(N-1)/2$ #′_p $N = 3:$ # $'_{\text{angles}} = 3$ # $'_{\text{p}}$
	- **The minimum number of generations needed to generate** *CP* **violation is 3!**

 $N \times N$ unitary matrix parametrized by N^2 real numbers

$$
\begin{array}{ll}\n k & d_L^k \rightarrow e^{i\beta_k} d_L^k\n \end{array}
$$

The N^{th} dimensional CKM matrix contains ...

Parameter counting in the CKM matrix

$$
\frac{\text{#}'_{\text{phases}}}{\text{#}'} = \frac{(N-1)(N-2)}{2}
$$
\n
$$
\frac{\text{#}'}{\text{phases}} = 1
$$

- $3 \rightarrow U(1)_B \Rightarrow$
- **Spurions:** Pretend yukawa matrices are bifundamentals of the flavor group Keep track of flavor violation in the SM and beyond (**Minimal flavor violation**)

 $2.$ $\mathscr{L}_{\text{yukawa}}$ breaks $U(3)_{L}\times U(3)_{e}\to U(1)_{e}\times U(1)_{\mu}\times U(1)_{\tau}$ \Rightarrow 3 unbroken generators $Z(3)_{L}\times U(3)_{e}$

3. We can use broken generators to rotate away *unphysical parameters* in $\mathscr{L}_\text{yukawa}$

5. For quarks: $U(3)^3 \rightarrow U(1)_B \Rightarrow$ 10 physical parameters (6 masses, 3 angles, 1 phase) \overline{a}

More about parameter counting and spurions

- **• Symmetry argument for parameter counting**
	- 1. $\mathscr{L}_{\text{gauge}}$ in the SM invariant w.r.t. $U(3)_L \times U(3)_e \Rightarrow$ 18 generators
	-
	-

#physical parameters = #unbroken generators (**3 masses** for leptons)

A standard parametrization of CKM

- Phase redefinitions of quarks \Rightarrow Set V_{ud} , V_{us} , V_{cb} and V_{tb} real
- \bullet The "standard" *unitary* parametrization ($s_{ij} = \sin \theta_{ij}$, $c_{ij} = \cos \theta_{ij}$)

The SM is *defined* when the 3 CKM angles and its 1 phase are **determined experimentally** ... $s_{12} = 0.22650(48)$ $s_{23} = 0.04053(71)$ $s_{13} = 0.00361(10)$ $\delta = 68.5(2.6)$ [°]

$$
V_{CKM} = \begin{pmatrix} c_{12}c_{13} \\ -s_{12}c_{23} - c_{12}s_{23}s_{13}e \\ s_{12}s_{23} - c_{12}c_{23}s_{13}e^{i} \end{pmatrix}
$$

• The quark mixing matrix is **hierarchical!**

 $c_{12}c_{13}$ *s*₁₂*c*₁₃ *s*₁₃*e*^{−*iδ*} $- s_{12}c_{23} - c_{12}s_{23}s_{13}e^{i\delta}$ $c_{12}c_{23} - s_{12}s_{23}s_{13}e^{i\delta}$ $s_{23}c_{13}$ $s_{12}s_{23} - c_{12}c_{23}s_{13}e^{i\delta} - c_{12}s_{23} - s_{12}c_{23}s_{13}e^{i\delta} - c_{23}c_{13}$

Complex phases and CP violation

-
- However the SM **does not necessarily** violate *CP*

In the standard CKM parametrization \bigcirc

The SM violates *CP if* the nontrivial CKM phase is not 0 or *π*

• Unambiguous (**rephasing invariant**) measure of *CP* violation in the SM:

$$
\mathcal{L}_{\text{toy}} = y_{ij} \bar{\chi}_i \psi_j S + \underbrace{y_{ij}^* \bar{\psi}_j \chi_i S^{\dagger}}_{(CP) \mathcal{L}_{\text{toy}}(CP)^{\dagger}} \right\} \implies \mathcal{L}_{\text{toy}} = (CP) \mathcal{L}_{\text{toy}}(CP)^{\dagger} \iff y_{ij}^* = y_{ij}
$$
\n(CP) $\mathcal{L}_{\text{toy}}(CP)^{\dagger} = y_{ij} \bar{\psi}_j \chi_i S^{\dagger} + y_{ij}^* \bar{\chi}_i \psi_j S$

Jarlskog invariant $J = {\rm Im}\left(V_{ij} V_{kl} V_{il}^*\right)$ *il* V_{ki}^* *kj*)

All mixing angles must be nonzero for *CP* **violation** *CP* violation *is in* the SM but *not explained by* the SM

• The SM is a chiral theory \Rightarrow The SM violates parity (P) and charge conjugation (C)

$$
J = c_{12}s_{12}c_{13}^2s_{13}c_{23}s_{23}\sin\delta
$$

Wolfenstein parametrization

• Expose the CKM hierarchies explicitly

• Mixing first two families is unitary (and independent of 3rd family) up to $\mathcal{O}(\lambda^2)$

- The Wolfenstein parametrization is **not exactly unitary**
-

The unitary triangle(s)

Unitary relations 1. Row(column) unitarity: $|V_{i1}|^2 + |V_{i2}|^2 + |V_{i3}|^2$ 2. Off-diagonal unitarity: $V_{i1}V_{j1}^* + V_{i2}V_{j2}^* + V_{i3}V_{j3}^*$ $= 1$ $= 0$

-
-

• 2. is a null sum of complex vectors ⇒ Unitarity triangles 1st and 3rd columns give triangle with all sides of same $O(\lambda^3)$ Three (**rephasing invariant**) angles (**directly observable!**)

The apex is fixed by a redefinition: \overline{O}

that is **rephasing invariant**

$V_{ud}V_{ub}^* + V_{cd}V_{cb}^* + V_{td}V_{tb}^*$ $= 0$ (ρ, η) $\begin{pmatrix} \frac{d\mathbf{k}}{d\mathbf{k}} \\ \frac{d\mathbf{k}}{d\mathbf{k}} \end{pmatrix}$ *γ* = *ϕ*₃ = arg $\left(-\frac{V_{ud}V_{ul}^*}{V_{cd}V_{cb}^*}\right)$ *ub* $V_{cd}V_{cb}^{*}$ $\alpha = \phi_{\scriptscriptstyle{2}}$ $\frac{V_{ud}V_{ub}^*}{V_{ub}V_{cd}^*}$ $\gamma = \phi$ $\beta = \phi_1$ $(0,0)$

$$
\beta = \phi_1 = \arg\left(-\frac{V_{cd}V_{cb}^*}{V_{td}V_{tb}^*}\right) \quad \alpha = \phi_2 = \arg\left(-\frac{V_{td}V_{tb}^*}{V_{ud}V_{ub}^*}\right) \quad \gamma = \phi_3
$$

$$
\bar{\rho} + i\bar{\eta} = -\frac{V_{ud}V_{ub}^*}{V_{cd}V_{cb}^*}
$$

Experimental constraints in the unitary triangle

Two collaborations perform updated fits to the CKM parameters

- **Geometric interpretation:** $Area_{UT} = J/2$ \overline{O}
- *CP* **violation small in SM** *because of small mixing***:**
- - **• UTfit** bayesian analysis **www.utfit.org**
		- Includes fits with BSM (EFT) parameters

- **UT triangle and the Jarslkog invariant**
	-

 $J_{\rm SM}$ ≈ $\lambda^6 A^2 \eta = 3.00(12) \times 10^{-5}$

- **• CKMfitter** frequentist analysis **ckmfitter.in2p3.fr**
	- Conservative with uncertainties (*Rfit*)

Flavor hierarchies and the (quark) flavor puzzle

• Flavor transitions • Masses

Flavor puzzle: Origin of patterns and hierarchies in the values of the flavor parameters Portal to BSM physics!

• Horizontal symmetries (Froggatt-Nielsen), extra dimensions (Randall-Sundrum), tree-loop

- hierarchies (Weinberg), clockwork mechanism, etc
- **Essential for our existence! Anthropic principle**
	-
- **Origin of** *CP* **violation? Connection to baryogenesis**
	- Why 3 families?

• Stability of matter (*up* and *down* quark masses) & stability of vacuum (top-quark mass)

Neutral currents at tree level in the SM: Photon, gluon and Higgs

• QED (photons) and QCD (gluons): Couplings **diagonal in flavor space** (same charges/reps)

CKM unitarity:
$$
V^{\dagger} V = 1
$$

• Yukawa interactions (higgs): Couplings **aligned** with the mass basis

SSB in the SM:
$$
H^T \rightarrow \left(0 \quad v + \frac{h}{\sqrt{2}}\right)
$$

$$
\overline{Q}_L^k H(y_d)_{kl} d_R^l \rightarrow \overline{Q}_L^k (m_d)_{kl} d_R^l \left(1 + \frac{h}{v\sqrt{2}}\right)
$$

$$
{}_{\text{EM}}^{\mu} = e \, Q_q \, \bar{q}^k \gamma^{\mu} \left(1 \right)_{kl} q^l \to e \, Q_q \, \bar{q}^k \gamma^{\mu} \left(V_q^{\dagger} \right)_{kj} \left(V_q \right)_{jl} q^l = J_{\text{EM}}^{\mu}
$$

Neutral currents at tree level in the SM: The Z boson

• Weak charges: Couplings of the *Z* also **diagonal in flavor space**

- **Before 1970 hadrons were thought composed exclusively of** *u***,** *d* **and** *s* **quark** \bigcirc with CC interactions rotated by 2×2 Cabibbo mixing: J_C^{μ} $\bar{u}_{\text{CC}}^{\mu} = \bar{u}(1 - \gamma_5)(\cos\theta_{\text{C}}d + \sin\theta_{\text{C}}s)$
- If $(u, d)^T$ is iso-doublet and s isosinglet \Rightarrow There must be tree-level neutral $\Delta S = 1$ decays
- **PDG (Particle Data Group):** \bigcirc

CC: $\text{Br}(K_L \to \pi^+ e^- \bar{\nu}) = 40.55(11)\%$

NC: $\text{Br}(K_L \to \mu^+ \mu^-) = 6.84(11) \times 10^{-9}$

$$
J_Z^{\mu} = -\frac{e}{2s_w^2} \overline{\psi}^k \left(g_V^{\psi} \gamma_{\mu} + g_A^{\psi} \gamma^{\mu} \gamma_5 \right) \psi^k
$$

What is relevant here is that all *up*-like fermions and all *down*-like fermions have the same **weak isospin**

Flavor changing neutral currents (FCNC) are suppressed! There must be a 4th quark (**charm**)! [Glashow, Iliopoulos & Maiani \(GIM\) 1970](http://www.scholarpedia.org/article/Glashow-Iliopoulos-Maiani_mechanism)

$$
g_V^{\psi_k} = T_3^{(\psi_k)} - 2s_W^2 Q_\psi \qquad g_A^{\psi_k} = T_3^{(\psi_k)}
$$

Flavor-changing neutral currents (FCNC) in the SM

• The GIM mechanism

In the SM, FCNCs occur only at **1-loop level**!

In addition, they receive a **flavor suppression**

Take the $\Delta C = 1$ neutral transition $c \rightarrow u\gamma$

- The GIM mechanism is a consequence of CKM unitarity at loop level
-

• It implies **suppression** of FCNCs by **loop**, **small yukawas** and/or **small mixing angles**

The role of the top-quark in the FCNCs

- **• FCNCs in the** *down***-quark sector**
	- Sensitive to *up*-quarks ⇒ Prominence of top yukawa
	- $m_W \lesssim m_t$: Suppression to be revisited

Take now the **neutral** *down* **quark transition** *b* → *sγ*

Amplitude
$$
\approx \frac{e g^2}{4\pi^2 m_W^2} \frac{\lambda^2}{V_{tb} V_{ts}^*} f(\frac{m_t^2}{m_W^2})
$$

The case of the charged leptons

- **• FCNCs in the charged** *lepton sector*
	- $U(1)_\tau \times U(1)_\mu \times U(1)_e$ accidental symmetry in the SM $\;\Rightarrow$ **No charged-lepton flavor violation (CLFV)**
	- o Symmetry broken by neutrino masses!

Take now the **neutral charged-lepton transition** *μ* → *eγ*

Amplitude
$$
\approx \frac{e g^2}{4\pi^2 m_W^2} \sum_i V_{\mu i} V_{ei}^* \frac{m_{\nu_i}^2}{m_W^2}
$$

In the simplest case with **Dirac Neutrinos**

• Cosmological bound ∑*mνⁱ* ≲ 0.1 **eV**

CLFV is suppressed by $\approx 10^{-22}$ compared to quark sector! o Similar conclusions for Majorana fermions

Flavor physics are sensitive probes of BSM

- **• Flavor violation is very sensitive to BSM with** *non-standard* **gauge or flavor structure**
	- Searching for FCNCs in experiment could herald the discovery of New Physics O
	- Null searches are typically expressed as **lower-bounds on mass scales of the putative BSM** \overline{O}

Observable

Flavor NP puzzle: BSM at TeV scales requires non-trivial flavor structure

Elements of flavor physics phenomenology

The theorist's tool kit: Effective field theories EFT lectures tomorrow

• Energies involved in hadron decays m_h ≪ m_W

Rigorous and **systematic expansion** in the small parameter $\epsilon \approx m_h/m_W$ within the Effective Field Theory (EFT)

• Modern subnuclear extension of Fermi Theory

Neutron $β$ decay

 $\mathcal{M}_{\beta} \approx G_F C_{\beta} (\bar{u}\gamma^{\mu}P_L d) (\bar{e}\gamma_{\mu}P_L \nu)$

• Extended also to FCNCs

 $\text{Radius } B \text{-meson decays (e.g. } B^0 \rightarrow K^* \gamma)$ ${\mathscr M}_\gamma \thickapprox$ *e mb* $\frac{d^2 H \cdot B}{d\pi^2} G_F C_\gamma \bar{s} \sigma^{\mu\nu} P_R b F_{\mu\nu}$

 $G_F \approx 1/m_W^2$

Non-renormalizable operators: with $d\geq 5$ and composed of dynamical fields at $E\ll m_W$

EFT for BSM: Low energies

- 1. List **fields** that can be made *on-shell* at the energies of interest
- 2. List **gauge symmetries** manifest at the energies of interest
- 3. Construct all **gauge invariant operators** with these fields up to a given dimension *d*

- **SM** is recovered for $C_{LL}^{ij,\alpha\alpha} = 1$ and all other WCs=0 *LL* $= 1$
- **•** Most general BSM with SM d.o.f.

Power counting: Ordering of the ∞ operators according to power n in $(E/\Lambda_\text{BSM})^n$

- $(\overline{e}_\alpha \gamma_\mu P_L \nu_\beta) + C_{RL}^{ij, \alpha\beta} (\overline{u}_i \gamma^\mu P_R d_j)(\overline{e}_\alpha \gamma_\mu P_L \nu_\beta)$
	- $(\bar{u}_i P_R d_j)(\bar{e}_{\alpha} P_L \nu_{\beta}) + C_{T_I T_I}^{ij, \alpha \beta}$ $T_L T_L$ $\left((\bar{u}_i \sigma^{\mu\nu} P_L d_j)(\bar{e}_\alpha \sigma_{\mu\nu} P_L \nu_\beta)\right)$

Only a **finite number of operators** needed for a given precision!

• Example CCs: Leading (dim-6) weak Lagrangian at $\mu \approx E$ _{low}

$$
\mathcal{L}_{CC} = \frac{4G_F}{\sqrt{2}} \sum_{ij,\alpha\beta} \left(C_{LL}^{ij,\alpha\beta} (\bar{u}_i \gamma^\mu P_L d_j) (\bar{e}_{\alpha} \gamma_\mu P_L \nu) + C_{S_L S_L}^{ij,\alpha\beta} (\bar{u}_i P_L d_j) (\bar{e}_{\alpha} P_L \nu_{\beta}) + C_{S_R S_L}^{ij,\alpha\beta} (\bar{u}_i \nu_{\beta}) \right)
$$

Imposing a flavor ansatz in the EFT: Minimal Flavor violation

- - One can implement MFV in the EFT using the **spurion analysis** \circ

- MFV is useful because it transfers the flavor component of the GIM suppression to BSM \circ
- **Note:** Works only in the EFT defined in terms of the SM fields/symmetries (SMEFT) $\mathbf O$

• Minimal Flavor Violation (MFV): *All* the flavor violation in SM+BSM stems from *just* the SM Yukawas

Same yukawa suppression as in the SM! $C_{\gamma} =$ $e \bar{c}$ $\Lambda_{\rm NP}^2$ m_b y_t^2 $V_{ts}^* V_{tb}$

Example: Contribution to the FCNC *b* → *sγ*

 $e \bar{c}$ $\Lambda_{\rm NP}^2$ $F_{\mu\nu}\bar{Q}_L\sigma^{\mu\nu}y_\mu y_\nu^{\dagger}y_d b_R \Rightarrow$ $e \bar{c}$ $\Lambda_{\rm NP}^2$ *Fμν* $\overline{ }$ $\left(\frac{\bar{U}_L}{\bar{D}_L V^{\dagger}}\right) \sigma^{\mu\nu} m_u^2\,V m_d\;b_R$ y_d alone does not produce FCNC

Summary of the EFT procedure

Cirigliano and Mussolf Prog.Part.Nucl.Phys. 71 (2013) 2-20

Low-energy: The realm of the hadrons

• QCD confines around and below energies ~ $\Lambda_{\text{QCD}} \approx 200$ MeV

• Only the proton is (almost) really stable!

The thousands of different decay modes of these hundreds of particles are a **precious source of information**

- \bullet Branching fraction of a decay channel i of a hadron h $\text{Br}_i = \Gamma_i / \Gamma_h = \tau_h \Gamma_i$
- Only hadrons whose main decay channel is *weak*
	- 1. **Flavor violations !**
	- 2. Sensitivity to $E \gtrsim m_W$!

The [PDG](https://pdg.lbl.gov/) is phenomenologist's 1st best friend!

Connecting to the observables of the hadronic world

- **• Our Lagrangians are written in terms of quarks and our observables in terms of hadrons!**
-
- **Observables** defined in terms of matrix elements

 $\mathscr{M} \sim \langle e', \nu', \ldots; H'_1, H'_2, \ldots \rangle$ ℒ $\overline{P_{\ell} \times \mathcal{O}_{q}} | e, \nu, \ldots; H_1', H_2', \ldots$ with Observables ~ $|\mathcal{M}|$ 2

• Factorization: Wick's theorem *typically* leads to factorization of matrix element

$$
\mathcal{M} \sim \langle e', \nu', \dots | \mathcal{O}_e | e, \nu, \dots \rangle \times
$$

matrix element

• Hadronic matrix elements: Encapsulate all the nonperturbative-QCD information of the transition

Very difficult to compute! They limit our capacity to learn about short distances

Interactions: $\mathscr L(u,d,s,c,b,e,\nu,G,F)$ Asymptotic states: $|\,\pi^\pm,\pi^0,K^\pm,D^\pm,B^\pm,p,n,\Lambda,\dots\rangle$

By asymptotic we mean hadrons with long life times ($\tau_{weak} \approx 10^{-8} - 10^{-12}$ s $vs.$ $\tau_{EM} \approx 10^{-17}$ s or $\tau_{strong} \approx 10^{-24}$ s) $\frac{\overline{N\omega\omega}}{2}$ Kaons 10^{-8} – *B*—mesons 10^{-12} s *vs*. $\tau_{EM} \approx$ *π* $\frac{\pi}{\sqrt{2}}$ 0 10^{-17} s OR $\tau_{\text{strong}} \approx$ *ρ*−resonance 10^{-24} s

 $\langle \ldots | \mathcal{O}_\ell |$ *e*, $\nu, \ldots \rangle \times \langle H_1', H_2', \ldots | \mathcal{O}_q | H_1', H_2', \ldots \rangle$ Perturbative matrix element $\left\{\right. \right. \left\{ \right. \right\}$ Hadronic matrix element

Determinations of the hadronic brown muck

• General strategy:

- **1. Parametrize** the matrix element (discrete and Lorentz symmetries)
- **2. EFTs of QCD** in perturbative expansions

Heavy-quark symmetry $(m_{c,b}\gg\Lambda_{\rm QCD})$ - Heavy quark effective theory

- **Parity invariance:** Vector & Scalar are 0!
- **Lorentz invariance:** Tensor is 0!
- f_{π} is the pion decay constant $f_{\pi} = 130.2(0.8)$ MeV

Isospin ($m_d \approx m_u$) and $SU(3)_F$ ($m_u \approx m_d \approx m_s$) in light quarks - Chiral Perturbation Theory

- **3. Calculate** hadronic matrix elements
	- **Lattice QCD** systematic approximation from discrete and finite space-time
	- QCD sum rules, quark models, Ads/CFT, etc ...

Example: Leptonic pion decay $\pi^- \to e^- \bar{\nu}$

Flavor processes

The CC leptonic (2-body) pion decay $(\pi_{\ell2})$

$$
\mathcal{M} = \langle \ell^+ \nu_\ell | \mathcal{L}_{SM} | \pi^+ \rangle = \frac{4G_F V_{ud}}{\sqrt{2}} \langle \ell^+ \nu_\ell | i
$$

• **Chiral suppression:** In the chiral limit $m_e \rightarrow 0$ the amplitude vanishes!

Experimental data

$$
Br(\pi^+ \to \mu^+ \nu_\mu) = 99.98770(4)\%
$$

\n
$$
Br(\pi^+ \to e^+ \nu_e) = 1.230(4) \times 10^{-4}
$$

Pseudoscalar operator is chirally flipping ⇒ **Not chirally suppressed!**

$$
_5u?
$$

• **Pseudoscalar operator:** Contribution of $d\gamma$ ₅

The SM is a "current-current" interaction

Weinberg's "*V-A* was the key" - 2009

BSM-Vector: $\Lambda_{LL} \approx$ 1 TeV

Discovered at CERN (G. Fidecaro) - 1958

The CC semileptonic (3-body) decays ($K_{\ell,3}$ **)**

• Hadronic form factors: Functions of $q^2 = (p' - p)^2$

$$
\langle \pi^0(p') | \bar{s} \gamma_\mu d | K^+(p) \rangle = f_+(q^2)
$$

 \circ Parity and charge invariance \Rightarrow No pseudoscalar/axial form factors

$$
\Gamma(K_{e3(y)}) = \frac{G_{\mu}^2 m_K^5}{192\pi^3} S_{\text{ew}} \overline{|\tilde{V}_{us}|^2 f_+(0)^2}
$$

- Form factors obtained from LQCD \Rightarrow e.g. $f_+(0) = 0.9698(17)$
-

 $f_{+}(q^{2})P_{\mu} + q_{\mu}$ $m_{K^+}^2 - m_{\pi 0}^2$ q^2 $(f+(q^2)-f_0(q^2))$

Normalization (and spectrum) sensitive to BSM $\;\Rightarrow\; \tilde{V}_{us} \approx (1 + C_{LL} + C_{RL} - C_{LL}^{\mu})$ $\big)V_{us}^{\text{SM}} + \mathcal{O}\Big($ m_K^4 $\overline{\Lambda^4}$)

Testing CKM unitarity

• Disentangle BSM from CKM: Unitarity relation

ion
$$
|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 = 1
$$

\n• Tensions in the $V_{ud} - V_{us}$ plane
\n• Use $K_{\ell 3}$ and ratio $\frac{K_{\ell 2}}{\pi_{\ell 2}}$ (to determine $\frac{\tilde{V}_{us}}{\tilde{V}_{ud}}$)
\nLattice results $(N_f = 2+1+1)$
\n $|\tilde{V}_{ud}|^2 + |\tilde{V}_{us}|^2 = 0.9816(64)$
\nTension at $\sim 3\sigma$

- Tension increases with β decays
- BSM or uncontrolled EM/isospin corrections?

Charmed-meson CC decays: the unitarity test • Same strategy as with kaon decays: Use leptonic $D_{(s)} \to \ell^+ \nu$ and semileptonic $D \to P \ell \bar{\nu}$ π or K • **2nd-row unitarity**

Phase space: Many decay modes potentially available!

$$
D_{(s)} \to V \ell \bar{\nu}, D_s \to \tau \nu ...
$$

$$
|\tilde{V}_{cd}|^2 + |V_{cs}|^2 + |\tilde{V}_{cb}|^2 = 0.999(8)
$$

B meson CC decays into tau leptons

$$
R_{D^{(*)}} = \frac{\text{Br}(B \to D^{(*)} \tau \nu)}{\text{Br}(B \to D^{(*)} \ell \nu)}
$$

- Governed by the weak amplitude $G_F V_{cb}$
- Two main **hadronic** channels studied

• Semi-tauonic charged-current decay

$$
B \to D \text{ with } J^P(D) = 0^-
$$

$$
B \to D^* \text{ with } J^P(D^*) = 1^+
$$

• Hadronic form factors

- Heavy-quark EFT with data light leptons and/or LQCD
- Define **Lepton Universality** ratio to cancel uncertainties

$$
R_D = 0.298 \pm 0.004
$$

$$
R_{D*} = 0.254 \pm 0.005
$$

Theoretical errors well controlled at the 3 - 6% level

[HFLAV collaboration](https://hflav.web.cern.ch/)

B-meson decays into tau leptons

• Situation in 2024

Picture is not clear ⇒ More data needed!

Semileptonic rare B decays

• FCNC decays of *B* mesons into kaons and leptons

$$
\begin{aligned}\n\frac{\text{Chromo}}{C_{8g}\mathcal{O}_{8g}}\n\end{aligned}\n\qquad \qquad\n\mathcal{H}_{sl} = -\frac{4G_F}{\sqrt{2}} \lambda_t \left[\frac{\text{EM}}{C_{7\gamma}\mathcal{O}_{7\gamma}} + \frac{C_9\mathcal{O}_9 + C_{10}\mathcal{O}_{10}}{\text{Semileptonic}} + \frac{\text{neutrino}}{\mathcal{E}} \frac{C_{\nu_e}\mathcal{O}_{\nu_e}}{\mathcal{O}_{\nu_e}} \right]
$$

The rare semileptonic (4-body) decay $B \to K^*(\to K\pi)\ell\ell$

Kinematic variables: $(p_B - p_{K^*})^2 = q^2$, $\cos \theta_{\ell}$, $\cos \theta_{K}$, ϕ

- **• 4-body decay:** Very rich phenomenology
- Each coefficient $I_i(q^2)$ is a q^2 -dependent observable
- The P'_{5} anomaly (related to the coefficient I_{5})

New Physics hypothesis: $C_9^{\rm NP} \simeq -1$ (-25 % w.r.t. SM) $\frac{q_{\text{NP}}}{9} \simeq -1$ (-25 %)

$$
\frac{d^{(4)}\Gamma}{(\cos\theta_l)d\cos\theta_k)d\phi} = \frac{9}{32\pi} \Big[I_1^s \sin^2\theta_k + I_1^c \cos^2\theta_k + (I_2^s \sin^2\theta_k + I_2^c \cos^2\theta_k)\cos 2\theta_\ell + I_3 \sin^2\theta_k \sin^2\theta_\ell \cos 2\phi + I_4 \sin 2\theta_k \sin 2\theta_\ell \cos \phi + I_5 \sin 2\theta_k \sin \theta_\ell \cos \phi + I_6 \sin^2\theta_k \cos \theta_\ell + I_7 \sin 2\theta_k \sin \theta_\ell \sin \phi + I_8 \sin^2\theta_k \sin 2\theta_\ell \sin 2\theta_l \sin \phi + I_9 \sin^2\theta_k \sin^2\theta_\ell \sin 2\phi \Big]
$$

[Descotes-Genon et al.,PRD88 \(2013\) 074002](https://doi.org/10.1103/PhysRevD.107.014511)

Kinematic regions in the $B \to K^* \ell \ell$ decay

$$
H_V(\lambda) = -iN \bigg\{ \overline{C_9V}
$$

- At leading order $C_9^{\text{eff}} = C_9(\mu) + Y(q^2)$, *μ*)
- In fact C_9^{eff} is observable \Rightarrow Scale independent $\frac{1}{9}$ is observable \Rightarrow
- One cannot disentangle C_9 from C_9^{ell} without C_9 from C_9^{eff} without h_λ

Anatomy of the vectorial $B \to K^{(*)} \ell \ell^2$ amplitude

• Helicity amplitudes

- **7 (local) form factors** (independent) and **3 non-local form factors**
- **Vector amplitude!** ⇒ Sensitive to the charm contributions!

The $b \rightarrow s\ell\ell$ anomalies: two approaches to life

• Interpretation of data depends on **prior beliefs** about "charm"

[Algueró et al., EPJ.C\(2023\)83:648](https://arxiv.org/abs/2304.07330) [Ciuchini et al., PRD107 \(2023\) 5, 055036](https://doi.org/10.1103/PhysRevD.107.055036)

Generalities about neutral meson mixing

• *flavor symmetries* **(e.g.** *strangeness***)** *U*(1)

Charges conserved by strong and EM

Neutral meson mixing

S=+1:
$$
K^0 = d\overline{s}
$$
, $K^+ = u\overline{s}$ S= -1: $\overline{K}^0 = s\overline{d}$,
C=+1: $D^0 = c\overline{u}$, $D^+ = c\overline{d}$ C= -1: $\overline{D}^0 = u\overline{c}$,
B=+1, S=-1: $B_s^0 = s\overline{b}$ B= -1, S=+1: \overline{B}_s^0 =

$$
K^{0} = d\overline{s}, K^{+} = u\overline{s} \qquad S = -1: \ \overline{K}^{0} = s\overline{d}, K^{-} = s\overline{u}
$$

$$
D^{0} = c\overline{u}, D^{+} = c\overline{d} \qquad C = -1: \ \overline{D}^{0} = u\overline{c}, D^{-} = d\overline{c}
$$

$$
M = 1: \ B_{s}^{0} = s\overline{b} \qquad B = -1, S = +1: \ \overline{B}_{s}^{0} = b\overline{s}
$$

Weak interactions ⇒ **Flavor (symmetry) violations**

Flavor eigenstates ≠ **Mass eigenstates**

$$
\bigg) \quad
$$

- **•** is **definite positive! Γ**
- *CPT***:** $M_{11} = M_{22} \equiv m_K$, $\Gamma_{11} = \Gamma_{22} \equiv \Gamma$

Neutral meson mixing in QM

- Eigenstates of *CP* too: $CP |K_{\pm}^0\rangle = \pm |K_{\pm}^0\rangle$ with $CP |K^0\rangle$
- **• Eigenvalues: mass** and **width differences** (observables)

 $K_{L,S} = \frac{1}{\sqrt{2}}(K^0 \mp K^0)$ 1 2

$$
\Gamma_{22} \equiv \Gamma
$$
\n
$$
H_{eff} \equiv \mathbf{R} = \mathbf{M} - i\frac{\Gamma}{2} = \begin{pmatrix} m_K & M_{12} \\ M_{12}^* & m_K \end{pmatrix} - \frac{i}{2} \begin{pmatrix} \Gamma & \Gamma_{12} \\ \Gamma_{12}^* & \Gamma \end{pmatrix}
$$
\n
$$
(K^0 \mp \bar{K}^0) \Rightarrow K_{L,S} = K^0_{\mp}
$$

$$
\Delta m = 2|M_{12}| \qquad \Delta \Gamma = 2|\Gamma_{12}|
$$

- **•** *CP* **conservation (?)**
	- **Eigenstates:**

$$
= \pm |K_{\pm}^{0}\rangle
$$
 with $CP|K^{0}\rangle = -|\bar{K}^{0}\rangle$

$$
\Delta\Gamma=2\left|\Gamma_{12}\right|
$$

Weisskopf-Wigner QM formalism

Evidence of CP violation in kaons

• CP **violation discovered in Kaon decays** $CP | \pi^+ \pi^- \rangle = + | \pi^+ \pi^- \rangle$ (*CP*-even)

IF *CP* **is conserved THEN** $K_L \rightarrow \pi^+\pi^-$ is forbidden

PDG $BR(K_S \to \pi \pi) = 99.89(10)\%$ $BR(K_L \to \pi \pi \pi) = 32.06(17)\%$ $BR(K_L \to \pi \pi) = 0.2831(16)\%$

VOLUME 13, NUMBER 4

PHYSICAL REVIEW LETTERS

27 JULY 1964

EVIDENCE FOR THE 2π DECAY OF THE K_2^0 MESON*[†]

J. H. Christenson, J. W. Cronin,^{\ddagger} V. L. Fitch,^{\ddagger} and R. Turlay[§] Princeton University, Princeton, New Jersey (Received 10 July 1964)

is observed THEN *CP* **is violated in Kaon decays!** $K_L \rightarrow \pi^+\pi^-$

Neutral-kaon mixing in the SM and mass difference

• FCNC: Box diagram **• Low-energy EFT**

- **• Perturbative calculation**
	- Wilson coefficient: $C(\mu) = b(\mu) \left(\lambda_c^2 S_0(x_c) \eta_1 + \lambda_t^2\right)$
		- Higher-order QCD corrections: $b(\mu)$, η_i
		- GIM hidden in Inami-Lim functions *

SM:
$$
\mathcal{H}_{\text{eff}} = \frac{G_F^2}{4\pi^2} C(\mu) \left(\bar{d}\gamma^\mu P_L s \right) \left(\bar{d}\gamma_\mu P_L s \right) + \text{h.c.}
$$

$$
M_{12} = \frac{1}{2m_K} \langle K^0 | \mathcal{H}_{\text{eff}} | \bar{K}^0 \rangle
$$

CP Violation - Branco, Lavoura & Silva, Appendix B

* **Charm**
$$
\approx \lambda^2 x_c
$$
 vs. top $\approx \lambda^{10} x_t$

$$
\chi_{\tilde{u}} = \sqrt{\frac{x}{\tilde{u}}} \sqrt{\frac{y}{\tilde{u}}}
$$

(x_c) η_1 + λ_t^2 S₀(x_t) η_2 +2 λ_c λ_t S₀(x_c, x_t) η_3
(x_i) , η_i
(y_i) , η_i
(z.g., $S_0(x) = \frac{x}{(1-x)^2} \left(1 - \frac{11x}{4} + \frac{x^2}{4} - \frac{3x^2 \log x}{2(1-x)}\right)$

Hadronic matrix element for kaon mixing

- To make predictions we need a hadronic matrix element $\langle K^0 | (\bar{d}\gamma^\mu P_L s) (\bar{d}\gamma_\mu P_L s) | \bar{K}^0 \rangle =$ 2 3
- Bag parameter: B_K dimensionless parameter
	-
- Scale & Scheme independent: $\hat{B}_K = b(\mu)B_K(\mu)$
- Standard calculation in LQCD today

$$
N_f = 2 + 1
$$

$$
\hat{B}_K = 0.763(10)
$$

 $m_K^2 f_K^2 B_K(\mu)$

Parametrization inspired by "vacuum approximation" ($B_K =\,1)~$ *CP Violation* - Branco *et al*., Appendix C

The kaon-mass difference in the SM

• Kaon mass difference: $\Delta m_K \approx 2 {\rm Re}(M_{12})$

- **• Problem:** Uncontrolled **long-distance** contributions
	- Exchange of pions and other hadrons at $d \approx 1/\Lambda_{\rm QCD}$

 $\Delta m_K^{}$ is not used to test the SM but taken as experimental fact in kaon mixing

-
-
- $(V_{cs})f_K^2m_K\hat{B}_K\thickapprox 10^{-15}$ GeV
	- $= 3.484(6) \times 10^{-15}$ GeV

The charm-quark contribution dominates:

Same ballpark as experiment! Δ m_K^{expt} *K*

$$
\Delta m_K^{\rm SD} \approx \frac{G_F^2}{24\pi^2} m_c^2 \Re(V_{cd}^* V_c)
$$

SM predictions for heavy meson mixing: $B^0 - \bar{B}^0$

• B^0 -meson mixing dominated by top loop!

$$
M_{12} = \frac{G_F^2}{12\pi^2} f_B^2 m_B \hat{B}_{B_d} (V_{td}^* V_{tb})^2 S_0(x_t) \equiv |M_{12}| e^{i\phi}
$$

\n
$$
\langle 0 | A^{\mu} | B_q(p) \rangle = i p_B^{\mu} f_{B_q}
$$

\n
$$
B_{B_q(\mu)} = \frac{\langle \bar{B}_q^0 | Q_R^q(\mu) | B_q^0 \rangle}{\frac{8}{3} f_{B_q}^2 m_B^2}
$$

• Predictions in the SM

$$
\Delta m_d^{\text{SM}} = 0.555(50) \text{ ps}^{-1}
$$

$$
\Delta m_d^{\text{expt}} = 0.5065(19) \text{ ps}^{-1}
$$

$$
\phi = \arg(V_{td}^* V_{tb}) \approx \beta
$$

$$
\Delta m_s^{\text{SM}} = 17.6(1.0) \text{ ps}^{-1}
$$

$$
\Delta m_s^{\text{expt}} = 17.7656(57) \text{ ps}^{-1}
$$

$$
\phi = \arg(V_{ts}^* V_{tb}) \approx \beta_s
$$

$B_s^0 - \bar{B}_s^0$ and ratios with the B^0 system *s* $-\bar{B}_s^0$ and ratios with the B^0

• Identical to B^0 replacing $d \rightarrow s$

Phenomenology of neutral-meson oscillations

• Define:

$$
x = \frac{\Delta m}{\Gamma} \qquad y = \frac{\Delta \Gamma}{2\Gamma}
$$

Approximate values $\mathcal{X}% _{M_{1},M_{2}}^{\alpha,\beta}(\varepsilon)$ y K 10^{-2} $\, B \,$ $(*)$ $\mathbb{1}$ B_s (*) $10 \t 10^{-1}$ (*) 10^{-2} 10^{-2} D

• Observable:

$$
P(t) = |\langle X_0(t) | X_0 \rangle|^2 = |f_+(t)|^2 = \frac{e^{-\Gamma t}}{2} \left(\cosh(y\Gamma t) + \cos(\Gamma xt) \right)
$$

We can use QM to measure small **mass differences** Δ*m* (*x*)

• Use leptonic decays as tags!

P B factories: Entangled $\Upsilon \rightarrow B\overline{B}$ pairs \Rightarrow Same-sign leptons is a smoking gun!

1987: Discovery of $B^0 - \bar{B}^0$ mixing! (ARGUS)

Flavor tagging with heavy mesons

- Exquisite $B_s^0 \bar{B}_s^0$ oscillations at LHCb
	- Tag final flavor state with hadronic decays

BSM bounds from neutral-meson mixing

- **• Neutral-meson mixing leads to very strong bounds on BSM physics**
	- They need to be taken into accoount by almost any flavor model building
	- Very sensitive to SM flavor structure ⇒ **Only MFV survives at low scales!** \circ

$$
H_{\text{eff}}^{\Delta F=2} = \frac{G_F^2}{16\pi^2} M_W^2 \sum_i V_{\text{CKM}}^i C_i(\mu) Q_i
$$

$$
Q_1^{\text{VLL}} = (\bar{s}^\alpha \gamma_\mu P_L d^\alpha)(\bar{s}^\beta \gamma^\mu P_L d^\beta),
$$

\n
$$
Q_1^{\text{LR}} = (\bar{s}^\alpha \gamma_\mu P_L d^\alpha)(\bar{s}^\beta \gamma^\mu P_R d^\beta), \qquad Q_2^{\text{LR}} = (\bar{s}^\alpha P_L d^\alpha)(\bar{s}^\beta P_R d^\beta),
$$

\n
$$
Q_1^{\text{SLL}} = (\bar{s}^\alpha P_L d^\alpha)(\bar{s}^\beta P_L d^\beta), \qquad Q_2^{\text{SLL}} = (\bar{s}^\alpha \sigma_{\mu\nu} P_L d^\alpha)(\bar{s}^\beta \sigma^{\mu\nu} P_L d^\beta),
$$

Concluding: experimental golden era

• "Multi-purpose" *B***-meson factories**

• Many more flavor experiments at different scales

Concluding: probe to physics beyond the SM

Flavor Physics spearheaded the discovery of the SM when the SM was the New Physics!

-
- **• Rare kaon decays:** Discovery of **charm quark**
-

PROPOSAL FOR K^O ₂ DECAY AND INTERACTION EXPERIMENT J. W. Cronin, V. L. Fitch, R. Turlay (April 10, 1963) \rightarrow

INTRODUCTION The present proposal was largely stimulated by the recent anomalous results of Adair et al., on the coherent regeneration of K^0 ₁ mesons. It is the purpose of this experiment to check these results with a precision far transcending that attained in the previous experiment. Other results to be obtained will be a new and much better limit for the partial rate of K^0 $\rightarrow \pi^+ + \pi^-$, a new limit for the presence (or absence) of neutral currents as observed through $K_2 + \mu^+ + \mu^-$.

• Nuclear β decay: Discovery of weak interactions and the neutrinos • Kaon decays: Discovery of CP violation → Discovery of 3 generations

Hands - on workshop: $K^+ \rightarrow \pi^+ \nu \bar{\nu}$

• Prototypical very-rare kaon decay: Δ*S* = 1 **FCNC**

• Effective Lagrangian

$$
\mathcal{L}_{\rm SM} = -\frac{4G_F}{\sqrt{2}} V_{ts} V_{td}^* \frac{\alpha}{2\pi} \sum_{\ell} C_{\nu_{\ell}} (\bar{d}\gamma^{\mu} P_L d)(\bar{\nu}_{\ell} \gamma_{\mu} \nu_{\ell})
$$

Penguin **diagram** *Box* **diagram**

Relevant form factors related by isospin to CCs

Wilson Coefficient:
$$
C_{\nu_e} = \frac{1}{s_w^2} \left(\frac{V_{cs} V_{cd}^*}{V_{ts} V_{td}^*} X_c^e + X_t \right)
$$

$$
C_{\nu_e}^{SM} \simeq 9
$$

$$
Br(K^+ \to \pi^+ \nu \bar{\nu})^{SM} = \frac{\alpha^2 |V_{ts} V_{td}^*|^2 Br(K^+ \to \pi^0 e^+ \nu_e)}{2\pi^2 |V_{us}|^2} \sum_{\ell} \left| C_{\ell} \right|^{2}
$$

$$
\simeq \frac{\alpha^2}{2\pi^2} A^4 \lambda^8 Br(K^+ \to \pi^0 e^+ \nu_e) \sum_{\ell} \left| C_{\nu_{\ell}} \right|^2
$$

$$
\text{Br}(K^+ \to \pi^+ \nu \bar{\nu})_{\text{SM}} = 8.55(4) \times 10^{-11}
$$
\n
$$
\text{Br}(K^+ \to \pi^+ \nu \bar{\nu})_{\text{expt}} = 1.14(36) \times 10^{-10}
$$

Hands - on workshop: $K^+ \rightarrow \pi^+ \nu \bar{\nu}$

• Let's take a Z' boson of mass $m_{Z'}$ that is coupled to the SM via $\mathscr{L} \supset \left(g_{ij}^{\mathcal{Q}} \bar{Q}_L^i \gamma^{\mu} Q_L^j \right)$

 $g^{\mathcal{Q}}$ is a matrix in general real matrix in flavor space and g_L

Exercise

- 1. Calculate BR in the SM using (approximate) formula
- 2. Match the UV model to the LEEFT
-
- 4. How does this bound change if we impose MFV?

$$
P_L^j + g^L \bar{L}_L^{\alpha} \gamma^{\mu} L_L^{\alpha} \bigg) Z_{\mu}^{\prime}
$$

is a matrix in general real matrix in flavor space and g_L a universal coupling for leptons.

3. *Estimate* the lower bound on $m_{Z'}$ given by $Br(K^+ \to \pi^+ \nu \bar{\nu})_{\rm expt}$ assuming $\mathcal{O}(1)$ couplings